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MEASURE-VALUED SOLUTIONS OF A HETEROGENEOUSCAHN�HILLIARD SYSTEM IN ELASTIC SOLIDSBYIRENA PAW�OW and WOJCIECH M. ZAJ�CZKOWSKI (Warszawa)Abstra
t. The paper is 
on
erned with the existen
e of measure-valued solutionsto the Cahn�Hilliard system 
oupled with elasti
ity. The system under 
onsideration isanisotropi
 and heterogeneous in the sense of admitting the elasti
ity and gradient en-ergy tensors dependent on the order parameter. Su
h dependen
es introdu
e additionalnonlinearities to the model for whi
h the existen
e of weak solutions is not known so far.1. Introdu
tion. In re
ent years the Cahn�Hilliard problem 
oupledwith elasti
ity has been the subje
t of extensive mathemati
al studies; werefer e.g. to Miranville (2003) and Bartkowiak and Pawªow (2005) for up-to-date referen
es. The problem des
ribes the phase separation pro
ess in abinary, deformable alloy quen
hed below a 
ertain 
riti
al temperature. It isknown from the materials s
ien
e literature that the elasti
 e�e
ts stronglyin�uen
e the mi
rostru
ture evolution of the phase separation and thatamong important fa
tors are the material anisotropies and heterogeneities.In view of that it is of importan
e to study the Cahn�Hilliard models a
-
ounting for su
h e�e
ts.Applying a thermodynami
al theory based on a mi
rofor
e balan
eM. E. Gurtin (1996) introdu
ed a generalized Cahn�Hilliard system 
oupledwith elasti
ity. This system generalizes the 
lassi
al Cahn�Hilliard equationby admitting its more general stru
ture, 
hemi
al anisotropy and heterogene-ity and the 
oupling with an elasti
ity system, in general anisotropi
 andheterogeneous as well. The anisotropies are represented by the matrix formsof the material 
oe�
ients whereas the heterogeneities by the 
oe�
ient de-penden
e on the order parameter, a quantity des
ribing the mi
rostru
ture.In the 
ase of binary phase separation the order parameter is related to thevolumetri
 fra
tion of a phase.From the mathemati
al point of view problems with anisotropi
 andheterogeneous e�e
ts lead to additional nonlinearities in the equations andmake the analysis mu
h more 
ompli
ated. The main di�
ulty is in passing2000 Mathemati
s Subje
t Classi�
ation: 35D05, 35G30.Key words and phrases: measure-valued solutions, Cahn�Hilliard model, phase sepa-ration, elasti
ity system. [313℄ 
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314 I. PAW�OW AND W. M. ZAJ�CZKOWSKIto the limit within nonlinearities. So far the Cahn�Hilliard system 
oupledwith anisotropi
, heterogeneous elasti
ity has been studied by Gar
ke (2000,2003a, 2003b), and Bonetti et al. (2002). The existen
e results obtained inthese papers are restri
ted to the quasi-stationary approximation of the elas-ti
ity system. We remark that the mathemati
al arguments appli
able forthe quasi-stationary ellipti
 elasti
ity do not extend to the nonstationaryhyperboli
 
ase.The e�e
ts of 
hemi
al anisotropy and heterogeneity, to the best of theauthors' knowledge, have not been mu
h addressed so far. In this respe
twe mention the paper by Bonetti et al. (2002) where the order parameterdependen
e of the gradient 
oe�
ient representing surfa
e tensions has beena

ounted for under 
ertain stru
tural simpli�
ations. We also mention thepaper by Bartkowiak and Pawªow (2005) whi
h is 
on
erned with the ex-isten
e of weak solutions to the Cahn�Hilliard�Gurtin system 
oupled withnonstationary elasti
ity. We point out, however, that be
ause of te
hni
alobsta
les in passing to the limit within nonlinearities, the authors of the lat-ter paper restri
ted themselves to a homogeneous problem with 
oe�
ientsindependent of the order parameter.The present paper extends the results of Bartkowiak and Pawªow (2005)to the heterogeneous 
ase by using a 
on
ept of measure-valued solutions(see Málek et al. (1996)). We use a spe
ial kind of measure-valued solu-tion whi
h was studied previously by Neustupa (1993) for barotropi
 �ows,and by Kröner and Zaj¡
zkowski (1996) for Euler equations of 
ompressible�uids.The general Cahn�Hilliard�Gurtin system 
oupled with elasti
ity, withsome pres
ribed initial and boundary 
onditions, 
an be represented in theform of the following system of problems for the displa
ement u, order pa-rameter χ and the 
hemi
al potential µ:
(1.1)

utt −∇ · W,ε(ε(u), χ) = b in ΩT = Ω × (0, T ),

u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 on ST = S × (0, T ),

(1.2)

χt −∇ · (M(χ)∇w + hχt) = 0 in ΩT ,

χ|t=0 = χ0 in Ω,

n · (M(χ)∇w + hχt) = 0 on ST ,

(1.3)

µ − g · ∇µ + ∇ · (Γ(χ)∇χ) − 1
2∇χ · Γ′(χ)∇χ

− Ψ ′(χ) − W,χ(ε(u), χ) − βχt = 0 in ΩT ,

n · (Γ(χ)∇χ) = 0 on ST ,
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tion W (ε(u), χ) represents the elasti
 energy, de�ned by(1.4) W (ε(u), χ) = 1
2(ε(u) − ε(χ)) ·A(χ)(ε(u) − ε(χ)).The 
orresponding derivatives

W,ε(ε(u), χ) = A(χ)(ε(u) − ε(χ))and
W,χ(ε(u), χ) = −ε′(χ)·A(χ)(ε(u)−ε(χ))+1

2(ε(u)−ε(χ))·A′(χ)(ε(u)−ε(χ))represent respe
tively the stress tensor and the elasti
 
ontribution to the
hemi
al potential.Above, Ω ⊂ R
n, n = 2 or 3, is a bounded domain with smooth boundary

S, o

upied by a solid body in a referen
e 
on�guration, with 
onstant massdensity ̺ = 1; n denotes the outward unit normal to S; T > 0 is an arbitrary�xed time.The unknown variables are the displa
ement �eld u : ΩT → R
n, thes
alar order parameter χ : ΩT → R, and the 
hemi
al potential di�eren
ebetween the 
omponents (brie�y referred to as the 
hemi
al potential) µ :

ΩT → R. In the 
ase of a binary a-b alloy the order parameter is related tothe volumetri
 fra
tion of one of the two phases, 
hara
terized by di�erent
rystalline stru
tures of the 
omponents, for example χ = −1 
orrespondsto phase a and χ = 1 to phase b. The se
ond order symmetri
 tensor
ε(u) = 1

2(∇u + (∇u)T )denotes the linearized strain (for simpli
ity we write ε instead of ε(u)), and
b : ΩT → R

n is the external body for
e.The free energy density underlying system (1.3)�(1.5) has the Landau�Ginzburg�Cahn�Hilliard form a

ounting for the elasti
 e�e
ts,(1.5) f(ε, χ,∇χ) = W (ε, χ) + Ψ(χ) + 1
2∇χ · Γ(χ)∇χ,where W (ε, χ) is the homogeneous elasti
 energy, Ψ(χ) is the ex
hange en-ergy, and the last term with the positive de�nite tensor Γ(χ) = (Γij(χ)) isthe gradient energy.The standard form of the elasti
 energy W (ε, χ) is given by (1.4) where

A(χ) = (Aijkl(χ)) is the fourth order elasti
ity tensor depending on the orderparameter, and ε(χ) = (εij(χ)) is the symmetri
 eigenstrain tensor, i.e. astress free strain at 
on
entration χ. The ex
hange energy Ψ(χ) 
hara
terizesthe energeti
 favorability of the individual phases a and b. The standard formis a double-well potential with equal minima at χ = −1 and χ = 1:(1.6) Ψ(χ) = 1
2(1 − χ2)2.Furthermore, M(χ) = (Mij(χ)) is the mobility matrix, β ≥ 0 is thedi�usional vis
osity, and the ve
tors g = (gi), h = (hi) represent the 
ross-
oupling e�e
ts; for usual isotropi
 materials g = 0 and h = 0.



316 I. PAW�OW AND W. M. ZAJ�CZKOWSKIBy thermodynami
al 
onsisten
y the 
oe�
ient matrix(1.7) B =

[
M h

gT β

]

has to satisfy the 
ondition(1.8) X · BX ≥ 0 ∀X = (∇µ, χt) ∈ R
n × R.If B is independent of X then (1.8) means the positive semi-de�niteness of

B. In general, however, the quantities M,g,h, β may depend on ∇µ, χt, ε, χ.Throughout this paper we shall assume that M = M(χ) is positive de�nite,and for simpli
ity we restri
t ourselves to the spe
ial 
ase (standard Cahn�Hilliard 
ase)(1.9) g = h = 0 and β = 0.Later on we shall refer to the system (1.1)�(1.3) with stru
tural simpli�
a-tions (1.9) as problem (P0).In the heterogeneous 
ase the gradient energy tensor Γ(χ) and the elas-ti
ity tensor A(χ) may be di�erent in ea
h of the phases, i.e., dependent onthe order parameter χ. As already mentioned, the present paper is an exten-sion of Bartkowiak and Pawªow (2005) where the existen
e of weak solutionshas been proved for problem (P0) and its more general version (1.1)�(1.3)only in the homogeneous 
ase with 
onstant tensors Γ and A. The obsta
lewe were not able to over
ome to establish the existen
e of weak solutions inthe heterogeneous 
ase was the la
k of su�
iently strong a priori estimates.In fa
t, the χ dependen
e of Γ(χ) and A(χ) introdu
es to the �eld equationsthe nonlinear energy-like terms(1.10) 1
2∇χ · Γ′(χ)∇χ and 1

2(ε(u) − ε(χ)) · A′(χ)(ε(u) − ε(χ))whi
h are the sour
e of mathemati
al di�
ulties. For these terms we areable to show only L∞(0, T ; L1(Ω))-norm energy estimates whi
h are notsu�
ient to prove the existen
e of weak solutions by passing to the limit inapproximate problems.For this reason in the present paper we propose a weaker, measure-valuedsense in whi
h the equations of (P0) are satis�ed. The idea of measure-valued solutions is taken from the papers by Neustupa (1993) and Krönerand Zaj¡
zkowski (1996) where the notion of a measure-valued solution wasapplied to the Euler and Navier�Stokes equations. The underlying idea is,roughly speaking, to assume that all quantities in the weak formulation ofthe problem are asso
iated with some sets E ⊂ Ω (E is assumed to be aBorel set) rather than points x ∈ Ω.The paper is organized as follows. In Se
tion 2 we introdu
e a weakformulation of problem (P0) and its measure-valued generalization. On thebasis of this generalization we de�ne a measure-valued solution of (P0). In



CAHN�HILLIARD SYSTEM 317Se
tion 3 we formulate the assumptions and the main result of the paperwhi
h asserts the existen
e of measure-valued solutions to problem (P0). InSe
tion 4 we present the proof of the existen
e theorem. It is based on theFaedo�Galerkin approximation of (P0) studied in Bartkowiak and Pawªow(2005). We use the following notations:
• x ∈ R

n, n = 2 or n = 3, is the material point; f,i = ∂f/∂xi and
ft = df/dt are the material spa
e and time derivatives,

• ε = (εij)i,j=1,...,n,
• W,ε(ε, χ) = (∂W (ε, χ)/∂εij)i,j=1,...,n, W,χ(ε, χ) = ∂W (ε, χ)/∂χ,
• Γ′(χ) = (Γ ′

ij(χ))i,j=1,...,n, Γ ′
ij(χ) = dΓij(χ)/dχ.For simpli
ity, whenever there is no danger of 
onfusion, we omit the argu-ments (ε, χ). The spe
i�
ation of tensor indi
es is omitted as well.Ve
tor and tensor-valued mappings are denoted by bold letters. The sum-mation 
onvention over repeated indi
es is used, and we apply the followingnotation:

• for ve
tors a = (ai), ã = (ãi), and tensors B = (Bij), B̃ = (B̃ij),
A = (Aijkl) we write a · ã = aiãi, B · B̃ = BijB̃ij , AB = (AijklBkl),
BA = (BijAijkl),

• |a| = (aiai)
1/2, |B| = (BijBij)

1/2,
• ∇ and ∇· denote the gradient and the divergen
e operators with re-spe
t to the material point x ∈ R

n. For the divergen
e of a tensor �eldwe use 
ontra
tion over the last index, ∇ · ε(x) = (εij,j(x)).We apply the standard Sobolev spa
es notation Hm(Ω) = Wm
2 (Ω) for

m ∈ N, and:
• L2(Ω) = (L2(Ω))n, V0 = H1

0(Ω) = (H1
0 (Ω))n, n = 2 or 3.

• (·, ·)L2(Ω), (·, ·)L2(Ω) denote the s
alar produ
ts in L2(Ω) and L2(Ω).
• V ′ is the dual spa
e of V = H1(Ω) with duality pairing 〈·, ·〉V ′,V .
• V′

0 is the dual of V0 with duality pairing 〈·, ·〉V′

0
,V0

.
• C∞

c ([0, T )) is the spa
e of smooth fun
tions with 
ompa
t support in
[0, T ).Throughout the paper c denotes a generi
 positive 
onstant di�erent in va-rious instan
es.2. Weak and measure-valued formulations. We introdu
e the fol-lowing weak formulation of problem (P0): Find fun
tions u : ΩT → R

n,
χ : ΩT → R and µ : ΩT → R de�ned a.e. in ΩT , satisfying
(2.1)

T\
0

ϑ′′
1(t)
\
Ω

u · η0(x) dx dt+

T\
0

ϑ1(t)
\
Ω

A(χ)(ε(u) − ε(χ)) · ε(η0(x)) dx dt
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=

T\
0

ϑ1(t)
\
Ω

b · η0(x) dx dt +
\
Ω

ϑ1(0)u1 · η0(x) dx −
\
Ω

ϑ′
1(0)u0 · η0(x) dx

∀η0 ∈ (C∞(Ω))3, ϑ1 ∈ C∞
c ([0, T )) with η0|S = 0,where the form of the se
ond term on the left-hand side follows from thesymmetry of A;

(2.2) −

T\
0

ϑ′
2(t)
\
Ω

χξ0(x) dx dt +

T\
0

ϑ2(t)
\
Ω

M(χ)∇µ · ∇ξ0(x) dx dt

=
\
Ω

ϑ2(0)χ0ξ0(x) dx ∀ξ0 ∈ C∞(Ω), ϑ2 ∈ C∞
c ([0, T ));

(2.3)

T\
0

ϑ3(t)
\
Ω

µζ0(x) dx dt −

T\
0

ϑ3(t)
\
Ω

Γ(χ)∇χ · ∇ζ0(x) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

∇χ · Γ′(χ)∇χ ζ0(x) dx dt −

T\
0

ϑ3(t)
\
Ω

Ψ ′(χ)ζ0(x) dx dt

+

T\
0

ϑ3(t)
\
Ω

ε′(χ) · A(χ)(ε(u) − ε(χ))ζ0(x) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

(ε(u) − ε(χ)) · A′(χ)(ε(u) − ε(χ))ζ0(x) dx dt = 0

∀ζ0 ∈ C∞(Ω), ϑ3 ∈ C∞([0, T ]).We now introdu
e a measure-valued generalization of (2.1)�(2.3). To thisend we apply the ideas and notations from Neustupa (1993) adapted toour setting. Assume for a while that we already know a weak solution to(2.1)�(2.3) whi
h provides fun
tions u, χ, µ and their spatial gradients ∇u,
∇χ, ∇µ. The idea underlying a measure-valued generalization of (2.1)�(2.3)is to assume that the quantities (u, ε(u), χ, ∇χ, µ, ∇µ) are 
onne
ted withsome sets in Ω rather than points. Then at time t ∈ (0, T ) the quantities(u, ε(u), χ,∇χ, µ,∇µ) assigned to a set E ⊂ Ω represent 
olle
tions of pointsfrom the spa
e

R
M ≡ R

n × R
n2

× R × R
n × R × R

n.Denote a point in R
M by

λ = (λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ) ∈ R

M .Let E ⊂ Ω and I ⊂ R
M be Borel sets. The 
olle
tion of unknowns asso
iatedwith E ⊂ Ω 
an be 
hara
terized by a measure νt,E on R

M su
h that if I isa Borel set in R
M then νt,E(I) is the Lebesgue measure of the subset E′ of
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E 
onsisting of the points x su
h that
(u(x, t), ε(u)(x, t), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t)) ∈ I.Denoting by δ[x,t] the Dira
 measure in R

M with support at (u(x, t),
ε(u)(x, t), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t)), and by κE′ the 
hara
teristi
fun
tion of E′, we write

κE′(x) =
\
I

dδ[x,t](λ) for a.e. x ∈ Ω,and(2.4) νt,E(I) =
\
E

κE′(x) dx =
\
E

\
I

dδ[x,t](λ) dx.The measure νt,E(I) 
an be viewed as a value of a set fun
tion de�ned onsubsets of Ω×R
M of type E×I with E and I being Borel sets in Ω and R

M ,respe
tively. Su
h a fun
tion has a unique extension to a nonnegative regularmeasure νt on Ω × R
M su
h that νt(E × I) = νt,E(I) for all Borel sets E in

Ω and I in R
M .Making use of the introdu
ed measure νt(x, λ) we now reformulate (2.1)�(2.3). To this end we note that the integrands in (2.1)�(2.3) 
ontain termsof the type(2.5) \

Ω

f(u, ε(u), χ,∇χ, µ,∇µ)ξ(x)dx.The fun
tion f(u, ε(u), χ,∇χ, µ,∇µ) with (u, ε(u), χ, ∇χ, µ,∇µ) evaluatedat (x, t) 
an be expressed in the form
f(u(x, t), ε(u(x, t)), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t))

=
\

RM

f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ) dδ[x,t](λ).Hen
e, the integral in (2.5) is equal to\

Ω

\
RM

f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ)ξ(x) dδ[x,t](λ) dx,and due to (2.4), it 
an also be expressed as(2.6) \

Ω

\
RM

f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ)ξ(x) dνt(x, λ).Consequently, we 
an write the integral identities (2.1)�(2.3) in the form

(2.7)

T\
0

ϑ′′
1(t)
\
Ω

\
RM

λu · η0(x) dνt(x, λ) dt

+

T\
0

ϑ1(t)
\
Ω

\
RM

A(λχ)(λ
ε(u) − ε(λχ)) · ε(η0(x)) dνt(x, λ) dt
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=

T\
0

ϑ1(t)
\
Ω

b · η0(x) dx dt +
\
Ω

ϑ1(0)u1 · η0(x) dx

−
\
Ω

ϑ′
1(0)u0 · η0(x) dx

∀η0 ∈ (C∞(Ω))3, ϑ1 ∈ C∞
c ([0, T )) with η0|S = 0;

(2.8) −

T\
0

ϑ′
2(t)
\
Ω

\
RM

λχξ0(x) dνt(x, λ) dt

+

T\
0

ϑ2(t)
\
Ω

\
RM

M(λχ)λ∇µ · ∇ξ0(x) dνt(x, λ) dt

=
\
Ω

ϑ2(0)χ0ξ0(x) dx ∀ξ0 ∈ C∞(Ω), ϑ2 ∈ C∞
c ([0, T ));and

(2.9)

T\
0

ϑ3(t)
\
Ω

\
RM

λwζ0(x) dνt(x, λ) dt

−

T\
0

ϑ3(t)
\
Ω

\
RM

Γ(λχ)λ∇χ · ∇ζ0(x) dνt(x, λ) dt

−
1

2

T\
0

ϑ3(t)
\
Ω

\
RM

λ∇χ · Γ′(λχ)λ∇χζ0(x) dνt(x, λ) dt

−

T\
0

ϑ3(t)
\
Ω

\
RM

Ψ ′(λχ)ζ0(x) dνt(x, λ) dt

+

T\
0

ϑ3(t)
\
Ω

\
RM

ε′(λχ) · A(λχ)(λ
ε(u) − ε(λχ))ζ0(x) dνt(x, λ) dt

−
1

2

T\
0

ϑ3(t)
\
Ω

\
RM

(λ
ε(u) − ε(λχ))

· A′(λχ)(λ
ε(u) − ε(λχ))ζ0(x) dνt(x, λ) dt = 0

∀ζ0 ∈ C∞(Ω), ϑ3 ∈ C∞([0, T ]).Let Y be the linear spa
e of all fun
tions on R
M whi
h 
an be expressedin the form

(2.10) f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ) = d1 ·λu +B ·A(λχ)(λ

ε(u)−ε(λχ))

+ a1λχ + d2 · M(λχ)λ∇µ
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+ a2λw + d3 · Γ(λχ)λ∇χ

+ a3Ψ
′(λχ) + a4ε

′(λχ) · A(λχ)(λ
ε(u) − ε(λχ))

+ a5λ∇χ · Γ′(λχ)λ∇χ

+ a6(λε(u) − ε(λχ)) · A′(λχ)(λ
ε(u) − ε(λχ)),where d1,d2,d3 ∈ R

n,B ∈ R
n2 is a symmetri
 se
ond order tensor, and

a1, . . . , a6 ∈ R.We 
an now introdu
e
Definition 2.1. Assume that u0, u1, χ0 are given fun
tions de�ned a.e.in Ω, and b is a given fun
tion de�ned a.e. in ΩT , su
h that u0, u1 ∈ L1(Ω),

χ0 ∈ L1(Ω), b ∈ L1(Ω
T ). By a measure-valued solution of problem (P0)we mean a mapping assigning to a.e. t ∈ (0, T ) a regular nonnegative Borelmeasure νt on Ω × R

M su
h that(2.11) \
Ω

\
RM

|f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ)| dνt(x, λ) < ∞ ∀f ∈ Y,

and the identities (2.7)�(2.9) are satis�ed for all test fun
tions η0∈(C∞(Ω))3,
ϑ1 ∈ C∞

c ([0, T )) with η0|S = 0, ξ0 ∈ C∞(Ω), ϑ2 ∈ C∞
c ([0, T )), and ζ0 ∈

C∞(Ω), ϑ3 ∈ C∞([0, T ]).
Definition 2.2. For a given t ∈ (0, T ) a measure-valued solution νtis 
ontinuous with respe
t to the Lebesgue measure m in Ω (brie�y, m-
ontinuous) if m(E) = 0 implies νt(E × R

M ) = 0 for ea
h Borel set E ⊂ Ω.We re
all here the following property of m-
ontinuous measure-valuedsolutions. If νt is m-
ontinuous for a.a. t ∈ (0, T ) then for a.a. (x, t) ∈ ΩTthere exists a Borel measure ε[x,t] on R
M so that if g is a νt-integrablefun
tion on Ω × R

M then\
Ω

\
RM

g(x, λ) dνt(x, λ) =
\
Ω

\
RM

g(x, λ) dε[x,t](λ) dx for a.a. t ∈ (0, T ).If in addition ε[x,t] is the Dira
 measure with support at the point
λ(x, t) = (u(x, t), ε(u)(x, t), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t)) ∈ R

Mfor a.a. (x, t) ∈ ΩT , then\
Ω

\
RM

g(x, λ) dνt(x, λ)

=
\
Ω

g(x,u(x, t), ε(u)(x, t), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t)) dx.

3. The existen
e of measure-valued solutions to problem (P0).System (1.1)�(1.3) (and its spe
ial 
ase (P0)) was studied in Bartkowiak



322 I. PAW�OW AND W. M. ZAJ�CZKOWSKIand Pawªow (2005) by means of the Faedo�Galerkin approximation. Theexisten
e results obtained there for approximate problems 
overed the het-erogeneous 
ase. The restri
tion to the homogeneous 
ase was needed topass to the limit in the weak formulation of approximate problems. It wasshown there that the approximate problem 
orresponding to (1.1)�(1.3) inthe heterogeneous 
ase, i.e. with tensors Γ and A depending on χ, has asolution. However, in order to pass to the limit in the weak formulations ofthe approximate problems it was ne
essary to impose the assumption that
Γ and A were 
onstant.In the present paper we apply the same Faedo�Galerkin approximationto prove the existen
e of measure-valued solutions in the heterogeneous 
ase.First, we re
all from Bartkowiak and Pawªow (2005) the 
orresponding as-sumptions.(A1) The domain Ω ⊂ R

n, n = 2 or 3, is bounded with smooth bound-ary S.The subsequent assumptions 
on
ern the ingredients of the Landau�Ginz-burg free energy
f(ε, χ,∇χ) : S2 × R × R

n → Rgiven by (1.5), where S2 denotes the set of symmetri
 se
ond order tensorsin R
n.(A2) The elasti
ity tensor A(χ) = (Aijkl(χ)) : S2 → S2:(i) is a linear mapping, of 
lass C1,1 with respe
t to χ: Aijkl(·) ∈

C1(R) with A′
ijkl(·) Lips
hitz 
ontinuous,(ii) satis�es the symmetry 
onditions Aijkl(·) = Ajikl(·) = Aklij(·),(iii) is positive de�nite and bounded uniformly with respe
t to χ:there exist 
onstants 0 < cA < cA su
h that

cA|ε|
2 ≤ ε · A(χ)ε ≤ cA|ε|

2 ∀ε ∈ S2 and χ ∈ R,(iv) is su
h that A′(χ) = (A′
ijkl(χ)) : S2 → S2 is uniformly boundedwith respe
t to χ: there exists a 
onstant cA′ > 0 su
h that

|A′(χ)ε| ≤ cA′ |ε| ∀ε ∈ S2 and χ ∈ R.We remark that we do not require that A(χ) is isotropi
.(A3) The eigenstrain ε(χ) = (εij(χ)) ∈ S2:(i) is of 
lass C1,1 with respe
t to χ: εij(·) ∈ C1(R) with ε′ij(·)Lips
hitz 
ontinuous,(ii) satis�es growth 
onditions: there exists a 
onstant c > 0 su
hthat
|ε(χ)| ≤ c(|χ| + 1), |ε′(χ)| ≤ c ∀χ ∈ R.
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tions W (ε, χ),
W,ε(ε, χ), W,χ(ε, χ) are Lips
hitz 
ontinuous with respe
t to ε, χ, and satisfythe following growth 
onditions:

|W (ε, χ)| ≤ c(|ε|2 + |χ|2 + 1),(3.1)
|W,ε(ε, χ)| ≤ c(|ε| + |χ| + 1),(3.2)
|W,χ(ε, χ)| ≤ c(|ε|2 + |χ|2 + 1), ∀(ε, χ) ∈ S2 × R.(3.3)(A4) The double-well potential Ψ(·) : R → R:(i) is of 
lass C1,1: Ψ(·) ∈ C1(R) with Ψ ′(·) Lips
hitz 
ontinuous,(ii) satis�es a bound from below: there exist 
onstants c1 > 0,
c2 ≥ 0 and a number r > 2 su
h that

Ψ(χ) ≥ c1|χ|
r − c2 ∀χ ∈ R,(iii) satis�es growth 
onditions: there exists a 
onstant c > 0 su
hthat

Ψ(χ) ≤ c(|χ|q/2+1 + 1), Ψ ′(χ) ≤ c(|χ|q/2 + 1), ∀χ ∈ R,where q ∈ [1,∞) for n = 2, q ∈ [1, 6] for n = 3.We note that Ψ(χ) de�ned by (1.6) satis�es
Ψ(χ) ≥ 1

8χ4 − 1
2 ,hen
e (A4)(ii) is satis�ed, and 
learly so is (A4)(iii) as well.(A5) The gradient energy tensor Γ(χ) = (Γij(χ)) : R

n → R
n:(i) is a linear mapping, of 
lass C1,1 with respe
t to χ: Γij(·) ∈

C1(R) with Γ ′
ij(·) Lips
hitz 
ontinuous,(ii) is symmetri
: Γij(·) = Γji(·),(iii) is positive de�nite and bounded uniformly with respe
t to χ:there exist 
onstants 0 < cΓ < cΓ su
h that

cΓ |ξ|
2 ≤ ξ · Γ(χ)ξ ≤ cΓ |ξ|

2 ∀ξ ∈ R
n and χ ∈ R,(iv) is su
h that Γ′(χ) = (Γ ′

ij(χ)) : R
n → R

n is uniformly boundedwith respe
t to χ: there exists a 
onstant cΓ ′ > 0 su
h that
|Γ′(χ)ξ| ≤ cΓ ′ |ξ| ∀ξ ∈ R

n and χ ∈ R.We re
all that assumptions (A2)(iii), (A3)(ii), (A4)(ii), (A5)(iii) imply thefollowing bound for the free energy:
(3.4) f(ε, χ,∇χ) ≥ c(|ε|2 + |χ|r + |∇χ|2) − c

∀(ε, χ,∇χ) ∈ S2 × R × R
nwith some 
onstant c > 0. This is the main stru
tural property used in theanalysis of the problem.The next assumption 
on
erns the mobility matrix.
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n → R

n:(i) is a linear mapping, of 
lass C0,1 with respe
t to χ: Mij(·) ∈
C0(R) are Lips
hitz 
ontinuous,(ii) is symmetri
: Mij = Mji,(iii) is positive de�nite and bounded uniformly with respe
t to χ:there exist 
onstants 0 < cM < cM su
h that

cM |ξ|2 ≤ ξ · M(χ)ξ ≤ cM |ξ|2 ∀ξ ∈ R
n and χ ∈ R.The positive de�niteness M(χ) is the se
ond main property used in theanalysis.The last assumption 
on
erns the data of the problem:(A7) The initial data u0, u1, χ0 and the for
e term b satisfy

u0 ∈ V0, u1 ∈ L2(Ω), χ0 ∈ H1(Ω), b ∈ L1(0, T ;L2(Ω)).The main result of the paper is the following.
Theorem 3.1. Under assumptions (A1)�(A7), problem (P0) has ameasure-valued solution νt. Moreover , for a.a. t ∈ (0, T ), there exists a set

Mt ⊂ Ω with Lebesgue measure zero su
h that νt is 
ontinuous with respe
tto the Lebesgue measure in Ω \ Mt.4. Proof of Theorem 3.1. The proof is split into several steps.4.1. The Faedo�Galerkin approximation of (P0). We follow the methodapplied in Bartkowiak and Pawªow (2005). Let {vj}j∈N with vj ∈ (C∞(Ω))3,
vj |S = 0 be an orthonormal basis of V0, and {zj}j∈N with zj ∈ C∞(Ω) bean orthonormal basis of H1(Ω). Without loss of generality we assume that
z1 = 1. For m ∈ N we set

Vm = span{v1, . . . ,vm}, Vm = span{z1, . . . , zm}.The approximate problem (P0)
m: For any m∈N �nd a triple (um, χm, µm)of the form

(4.1)
um(x, t) =

m∑

i=1

em
i (t)vi(x),

χm(x, t) =
m∑

i=1

cm
i (t)zi(x),

µm(x, t) =
m∑

i=1

dm
i (t)zi(x)
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(4.2) (um

tt , η
m)L2(Ω) + (W,ε(ε(um), χm), ε(ηm))L2(Ω)

= (b, ηm)L2(Ω) ∀ηm ∈ Vm,(4.3) (χm
t , ξm)L2(Ω) + (M(χm)∇µm,∇ξm)L2(Ω) = 0 ∀ξm ∈ Vm,

(4.4) (wm, ζm)L2(Ω) − (Γ(χm)∇χm,∇ζm)L2(Ω)

− (1
2∇χm · Γ′(χm)∇χm + Ψ ′(χm)

+ W,χ(ε(um), χm), ζm)L2(Ω) = 0 ∀ζm ∈ Vm,(4.5) um(0) = um
0 , um

t (0) = um
1 , χm(0) = χm

0where um
0 , um

1 ∈ Vm, χm
0 ∈ Vm satisfy, as m → ∞,

(4.6) um
0 → u0 strongly in V0,

um
1 → u1 strongly in L2(Ω),

χm
0 → χ0 strongly in H1(Ω).4.2. A priori estimates for solutions of (P0)

m

Lemma 4.1 (see Bartkowiak and Pawªow (2005), Lemma 5.2). Assumethat :(i) W,ε(ε, χ), W,χ(ε, χ), M(χ), Γ′(χ), Ψ ′(χ) are Lips
hitz 
ontinuousfun
tions of their arguments ,(ii) f(ε, χ,∇χ) satis�es the stru
ture 
ondition (3.4),(iii) M(χ) satis�es the uniform positive de�niteness 
ondition (A6)(iii),(iv) the data satisfy (A7).Then there exists a solution (um, χm, µm) to problem (P0)
m on the interval

[0, T ], satisfying the energy estimates
(4.7) ‖um

t ‖L∞(0,T ;L2(Ω)) + ‖ε(um)‖L∞(0,T ;L2(Ω)) + ‖χm‖L∞(0,T ;Lr(Ω))

+ ‖∇χm‖L∞(0,T ;L2(Ω)) + ‖∇µm‖L2(ΩT ) ≤ c,with a 
onstant 
 depending only on the data and independent of m.We note that by Korn's inequality and Sobolev's imbedding, (4.7) implies(4.8) ‖um‖L∞(0,T ;V0) ≤ c,(4.9) ‖χm‖L∞(0,T ;H1(Ω)) + ‖χm‖L∞(0,T ;Lqn(Ω)) ≤ c.We re
all also
Lemma 4.2 (see Bartkowiak and Pawªow (2005), Lemmas 5.3, 5.4). Un-der the assumptions of Lemma 4.1, suppose that :(i) W,ε(ε, χ) and W,χ(ε, χ) satisfy the growth 
onditions (3.2), (3.3),(ii) Ψ ′(χ) satis�es the growth 
ondition (A4)(iii),(iii) Γ′(χ) satis�es the uniform bound (A5)(iv),(iv) M(χ) satis�es the uniform bound (A6)(iii).
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‖µm‖L2(0,T ;H1(Ω)) ≤ c,(4.10)

‖um
tt ‖L2(0,T ;V′

0
) ≤ c,(4.11)

‖χm
t ‖L2(0,T ;V ′) ≤ c,(4.12)with a 
onstant 
 depending only on the data and independent of m.We note that in view of the growth 
onditions (A2)(iii), (iv) on A(χ),(A3)(ii) on ε(χ), (A4)(iii) on Ψ(χ), (A5)(iii), (iv) on Γ(χ), and (A6)(iii) on

M(χ), the estimates (4.7)�(4.9) imply the following uniform bounds:
(4.13)

‖ε(χm)‖L∞(0,T ;L2(Ω)) ≤ c,

‖A(χm)(ε(um) − ε(χm))‖L∞(0,T ;L2(Ω)) ≤ c,

‖ε′(χm) · A(χm)(ε(um) − ε(χm))‖L∞(0,T ;L2(Ω)) ≤ c,

‖Ψ ′(χm)‖L∞(0,T ;L2(Ω)) ≤ c,

‖Γ(χm)∇χm‖L∞(0,T ;L2(Ω)) ≤ c,

‖M(χm)∇µm‖L2(ΩT ) ≤ c,and(4.14) ‖∇χm · Γ′(χm)∇χm‖L∞(0,T ;L1(Ω)) ≤ c,

‖(ε(um) − ε(χm)) · A′(χm)(ε(um) − ε(χm))‖L∞(0,T ;L1(Ω)) ≤ c,with a 
onstant c depending only on the data.4.3. Weak formulation of (P0)
m. Using the identity

T\
0

〈φt, η〉V ′,V dt = −

T\
0

(φ, ηt)L2(Ω) dt − (φ0, η(0))L2(Ω),

whi
h holds true for all φ ∈ L2(0, T ; V ) ∩ H1(0, T ; V ′) with φ(0) = φ0, and
η ∈ L2(0, T ; V )∩H1(0, T ; L2(Ω)) with η(T ) = 0, we introdu
e the followingweak formulation of (P0)

m analogous to (2.1)�(2.3):
(4.15)

T\
0

(um, ηm
tt )L2(Ω)dt + (um

0 , ηm
t (0))L2(Ω) − (um

1 , ηm(0))L2(Ω)

+

T\
0

(W,ε(ε(um)χm), ε(ηm))L2(Ω) dt =

T\
0

(b, ηm)L2(Ω) dt

for all ηm(x, t) ≡ ϑ1(t)η
m
0 (x) where ϑ1 ∈ C∞

c ([0, T )) with ϑ1(T ) = 0,
ϑ′

1(T ) = 0, and the ηm
0 ∈ Vm satisfy ηm

0 → η0 in (C1(Ω))3 as m → ∞;
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(4.16) −

T\
0

(χm, ξm
t )L2(Ω)dt − (χm

0 , ξm(0))L2(Ω)

+

T\
0

(M(χm)∇µm,∇ξm)L2(Ω) dt = 0for all ξm(xm, t) ≡ ϑ2(t)ξ
m
0 (x) where ϑ2 ∈ C∞

c ([0, T )) with ϑ2(T ) = 0 andthe ξm
0 ∈ Vm satisfy ξm

0 → ξ0 in C1(Ω) as m → ∞; and
(4.17)

T\
0

(µm, ζm)L2(Ω) dt −

T\
0

(Γ(χm)∇χm,∇ζm)L2(Ω) dt

−
1

2

T\
0

(∇χm · Γ′(χm)∇χm, ζm)L2(Ω) dt

−

T\
0

(Ψ ′(χm), ζm)L2(Ω) dt −

T\
0

(W,χ(ε(um), χm), ζm)L2(Ω) dt = 0for all ζm(x, t) ≡ ϑ3(t)ζ
m
0 (x) where ϑ3 ∈ C∞([0, T ]) and the ζm

0 ∈ Vm satisfy
ζm
0 → ζ0 in C1(Ω) as m → ∞.In view of the forms of the test fun
tions ηm, ξm, ζm, the identities(4.15)�(4.17) 
an be rewritten as follows:

(4.18)

T\
0

ϑ′′
1(t)
\
Ω

um · η0(x) dx dt

+

T\
0

ϑ1(t)
\
Ω

A(χm)(ε(um) − ε(χm)) · ε(η0(x)) dx dt

=

T\
0

ϑ1(t)
\
Ω

b · η0(x) dx dt +
\
Ω

ϑ1(0)u1 · η0(x) dx

−
\
Ω

ϑ′
1(0)u0 · η0(x) dx + RI

m(um, χm)(ϑ1, η0)for all η0 ∈ (C∞(Ω))3, ϑ1 ∈ C∞
c ([0, T )) with η0|S = 0, ϑ1(T ) = 0,

ϑ′
1(T ) = 0, where

RI
m(um, χm)(ϑ1, η0) ≡

T\
0

ϑ′′
1(t)
\
Ω

um · (η0(x) − ηm
0 (x)) dx dt

+

T\
0

ϑ1(t)
\
Ω

A(χm)(ε(um) − ε(χm)) · ε(η0(x) − ηm
0 (x)) dx dt
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−

T\
0

ϑ1(t)
\
Ω

b · (η0(x) − ηm
0 (x)) dx dt

−
\
Ω

ϑ1(0)(u1 · η0(x) − um
1 · ηm

0 (x)) dx

+
\
Ω

ϑ′
1(0)(u0 · η0(x) − um

0 · ηm
0 (x)) dx;

(4.19) −

T\
0

ϑ′
2(t)
\
Ω

χmξ0(x) dx dt +

T\
0

ϑ2(t)
\
Ω

M(χm)∇µm · ∇ξ0(x) dx dt

=
\
Ω

ϑ2(0)χ0ξ0(x) dx + RII
m (χm, µm)(ϑ2, ξ0)for all ξ0 ∈ C∞(Ω), ϑ2 ∈ C∞

c ([0, T )) with ϑ2(T ) = 0, where
RII

m (χm, µm)(ϑ2, ξ0) ≡ −

T\
0

ϑ′
2(t)
\
Ω

χm(ξ0(x) − ξm
0 (x)) dx dt

+

T\
0

ϑ2(t)
\
Ω

M(χm)∇µm · ∇(ξ0(x) − ξm
0 (x)) dx dt

−
\
Ω

ϑ2(0)(χ0ξ0(x) − χm
0 ξm

0 (x)) dx;and
(4.20)

T\
0

ϑ3(t)
\
Ω

µmζ0(x) dx dt −

T\
0

ϑ3(t)
\
Ω

Γ(χm)∇χm · ∇ζ0(x) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

∇χm · Γ′(χm)∇χmζ0(x) dx dt−

T\
0

ϑ3(t)
\
Ω

Ψ ′(χm)ζ0(x) dx dt

+

T\
0

ϑ3(t)
\
Ω

ε′(χm) · A(χm)(ε(um) − ε(χm))ζ0(x) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

(ε(um) − ε(χm)) · A′(χm)(ε(um) − ε(χm))ζ0(x) dx dt

= RIII
m (um, χm, µm)(ϑ3, ζ0)for all ζ0 ∈ C∞(Ω), ϑ3 ∈ C∞([0, T ]), where

RIII
m (um, χm, µm)(ϑ3, ζ0) ≡

T\
0

ϑ3(t)
\
Ω

µm(ζ0(x) − ζm
0 (x)) dx dt

−

T\
0

ϑ3(t)
\
Ω

Γ(χm)∇χm · ∇(ζ0(x) − ζm
0 (x)) dx dt
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−
1

2

T\
0

ϑ3(t)
\
Ω

(∇χm · Γ′(χm)∇χm(ζ0(x) − ζm
0 (x)) dx dt

−

T\
0

ϑ3(t)
\
Ω

Ψ ′(χm)(ζ0(x) − ζm
0 (x)) dx dt

+

T\
0

ϑ3(t)
\
Ω

ε′(χm) · A(χm)(ε(um) − ε(χm))(ζ0(x) − ζm
0 (x)) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

(ε(um) − ε(χm)) · A′(χm)

· (ε(um) − ε(χm))(ζ0(x) − ζm
0 (x)) dx dt.In view of the uniform estimates (4.7), (4.13), (4.14), the 
onvergen
es(4.6), and the C1-
onvergen
es of ηm

0 , ξm
0 and ζm

0 to η0, ξ0 and ζ0, it followsthat, as m → ∞,
(4.21) RI

m(um, χm)(ϑ1, η0) → 0,

RII
m (χm, µm)(ϑ2, ξ0) → 0,

RIII
m (um, χm, µm)(ϑ3, ζ0) → 0for all test fun
tions mentioned above.4.4. Letting m → ∞ in (P0)

m. From estimates (4.7)�(4.12) it followsthat there exists a triple (u, χ, µ) with
(4.22)

u ∈ L∞(0, T ;V0), ut ∈ L∞(0, T ;L2(Ω)), utt ∈ L2(0, T ;V′
0),

χ ∈ L∞(0, T ; H1(Ω)), χt ∈ L2(0, T ; V ′), µ ∈ L2(0, T ; H1(Ω)),and a subsequen
e (um, χm, µm) of solutions to (P0)
m (denoted by the sameindi
es) su
h that, as m → ∞:

um → u weak∗ in L∞(0, T ;V0),

um
t → ut weak∗ in L∞(0, T ;L2(Ω)),(4.23)

um
tt → utt weakly in L2(0, T ;V′

0(Ω)),

χm → χ weak∗ in L∞(0, T ; H1(Ω)),
(4.24)

χm
t → χt weakly in L2(0, T ; V ′),

µm → µ weakly in L2(0, T ; H1(Ω)).(4.25)Then by the standard 
ompa
tness results (see Simon (1987), Corollary 4)it follows in parti
ular that
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um → u strongly in L2(0, T ;Lq(Ω)) ∩ C([0, T ],Lq(Ω))and a.e. in ΩT ,(4.26)

um
t → ut strongly in C([0, T ];V′

0),

χm → χ strongly in L2(0, T ; Lq(Ω)) ∩ C([0, T ]; Lq(Ω))(4.27) and a.e. in ΩT ,where q ∈ [1,∞) for n = 2 and q ∈ [1, 6] for n = 3. Hen
e,
(4.28) um(0) = um

0 → u(0) strongly in Lq(Ω),

um
t (0) = um

1 → ut(0) strongly in V′
0,

χm(0) = χm
0 → χ(0) strongly in Lq(Ω),whi
h together with the 
onvergen
es (4.6) implies that(4.29) u(0) = u0, ut(0) = u1, χ(0) = χ0.Our goal is to pass to the limit m → ∞ in the identities (4.18)�(4.20).Clearly, by the weak 
onvergen
es (4.23)�(4.25) the linear terms in (4.18)�(4.20) 
onverge to the 
orresponding limits. Also,

(4.30) ε(um) → ε(u) weak∗ in L∞(0, T ; L2(Ω)),

∇χm → ∇χ weak∗ in L∞(0, T ;L2(Ω)),

∇µm → ∇µ weakly in L2(Ω
T ).Consider now the nonlinear terms in (4.18)�(4.20). By the uniform bounds(4.13) and the 
onvergen
e χm → χ a.e. in ΩT we 
an apply the 
lassi
alweak 
onvergen
e result for the nonlinear terms (see Lions (1969), Chap. 1,Lemma 1.3) to 
on
lude that(4.31) ε(χm) → ε(χ) weak∗ in L∞(0, T ;L2(Ω)),

Ψ ′(χm) → Ψ ′(χ) weak∗ in L∞(0, T ; L2(Ω)).Due to the regularity and the boundedness assumptions on A(χ), ε′(χ),
M(χ) and Γ(χ) we have(4.32) A(χm) → A(χ), ε′(χm) → ε′(χ),

M(χm) → M(χ), Γ(χm) → Γ(χ) a.e. in ΩT .Therefore, in view of (4.30)�(4.32),
(4.33)

A(χm)(ε(um) − ε(χm)) → A(χ)(ε(u) − ε(χ))weak∗ in L∞(0, T ;L2(Ω)),

ε′(χm) · A(χm)(ε(um) − ε(χm)) → ε′(χ) · A(χ)(ε(u) − ε(χ))weak∗ in L∞(0, T ;L2(Ω)),

M(χm)∇µm → M(χ)∇µ weakly in L2(Ω
T ),

Γ(χm)∇χm → Γ(χ)∇χ weak∗ in L∞(0, T ;L2(Ω)).
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ru
ial terms in the identity (4.20),
1
2∇χm · Γ′(χm)∇χm and 1

2(ε(um) − ε(χm)) · A′(χm)(ε(um) − ε(χm)).The 
onvergen
e of these terms follows by repeating the arguments used inNeustupa (1993). Namely, from the uniform estimates (4.14) it follows thatfor a given φ ∈ C(Ω) there exist fun
tions fΓ′(φ) ∈ L∞(0, T ), fA′(φ) ∈
L∞(0, T ) and a subsequen
e (um, χm, µm) (denoted by the same indi
es)su
h that
(4.34)

\
Ω

∇χm · Γ′(χm)∇χmφ(x) dx → fΓ′(φ) weak∗ in L∞(0, T ),\
Ω

(ε(um) − ε(χm)) · A′(χm)(ε(um) − ε(χm))φ(x) dx → fA(φ)weak∗ in L∞(0, T ).Moreover, there exist 
onstants c1, c2 > 0 su
h that(4.35) |fΓ′(φ)(t)| ≤ c1‖φ‖C(Ω),

|fA′(φ)(t)| ≤ c2‖φ‖C(Ω) for a.a. t ∈ (0, T ).For t ∈ (0, T ), f ∈ Y (the spa
e of fun
tions on R
M of the form (2.10)) and

φ ∈ C(Ω) we set
(4.36) At,f (φ) = d1 ·

\
Ω

u φ(x) dx + B ·
\
Ω

A(χ)(ε(u− ε(χ))φ(x) dx

+ a1

\
Ω

χφ(x) dx + d2 ·
\
Ω

M(χ)∇µ φ(x) dx

+ a2

\
Ω

µφ(x) dx + d3 ·
\
Ω

Γ(χ)∇χ φ(x) dx

+ a3

\
Ω

Ψ ′(χ)φ(x) dx + a4

\
Ω

ε′(χ) · A(χ)(ε(u) − ε(χ))φ(x) dx

+ a5fΓ′(φ) + a6fA′(φ),where d ∈ R
n, B ∈ R

n2 and a1, . . . , a6 ∈ R. From the properties (4.22),(4.31), (4.33) and (4.35) it follows that for a.a. t ∈ (0, T ) and a given f ∈ Y ,
At,f is a bounded linear fun
tional on C(Ω).At this point we 
an repeat the arguments used by Neustupa (1993)based on the representation theorems for bounded linear fun
tionals. First,by the Riesz theorem (see e.g. Rudin (1974)), there exists a regular Borelmeasure θt,f on Ω so that

At,f (φ) =
\
Ω

φ(x) dθt,f (x).
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ondly, if E is a Borel set in Ω then θt,f (E) (in its dependen
e on f) is alinear fun
tional on Y . Thirdly, there exists a regular Borel measure νt,E on
R

M su
h that
θt,f (E) =

\
RM

f(λ) dνt,E(λ).

The measure νt,E 
an be extended to a regular Borel measure νt on Ω×R
M sothat νt(E×I) = νt,E(I) for all Borel sets E in Ω and I in R

M . Consequently,the fun
tional At,f 
an be represented in the form(4.37) At,f (φ) =
\
Ω

φ(x)
\

RM

f(λ) dνt(x, λ).Using the 
onvergen
es (4.23)�(4.25), (4.33) and (4.34) we 
an let m → ∞in (4.18)�(4.20) to dedu
e the identities (2.7)�(2.9). Consider, for example,the term
T\
0

ϑ3(t)
\
Ω

∇χm · Γ′(χm)∇χmζ0(x) dx dt.In this 
ase we 
hoose
f(λ) = λ∇χ · Γ′(λχ)λ∇χ.By the 
onvergen
e (4.34)1, de�nition (4.36) of At,f and its representation(4.37), it follows that as m → ∞,

T\
0

ϑ3(t)
\
Ω

∇χm · Γ′(χm)∇χmζ0(x) dx dt

→

T\
0

ϑ3(t)fΓ′(ζ0)(t) dt =

T\
0

ϑ3(t)At,f (ζ0) dt

=

T\
0

ϑ3(t)
\
Ω

\
RM

λ∇χ · Γ′(λχ)λ∇χζ0(x) dνt(x, λ) dt.In the same way we 
an show that as m → ∞, all other terms in (4.18)�(4.20), ex
ept RI
m, RII

m , RIII
m whi
h tend to zero, 
onverge to the 
orrespond-ing terms in the identities (2.7)�(2.9). Clearly, by 
onstru
tion, 
ondition(2.11) is also satis�ed. We 
on
lude that νt is a solution of (P0) in the senseof De�nition 2.1.The statement 
on
erning the 
ontinuity of νt follows by the same argu-ments as in Neustupa (1993). This 
ompletes the proof.

Remark. We should underline that from the abstra
t theorems in Ali-bert and Bou
hitté (1997) and Müller (1999) a result more pre
ise thanTheorem 3.1 
an be dedu
ed.



CAHN�HILLIARD SYSTEM 333First, Theorem 2.5 of Alibert and Bou
hitté (1997) guarantees the 
onver-gen
e of nonlinearities not only in �nite-dimensional subspa
e of 
ontinuousfun
tions (as in (2.10)) but also in the in�nite-dimensional spa
e F . Dueto that 
onvergen
e some physi
al relations 
an be satis�ed in the measuresense.Se
ondly, the measure νt 
an be split into a probability measure ν(t,x)on R
d with d = n + 1 + M , a probability measure ν∞

(t,x) on the unit sphere
Sd−1 in R

d, and a Radon measure m de�ned only on Ω × [0, T ). Here ν(t,x)is the standard Young measure; the above three measures are usually 
alledDiPerna�Majda measures.Finally, Corollary 3.4 of Müller (1999) allows one to sele
t variables withdefe
t of strong 
onvergen
e in tensorial distribution of the measure ν(t,x).A
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