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Abstract. The purpose of this work is to give a topological condition for the usual
product of two closed operators acting in a Hilbert space to be closed.

1. Introduction. We begin by recalling some known definitions and
results.

Notations and definitions. Let H be a complex Hilbert space. All oper-
ators are assumed to be linear and defined from H into H. The domain of
an operator A is denoted by D(A), which we assume to be dense. The null
space and range of A will be denoted by N(A) and R(A) respectively. The
operator A is said to be closed if its graph G(A) = {(x, Ax) : x ∈ D(A)} is
closed in H × H. The adjoint of A is denoted by A∗. The identity operator
is denoted by I.

The set of closed linear operators in H is denoted by C(H) while B(H)
denotes the set of all bounded elements of C(H).

Any other result or notion about unbounded operators that has not been
mentioned and which will be used is assumed to be known to the reader.
The literature on this subject is vast. We cite [2, 6, 16, 18] among others.

The notion of the product of two closed operators in a Hilbert space, in-
troduced several decades ago, is now broadly used in different areas of math-
ematics, both applied and pure. In particular, it is used widely in functional
analysis. We may cite the dominated convergence theorem of Lebesgue, the
differentiation of integral under the integral sign, etc.

The composition law constitutes a topological test for C(H) because it
is not generally a closure law. We know, for instance, that if two operators
A and B are bounded, then their commutator [A, B] = AB−BA is different
from the identity operator on H.
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However, things get more complicated for unbounded operators. This is
essentially due to the domains of the operators.

We now recall some deficiencies of the product of two closed operators.
If A and B are two unbounded operators with domains D(A) and D(B)
respectively, then their product is defined by (AB)f := A(Bf) for f ∈
D(AB) = B−1(D(A)). But AB may just not have any sense if for example
R(B) ∩ D(A) = {0}.

If A, B ∈ C(H), then AB need not be closed. In fact, the product of a
closed symmetric operator A with itself may have a domain that reduces
to {0}. This was first shown by Naimark [12] who gave a non-explicit way
of constructing such operators. Then Chernoff [1] gave simpler and more
explicit operators A satisfying D(A2) = {0} (they are also semibounded).
Also J. Dixmier [4] gave a method of constructing symmetric operators
whose squares (and even their adjoint’s squares) have trivial domain.

Nelson [13], Fuglede [5] and more recently Nussbaum [15] studied the
link between the closedness and the commutator of unbounded symmetric
operators.

The product AB (in this order) of two closed operators A and B is closed
if one of the following occurs:

(1) B is bounded on H;
(2) A is invertible with a bounded inverse on H;
(3) A and B are Fredholm;
(4) A and B are paracomplete such that N(AB) and R(AB) are closed

in H;
(5) A and B are paracomplete and AB is quasi-Fredholm with index 0;
(6) B is a generalized inverse of A and R(A) is closed in H and con-

versely;
(7) B is a generalized inverse of A such that R(A) ⊕ N(B) = H and

conversely.

For proofs of (3) to (7) see [7, 14].

An example with A bounded in H and B closed, but AB not closed is
given in [8]. Stronger conditions on A and B do not help much. While an
example of an unbounded self-adjoint operator A such that D(A2) = {0}
does not exist thanks to the spectral theorem, the self-adjointness is still
not sufficient. For instance, the operators

A = −i
d

dx
, B = |x|

are known to be self-adjoint (hence closed!) on their respective domains,
D(B) = {f ∈ L2(R) : |x|f ∈ L2(R)} and D(A) = H1(R) is the Sobolev
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space {f ∈ L2(R) : f ′ ∈ L2(R)}. Then AB is defined on its domain

D(AB) = {f ∈ L2(R) : |x|f,−i(|x|f)′ ∈ L2(R)}
by

ABf = −i(|x|f)′

where the derivative is a distributional one. D(AB) is dense in L2(R) since
it contains C∞

0 (R). Thus AB is certainly not closed (more details can be
found in [10]). So self-adjointness is not sufficient to make the product closed.
Accordingly, as soon as we leave the bounded operators we loose many
important properties concerning sums, products and adjoints among others.
To get round these problems J. Dixmier [4] defined a new product of two
closed operators A and B which he denoted by A · B. For the convenience
of the reader we recall his definition.

Definition. The product A ·B of two operators A and B is defined in
the following way. We say that f ∈ D(A · B) and g := A · Bf if there exist
two sequences, (fn)n in D(B) and (gn)n in R(A), such that fn → f , gn → g
and A−1gn −Bfn → 0 (for some well-chosen A−1gn and Bfn as A−1 and B
may be multifunctions).

Among the noteworthy results we recall the following. For all A and B
in C(H),

(1) A · B ∈ C(H);
(2) A ·B = AB (the usual product) if either B ∈ B(H) or A−1 ∈ B(H);
(3) A ·B = AB (the closure of AB) if either B−1 ∈ B(H) or A ∈ B(H).

Dixmier did not get the well known formula for adjoints, that is, (AB)∗ =
B∗A∗. He “only” got (AB)∗ = B∗ · A∗ and (A · B)∗ = B∗A∗.

B. Messirdi and M. H. Mortad proposed recently (cf. [8]) a new product
of closed operators. The idea was based upon the bisecting F (A) of an
operator A in C(H). If A and B are in C(H), then this product is defined
as

A • B = F−1(F (A)F (B))

where the function A 7→ F (A) = ASA(I +SA)−1 sends elements of C(H) to
contractions T such that ‖T‖ ≤ 1 and N(I −T ∗T ) = {0} where SA =

√
RA

if RA = (I + A∗A)−1. The known properties of RA and SA (see [3]) are:
RA, SA ∈ B(H), ‖RA‖ ≤ 1 and ‖SA‖ ≤ 1, ‖ARA‖ ≤ 1 and ‖ASA‖ ≤ 1.

The important results obtained in [8] are summarized in

Theorem 1. For all A, B in C(H),

(1) (A • B) ∈ C(H);
(2) (A • B)∗ = B∗ • A∗.
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An important property is that if A and B in C(H) are close to each
other with respect to the gap metric g (or equivalently p, f or h, all defined
below), then their product remains in C(H) (see [7]).

It seems desirable to obtain a topological sufficient condition for the
usual product to be closed. The condition that we obtain uses a new metric
d, strictly coarser than g, that characterizes with more precision the stability
of the product in C(H). This condition is for instance imposed in the spectral
analysis of the elements of C(H) (see the last Remark in this paper). So we
recall some results and definitions concerning C(H) and its metrics.

Finally, in Section 3 we show that if the distance between two closed
operators with respect to some metric in C(H) is fairly small, then their
usual product is closed.

2. Topologies on C(H)

Definition. Let A, B ∈ C(H). Denote their graphs by G(A) and G(B).
Let PG(A) and PG(B) denote the orthogonal projections on G(A) and G(B)
respectively. Now set

δ(A, B) = ‖(1 − PG(B))PG(A)‖B(H×H),

g(A, B) = ‖PG(B) − PG(A)‖B(H×H).

Then g(A, B) is a metric on C(H), usually called the metric gap, while
δ(A, B) is not a distance. Moreover, the topology induced by g on B(H) is
equivalent to the usual uniform topology, and B(H) is open in C(H) (cf. [3]).

Furthermore ([3, 6]),

g(A, B) = max(δ(A, B), δ(B, A)), g(A, B) = g(A∗, B∗),

and if A and B are invertible in C(H), then

g(A−1, B−1) = g(A, B).

However, for applications other metrics on C(H) may be more practical
(see [3]). An example is

p(A, B) = [‖RA − RB‖2
B(H) + ‖RA∗ − RB∗‖2

B(H) + 2‖ARA −BRB‖2
B(H)]

1/2.

This is a metric equivalent to g and one has

g(A, B) ≤
√

2 p(A, B) ≤ 2g(A, B), ∀A, B ∈ C(H),

p(A, B) ≤ 4‖A − B‖, ∀A, B ∈ B(H).

Proposition 1. The map F defined in the introduction is open and

bijective from (C(H), g) into C0(H) (the space of bounded linear operators

T with norm less than one and N(I−T ∗T ) = {0}) with the topology induced

by B(H).

Proof. That F is bijective may be found in [8].
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Now for all A and B in C(H) we have on the one hand

g2(A, B) ≤ 2[‖RA − RB‖2
B(H) + ‖RA∗ − RB∗‖2

B(H) + 2‖ARA − BRB‖2
B(H)],

and on the other hand

‖RA − RB‖B(H) ≤ (‖SA‖B(H) + ‖SB‖B(H))‖SA − SB‖B(H)

≤ 2‖SA − SB‖B(H),

‖RA∗ − RB∗‖B(H) ≤ 2‖SA∗ − SB∗‖B(H)

and

‖ARA − BRB‖2
B(H)

≤ [‖ASA − BSB‖B(H)‖SA‖B(H) + ‖BSB‖B(H)‖SA − SB‖B(H)]
2,

which, in turn, is smaller than

2[‖ASA − BSB‖2
B(H) + ‖SA − SB‖2

B(H)].

Hence

g2(A, B) ≤ 4[2‖SA − SB‖2
B(H) + ‖SA∗ − SB∗‖2

B(H) + ‖ASA − BSB‖2
B(H)].

Moreover, we have ([3])

‖SA − SB‖B(H) ≤ 2g(F (A), F (B)),

‖SA∗ − SB∗‖B(H) ≤ 2g(F (A), F (B)),

‖ASA − BSB‖B(H) ≤ 2g(F (A), F (B)).

Thus
g2(A, B) ≤ 64g2(F (A), F (B))

and
g(A, B) ≤ 8g(F (A), F (B)) ≤ 8

√
2 p(F (A), F (B))

≤ 32
√

2‖F (A) − F (B)‖B(H).

Remark. Let A ∈ C(H). Set

FA =

(

RA − PN(A) A∗RA∗

ARA I − RA∗

)

, HA =

(

RA A∗RA∗

ARA I − RA∗ + PN(A∗)

)

where PN(A) and PN(A∗) denote the orthogonal projections on N(A) and
N(A∗) respectively. Then FA and HA are two orthogonal projections in
B(H × H).

Among the metrics found in the literature we may cite f and h (cf. [17])
defined as follows. If A, B are in C(H) then set

f(A, B) = ‖FA − FB‖B(H×H) and h(A, B) = ‖HA − HB‖B(H×H).

Proposition 2. The functions f and h are metrics on C(H) satisfying

f(A∗, B∗) = h(A, B) and h(A∗, B∗) = f(A, B).
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Proof. Using the following properties of RA:

ARA = RA∗A on D(A), (ARA)∗ = A∗RA∗ , N(ARA) = N(A),

we see easily that F 2
A = FA, H2

A = HA, F ∗
A = FA and H∗

A = HA, i.e., both
FA and HA are orthogonal projections.

Let us check that f is a metric. We trivially have

f(A, B) = f(B, A), f(A, C) ≤ f(A, B) + f(B, C), f(A, A) = 0

for all A, B, C in C(H). If f(A, B) = 0 then RA∗ = RB∗ and hence
SA = SA∗ . Thus D(A∗) = D(B∗), and A∗RA∗ = B∗RB∗ shows that A∗SA∗ =
ASA. So A∗ and B∗ coincide on their equal domains and hence A = B.

We proceed analogously for h(A, B).
Finally, we have

FA − FB = −M(HB∗ − HA∗)M where M =

(

0 −1

1 0

)

and since ‖M‖ = 1, f(A, B) = h(A∗, B∗). Since A and B are closed the
other equality is merely a consequence of this one.

Remark. Since (see [19])

PG(A) =

(

RA A∗RA∗

ARA I − RA∗

)

,

one has

|f(A, B) − g(A, B)| ≤ ‖PN(A) − PN(B)‖B(H), ∀A, B ∈ C(H).

3. The inverse image topology on C(H). The set

τ = {F−1(W ) : W open in C0(H)}
is obviously a topology on C(H). It is the coarsest (in the terminology
of [11]) topology on C(H) making the mapping F continuous.

Moreover, τ is metrizable since for A, B ∈ C(H),

d(A, B) = ‖F (A) − F (B)‖B(H)

is a bounded metric in C(H) making both F and F−1 continuous. This ac-
tually means that F is an isometry between C(H) and C0(H). In particular,
the topology induced by d on C(H) coincides with τ .

For A, B ∈ C(H) one also has

d(A, B) = d(A∗, B∗) and g(A, B) ≤ 32
√

2 d(A, B).

Nevertheless, the topology induced by g (and hence by p) on C(H) is
strictly finer than τ , and g and d are not equivalent since otherwise F would
be continuous on (C(H), g), which is not the case (since (C(H), g) would
then be complete and this is not true, see [6]).
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Remark (cf. [8]). For A and B in C(H), if d(A, B) < 1, then there
exists an operator C such that

C = 2(F (A) − F (B))(I − (F (A∗) − F (B∗))(F (A) − F (B)))−1.

This operator is bounded on H and satisfies F (C) = F (B) − F (A) and

d(A, B) = ‖F (C)‖B(H) = d(C, 0) =
‖C‖B(H)

1 +
√

1 + ‖C‖2
B(H)

,

or, equivalently,

‖C‖B(H) =
2d(A, B)

1 − d2(A, B)
.

Lemma 1 (cf. [6]). Let A and B be two closed operators in H.

(1) If A ∈ B(H), then A + B ∈ C(H).
(2) A∗ + B∗ ⊆ (A + B)∗, and if A ∈ B(H), then A∗ + B∗ = (A + B)∗.
(3) B∗A∗ ⊆ (AB)∗.

Remark. For more details on when (1) and (2) hold for other operators
see [9]. Also there is a generalization of (3) for a different product (cf. [8]).

Lemma 2. Let A, B ∈ C(H) and 0 < ε < 1/32
√

2. Then

d(A, B∗) < ε ⇒ G(A) ⊕ G(B∗)⊥ = H ⊕ H.

Proof. If d(A, B∗) < ε, then ‖PG(A) − PG(B∗)‖B(H) < 1. Let X ∈
G(A) ∩ G(B∗)⊥. Then (PG(A) − PG(B∗))X = X. Hence

‖X‖ ≤ 32
√

2 d(A, B∗)‖X‖ < ‖X‖.
Consequently, X = 0.

Similarly we obtain G(B∗) ∩ G(A)⊥ = {0}. Hence

(G(B∗) ∩ G(A)⊥)⊥ = G(A) + G(B∗)⊥ = H ⊕ H.

We need only show that G(A) + G(B∗)⊥ is closed in H ⊕ H. Let Y ∈
G(A) + G(B∗)⊥. Then Y = Y1 + Y2 with Y1 ∈ G(A) and Y2 ∈ G(B∗)⊥. We
also have

‖Y ‖2
H⊕H = ‖Y1‖2 + ‖Y2‖2 + 2Re〈Y1, Y2〉.

Thus

‖Y1‖2 + ‖Y2‖2 = ‖Y ‖2
H⊕H − 2Re〈PG(A)Y1, (I − PG(B∗))Y2〉

= ‖Y ‖2
H⊕H − 2Re〈(I − PG(B∗))PG(A)Y1, Y2〉

≤ ‖Y ‖2
H⊕H + 2‖(PG(A) − PG(B∗))PG(A)Y1‖ · ‖Y2‖

≤ ‖Y ‖2
H⊕H + 64

√
2 d(A, B∗)‖Y1‖ · ‖Y2‖.
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This gives

‖Y1‖ ≤ ‖Y ‖
1 − 32

√
2d(A, B∗)

,(∗)

‖Y2‖ ≤ ‖Y ‖
1 − 32

√
2d(A, B∗)

.(∗∗)

Let Y ∈ H ⊕ H. Then there exists a sequence Yn = Y1,n + Y2,n that
converges in H ⊕ H to Y where Y1,n ∈ G(A) and Y2,n ∈ G(B∗)⊥.

Now estimates (∗) and (∗∗) show that (Y1,n)n and (Y2,n)n are Cauchy
sequences in H⊕H. Therefore they converge to Y1 ∈ G(A) and Y2 ∈ G(B∗)⊥

respectively since both G(A) and G(B∗)⊥ are closed in H ⊕ H. Thus Y =
Y1 + Y2 ∈ G(A) + G(B∗)⊥.

The main result in this paper is the following theorem.

Theorem 2. Let A and B be two closed operators in a Hilbert space H
and let 0 < ε < 1/32

√
2. If d(A, B∗) < ε, then AB and BA are both closed

with dense domains in H.

Proof. Assume that d(A, B∗) < ε. Then by the previous lemma G(A)⊕
G(B∗)⊥ = H ⊕ H. Since G(B∗) = V (G(B))⊥ we have G(B∗)⊥ = V (G(B))
where V (x, y) = (−y, x) is a surjective isometry on H ⊕ H such that V 2 =
−IH⊕H and V (E⊥) = V (E)⊥ for any linear subspace E of H ⊕ H.

If f ∈ H, then there exist unique x ∈ D(A) and y ∈ D(B) for which

(f, 0) = (x, Ax) + (−By, y).

If we set x = Pf and y = Qf then we obtain
{

f = Pf − BQf,

0 = APf + Qf.

Hence f = (I + BA)Pf . This shows that P maps H into D(I + BA) and
hence R(P ) ⊆ D(I + BA).

On the other hand, since d(A, B∗) = d(B∗, A) and using the same
method, we obtain an operator, P ∗ say, defined in the domain D(I +A∗B∗)
of the operator I + A∗B∗ by

(I + A∗B∗)P ∗g = g for all g ∈ H.

In particular, for g ∈ R(P )⊥, we have, for all f in H,

0 = 〈g, Pf〉H = 〈(I + A∗B∗)P ∗g, Pf〉H
= 〈P ∗g, (I + BA)Pf〉H = 〈P ∗g, f〉H .

Hence P ∗g = 0 and g = (I + A∗B∗)P ∗g = 0 and as a consequence
R(P )⊥ = {0}. It follows that R(P ) and D(I + BA) are dense in H and
so are R(P ∗) and D(I + A∗B∗) (this is done in exactly the same way).
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Now let y ∈ D((I + BA)∗). Using Lemma 1 and (I + A∗B∗)P ∗ = I one
has

∀x ∈ D(I + BA), 〈(I + BA)x, y〉H = 〈x, (I + BA)∗y〉H
= 〈x, (I + A∗B∗)P ∗(I + BA)∗y〉H = 〈(I + BA)x, P ∗(I + BA)∗y〉H ,

which gives y = P ∗(I + BA)∗y.

Thus y ∈ D(I + A∗B∗) and (I + BA)∗y = (I + A∗B∗)y. Accordingly,

D((I + BA)∗) ⊆ D(I + A∗B∗).

So from Lemma 1 we deduce that

(I + BA)∗ = I + A∗B∗ and (I + A∗B∗)∗ = I + BA.

So I + BA and hence BA are closed in H with dense domains.

Inverting the roles of A and B and using d(A, B∗) = d(A∗, B) yield the
closedness of AB and hence establishes the result.

Corollary 1. If A, B ∈ C(H) are such that d(A, B∗) < ε where 0 <
ε < 1/32

√
2, then

(I + AB)−1, (I + BA)−1 ∈ C(H).

Proof. Since (I +BA)P = I and (I +AB)P ′ = I where R(P ) and R(P ′)
are dense in H and P and P ′ are two bounded operators, it follows that
I + BA and I + AB are both invertible in their respective domains, take
their values in H and

(I + BA)−1 = P and (I + AB)−1 = P ′.

In fact, if AB and BA are closed, then G(A) ⊕ G(B∗)⊥ = H ⊕ H and
hence g(A, B∗) < 1. Nevertheless, we loose the optimality in Theorem 2.

Remarks. (1) If d(A, B∗) < ε < 1/32
√

2, then −1 is in the resolvent
sets of AB and BA. Hence (λ + AB)−1 and (λ + BA)−1 are two analytical
families of operators from the disc {λ ∈ C : |λ + 1| < ε} into B(H) for
sufficiently small ε.

(2) These results are easily generalized to the case when the resolvent
sets are replaced with the Fredholm resolvent sets (cf. [7]).

(3) The stability for the class C(H) with the metric d also follows from
the behavior of the unitary groups associated with operators in C(H) (see
the notes in [16]).
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topologique des opérateurs infinitésimaux de semi-groupes analytiques et de contrac-

tions sur un espace de Hilbert , Atti Accad. Naz. Lincei Rend. 52 (1972), 631–636.
[8] B. Messirdi and M. H. Mortad, On different products of closed operators, submitted.
[9] —, —, On sums of closed operators, in preparation.

[10] M. H. Mortad, An application of the Putnam–Fuglede theorem to normal products

of self-adjoint operators, Proc. Amer. Math. Soc. 131 (2003), 3135–3141.
[11] J. R. Munkres, Topology, 2nd ed., Prentice-Hall, 2000.
[12] M. Naimark, On the square of a closed symmetric operator , Dokl. Akad. Nauk SSSR

26 (1940), 866–870; ibid. 28 (1940), 207–208.
[13] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572–614.
[14] G. Neubauer, Homotopy properties of semi-Fredholm operators in Banach spaces,

Math. Ann. 176 (1968), 273–301.
[15] A. E. Nussbaum, A commutativity theorem for semi-bounded operators in Hilbert

space, Proc. Amer. Math. Soc. 125 (1997), 3541–3545.
[16] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Functional

Analysis, Academic Press, 1972.
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