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Abstract. The paper is concerned with the existence of measure-valued solutions
to the Cahn—Hilliard system coupled with elasticity. The system under consideration is
anisotropic and heterogeneous in the sense of admitting the elasticity and gradient en-
ergy tensors dependent on the order parameter. Such dependences introduce additional
nonlinearities to the model for which the existence of weak solutions is not known so far.

1. Introduction. In recent years the Cahn—Hilliard problem coupled
with elasticity has been the subject of extensive mathematical studies; we
refer e.g. to Miranville (2003) and Bartkowiak and Pawlow (2005) for up-
to-date references. The problem describes the phase separation process in a
binary, deformable alloy quenched below a certain critical temperature. It is
known from the materials science literature that the elastic effects strongly
influence the microstructure evolution of the phase separation and that
among important factors are the material anisotropies and heterogeneities.
In view of that it is of importance to study the Cahn—Hilliard models ac-
counting for such effects.

Applying a thermodynamical theory based on a microforce balance
M. E. Gurtin (1996) introduced a generalized Cahn—Hilliard system coupled
with elasticity. This system generalizes the classical Cahn—Hilliard equation
by admitting its more general structure, chemical anisotropy and heterogene-
ity and the coupling with an elasticity system, in general anisotropic and
heterogeneous as well. The anisotropies are represented by the matrix forms
of the material coefficients whereas the heterogeneities by the coefficient de-
pendence on the order parameter, a quantity describing the microstructure.
In the case of binary phase separation the order parameter is related to the
volumetric fraction of a phase.

From the mathematical point of view problems with anisotropic and
heterogeneous effects lead to additional nonlinearities in the equations and
make the analysis much more complicated. The main difficulty is in passing
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to the limit within nonlinearities. So far the Cahn—Hilliard system coupled
with anisotropic, heterogeneous elasticity has been studied by Garcke (2000,
2003a, 2003b), and Bonetti et al. (2002). The existence results obtained in
these papers are restricted to the quasi-stationary approximation of the elas-
ticity system. We remark that the mathematical arguments applicable for
the quasi-stationary elliptic elasticity do not extend to the nonstationary
hyperbolic case.

The effects of chemical anisotropy and heterogeneity, to the best of the
authors’ knowledge, have not been much addressed so far. In this respect
we mention the paper by Bonetti et al. (2002) where the order parameter
dependence of the gradient coefficient representing surface tensions has been
accounted for under certain structural simplifications. We also mention the
paper by Bartkowiak and Pawlow (2005) which is concerned with the ex-
istence of weak solutions to the Cahn—Hilliard—Gurtin system coupled with
nonstationary elasticity. We point out, however, that because of technical
obstacles in passing to the limit within nonlinearities, the authors of the lat-
ter paper restricted themselves to a homogeneous problem with coefficients
independent of the order parameter.

The present paper extends the results of Bartkowiak and Pawtow (2005)
to the heterogeneous case by using a concept of measure-valued solutions
(see Malek et al. (1996)). We use a special kind of measure-valued solu-
tion which was studied previously by Neustupa (1993) for barotropic flows,
and by Kroner and Zajaczkowski (1996) for Euler equations of compressible
fluids.

The general Cahn—Hilliard—Gurtin system coupled with elasticity, with
some prescribed initial and boundary conditions, can be represented in the
form of the following system of problems for the displacement u, order pa-
rameter y and the chemical potential u:

uy — V- -We(e(u),x) =b in 27 =02x(0,7),

(1.1) uli=o0 =19, Wf=o=u; in £,
u=0 on ST =8 x (0,T),
xt — V- (M(x)Vw+hy) =0 in 27,
(1.2) Xlt=0 = X0 in £2,
n- (M(x)Vw +hyx;) =0 on ST,
p—g-Vu+V-(T(X)Vx) - 5Vx-T'(\)Vx
(1.3) — W' (x) = Wix(e(u),x) = Bxt =0 in QT

n- (F(x)Vx) =0 on ST,
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where the function W (e(u), x) represents the elastic energy, defined by
(1.4) W (e(u), x) = 3(e(u) —&(x)) - A(x)(e(u) — E(x))-

The corresponding derivatives

We(e(u),x) = Alx)(e(u) —(x))

and

W (e(u),x) = —&'(x)-A(x)(e(w)—E(x))+5(e(u) = (x))-A(x) (e(u)—E(x))
represent respectively the stress tensor and the elastic contribution to the
chemical potential.

Above, 2 C R™, n = 2 or 3, is a bounded domain with smooth boundary
S, occupied by a solid body in a reference configuration, with constant mass
density o = 1; n denotes the outward unit normal to S; T" > 0 is an arbitrary
fixed time.

The unknown variables are the displacement field u : 27 — R, the
scalar order parameter y : 27 — R, and the chemical potential difference
between the components (briefly referred to as the chemical potential) p :
2T — R. In the case of a binary a-b alloy the order parameter is related to
the volumetric fraction of one of the two phases, characterized by different
crystalline structures of the components, for example x = —1 corresponds
to phase a and xy = 1 to phase b. The second order symmetric tensor

e(u) = 3(Vu+ (Vu)h)
denotes the linearized strain (for simplicity we write € instead of e(u)), and
b : 27 — R" is the external body force.

The free energy density underlying system (1.3)—(1.5) has the Landau—
Ginzburg—Cahn—Hilliard form accounting for the elastic effects,

(1.5) Fle.x; Vx) = W(e,x) +¥(x) + 3Vx - T()Vx,

where W (e, x) is the homogeneous elastic energy, ¥(x) is the exchange en-
ergy, and the last term with the positive definite tensor I'(x) = (I5;(x)) is
the gradient energy.

The standard form of the elastic energy W (e, x) is given by (1.4) where
A(x) = (Aijri(x)) is the fourth order elasticity tensor depending on the order
parameter, and €(x) = (§;;(x)) is the symmetric eigenstrain tensor, i.e. a
stress free strain at concentration y. The exchange energy ¥(x) characterizes
the energetic favorability of the individual phases a and b. The standard form
is a double-well potential with equal minima at y = —1 and x = 1:

(1.6) U(x) = 3(1—x*)*
Furthermore, M(x) = (M;;(x)) is the mobility matrix, 5 > 0 is the

diffusional viscosity, and the vectors g = (g;), h = (h;) represent the cross-
coupling effects; for usual isotropic materials g = 0 and h = 0.
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By thermodynamical consistency the coefficient matrix
M h]

1.7 B=
(1.7) o

has to satisfy the condition
(1.8) X-BX>0 VX=(Vu,x) €R"xR.

If B is independent of X then (1.8) means the positive semi-definiteness of
B. In general, however, the quantities M, g, h, 8 may depend on Vu, x¢, €, X-
Throughout this paper we shall assume that M = M() is positive definite,
and for simplicity we restrict ourselves to the special case (standard Cahn—
Hilliard case)

(1.9) g=h=0 and pg=0.

Later on we shall refer to the system (1.1)—(1.3) with structural simplifica-
tions (1.9) as problem (P).

In the heterogeneous case the gradient energy tensor I'(x) and the elas-
ticity tensor A(x) may be different in each of the phases, i.e., dependent on
the order parameter x. As already mentioned, the present paper is an exten-
sion of Bartkowiak and Pawlow (2005) where the existence of weak solutions
has been proved for problem (FPp) and its more general version (1.1)—(1.3)
only in the homogeneous case with constant tensors I' and A. The obstacle
we were not able to overcome to establish the existence of weak solutions in
the heterogeneous case was the lack of sufficiently strong a priori estimates.
In fact, the x dependence of I'(x) and A(y) introduces to the field equations
the nonlinear energy-like terms

(110) 3V -T'(x)Vx and 3(e(u) —&(x)) - A'(x)(e(w) —E(x))
which are the source of mathematical difficulties. For these terms we are
able to show only Loo(0,7; Li(f2))-norm energy estimates which are not
sufficient to prove the existence of weak solutions by passing to the limit in
approximate problems.

For this reason in the present paper we propose a weaker, measure-valued
sense in which the equations of (FPp) are satisfied. The idea of measure-
valued solutions is taken from the papers by Neustupa (1993) and Kroner
and Zajaczkowski (1996) where the notion of a measure-valued solution was
applied to the Euler and Navier—Stokes equations. The underlying idea is,
roughly speaking, to assume that all quantities in the weak formulation of
the problem are associated with some sets E C {2 (E is assumed to be a
Borel set) rather than points x € £2.

The paper is organized as follows. In Section 2 we introduce a weak
formulation of problem (FPp) and its measure-valued generalization. On the
basis of this generalization we define a measure-valued solution of (F). In
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Section 3 we formulate the assumptions and the main result of the paper
which asserts the existence of measure-valued solutions to problem (Fp). In
Section 4 we present the proof of the existence theorem. It is based on the
Faedo—Galerkin approximation of (Fp) studied in Bartkowiak and Pawlow
(2005). We use the following notations:

ex € R", n =2 orn = 3, is the material point; f; = 9f/0x; and
fi = df /dt are the material space and time derivatives,

o We(e,X) = (W (e, x)/ei)ijmtmn WnlesX) = OW (e, x)/0,
o () = (T (0 igmr, o L) = dT35(x) .

For simplicity, whenever there is no danger of confusion, we omit the argu-
ments (&, x). The specification of tensor indices is omitted as well.

Vector and tensor-valued mappings are denoted by bold letters. The sum-
mation convention over repeated indices is used, and we apply the following
notation:

B = (By),
(AijriBr),

e for vectors a = (a;), a = (a;), and tensors B = (B;;)
A = (Aijkl) we write a-a = aiZii, B- ]§ = Bijéija AB
BA = (BijAijul),

e |a| = (a;0:)'/?, [B| = (Bi; Bij)"/?,

e V and V- denote the gradient and the divergence operators with re-
spect to the material point x € R". For the divergence of a tensor field
we use contraction over the last index, V - (x) = (g45,;(x)).

We apply the standard Sobolev spaces notation H™(£2) = W3*(£2) for
m € N, and:

Lo(2) = (La(2))", Vo = HY(®) = (HL(2)", n =2 or 3.

(s ) La(02)s (5 *)Lo(s2) denote the scalar products in Lo({2) and La($2).
V' is the dual space of V = H1(£2) with duality pairing (-, ")y v.

Vj is the dual of V¢ with duality pairing (-, )v; v,-

C2°([0,T)) is the space of smooth functions with compact support in

[0,7).

Throughout the paper ¢ denotes a generic positive constant different in va-
rious instances.

2. Weak and measure-valued formulations. We introduce the fol-
lowing weak formulation of problem (P): Find functions u : 27 — R”,
x: 27 - Rand p: 27 — R defined a.e. in 27, satisfying

T T
(21)  §91() §u-mo(0) drdi+ | 01(t) § AC)(e(w) — (X)) - e(mp(x)) d dt
0 2 0 9]
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T
= {91(t) | b mo(x) dadt + | 91(0)uy - my(x) dz — | 9} (0)ug - my(x) da
0 2 (0] (0]
Vng € (Coo(ﬁ))?’, Y1 € C°([0,T)) with ngls = 0,
where the form of the second term on the left-hand side follows from the
symmetry of A;

T T
22) = {95(t) | x&(x) dudt + | 9a(t) | M(x) Vi - VEo(x) do dt
0 (9} 0 (9]
= | 92(0)x0& (%) dz V& € C®(R2), 92 € C([0,T));

93(t) | T()Vx - Vo (x) du dt

(23) [ 03(t) | pGo(x) dadt —
0 (9]

O e N

|
DO =
O e

T
93(1) | Vx - T/ () Vx Go(x) dadt — | 95(t) | &' (x)Co(x) da dt
(7 0 %

g'(x) - A(x)(e(u) — &(x))¢o(x) dz dt

_l’_

O e
=)
w
=

QD —

T
[ 95(0) § (e(w) — 2(x)) - A'(0)(e(w) — E())Go(x) dardt = 0
0 2

Yo € C%°(12), 93 € C*([0,T)).

We now introduce a measure-valued generalization of (2.1)—(2.3). To this
end we apply the ideas and notations from Neustupa (1993) adapted to
our setting. Assume for a while that we already know a weak solution to
(2.1)—(2.3) which provides functions u, x, p and their spatial gradients Vu,
Vx, V. The idea underlying a measure-valued generalization of (2.1)—(2.3)
is to assume that the quantities (u, e(u), x, Vx, p, V) are connected with
some sets in {2 rather than points. Then at time ¢ € (0,7) the quantities
(u,e(u), x, VX, t, Vi) assigned to a set £ C {2 represent collections of points
from the space

RM = R" x R x R x R" x R x R".
Denote a point in RM by
A = (Au, Ac(u) A Avy, Ay Ay) € R

Let E C 2 _and I ¢ RM be Borel sets. The collection of unknowns associated
with E C §2 can be characterized by a measure v; g on RM such that if T is
a Borel set in RM then 14 (1) is the Lebesgue measure of the subset E' of
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FE consisting of the points x such that

(. 1), £(w) (3, £), (30, £), V(o ) u( 1), Vo, 1)) € 1.
Denoting by x4 the Dirac measure in RM with support at (u(x,t),
e(u)(x,t), x(x,t), Vx(x,t), u(x,t), Vu(x,t)), and by sp the characteristic
function of E’, we write
g (x) = de[x,t]()‘) for a.e. x € £2,
I
and

(2.4) vep(I) = | sep(x) dz = | | dopx g (N) do.
E EI

The measure v g(I) can be viewed as a value of a set function defined on
subsets of 2 x RM of type E x I with E and I being Borel sets in {2 and RM
respectively. Such a function has a unique extension to a nonnegative regular
measure v; on {2 x RM such that v;(E x I) = vy g(I) for all Borel sets E in
2 and I in RM,

Making use of the introduced measure v4(x, A) we now reformulate (2.1)-
(2.3). To this end we note that the integrands in (2.1)—(2.3) contain terms
of the type

(25) [ (e (u). x. Vo, Ve () dor
2
The function f(u,e(u), x, Vx, p, Vi) with (u,e(u), x, Vx, 1, V) evaluated
at (x,t) can be expressed in the form
flu(x,t), e(u(x, 1)), x(x,1), Vx(x,t), p(x, 1), Vu(x,1))
= | £ Acu)s Ao A A Ay) dje g (A).
RM

Hence, the integral in (2.5) is equal to

S S f<)‘u7 Ae:(u)7 )\Xv AV)O )‘/.17 Avu)‘g(X) dé[xﬂ <)\) d.%"

2 RM

and due to (2.4), it can also be expressed as

(2.6) b1 PO Aciu)s Aes Avis A Avp)€ () dui(x, A).
NRM
Consequently, we can write the integral identities (2.1)—(2.3) in the form
T
27 {HOV | Au-nox) du(x, ) dt
0 QRM
T

+ 1010 | | A ey =) - (o (%)) dui(x, A) dt
0 N RM
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T
= [ 01() [ b no(x) dzdt + § 91 (0)u; - my(x) dz
0 9] (9]
— | 95.(0)ug - o (x) dar
2
Vi € (C®(2))?, 91 € C2([0,T)) with ny|s = 0;
T
28) [0 ] § Aol dlx, N dr
0 ORM
T
+ 1020 | | M)Ay, - Véo(x) dun(x, ) dt
0 2 RM
= | 0200)x06 (%) dz V& € C™(2), 92 € C([0,T));
2

T
29) {03t | | Auo(x) dra(x, A) dt
0 Q2 RM

T
— {93 | | TOW)Avy - VG (x) due(x, A) dt
0

QRM
— 5130 | § Avx PO Aw G0 dlx, A) e
0 Q2 RM
T
=V os) | | #(0)d0(x) dia(x, ) dt
0 NRM
T
+ 030§ § 00 - A Ac) — EW))C0(x) dre(x, ) dt
0 2 RM
1 T
- 5&193@)5 | e —8)
0 Q2 RM
A (M) Aeu) = E(A))Co(x) dra(x, A) dt = 0

Vo € C%°(12), 93 € C*([0,T)).

Let Y be the linear space of all functions on R which can be expressed
in the form

(2.10)  f(Aus Acqu) s AV Ay Avp) = di - Au+B- AN ) (Agu) —E(Ay))
+ al)\x +ds - M()‘X))‘VM
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+ ag)\w + d3 : I‘()‘X))‘VX
+ a3’ (Ay) + as€' (Ay) - Ay (Ae(u) —E(A))
+ asAyy - F/()‘X))‘VX
+ a6(>‘e(u) - g()‘x)) : A/(AX)<)‘e(u) - g()‘X))7
where di,do,ds € R",B € R™ is a symmetric second order tensor, and
ai,...,as € R.
We can now introduce
DEFINITION 2.1. Assume that ug, uy, xo are given functions defined a.e.
in £2, and b is a given function defined a.e. in £27, such that ug, u; € L1(£2),
xo € L1(£2), b € L1(27). By a measure-valued solution of problem (Pp)

we mean a mapping assigning to a.e. t € (0,7 a regular nonnegative Borel
measure v; on {2 x RM such that

211§ L 1O Acqu)s Ao Avas Aws Avp) [ d (%, A) < 00 Vf €Y,
Q2 RM

and the identities (2.7)—(2.9) are satisfied for all test functions 5, € (C*°(£2))3,

9 E_Cgo([O,T)) with 1gls = 0, & € COO(.(_Z), vy € C(]0,T)), and ¢ €

C*(£2), 93 € C>([0,T7]).

DEFINITION 2.2. For a given ¢ € (0,7) a measure-valued solution v
is continuous with respect to the Lebesgue measure m in (2 (briefly, m-
continuous) if m(E) = 0 implies v4(E x RM) = 0 for each Borel set £ C 2.

We recall here the following property of m-continuous measure-valued
solutions. If 14 is m-continuous for a.a. ¢ € (0,7) then for a.a. (x,t) € 2T
there exists a Borel measure ;) on RM so that if g is a vs-integrable
function on 2 x RM then

S S g(x, A) dg(x,A) = S S 9(x,A) dep (X)) dz for a.a. t € (0,T).
N RM QRM
If in addition €[y is the Dirac measure with support at the point
A(x, 1) = (u(x, £), () (%, ), X(x, 1), Tx(x, £), (3, £), Vi, 1)) € RY
for a.a. (x,t) € 27 then
S S g(x, A) dp(x, )
QRM
= | g(x,u(x, 1), e()(x, ), X(x, 1), VX (%, 1), p(x, 1), Vyu(x, 1)) da.
9]

3. The existence of measure-valued solutions to problem (F).
System (1.1)—(1.3) (and its special case (Fp)) was studied in Bartkowiak
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and Pawlow (2005) by means of the Faedo-Galerkin approximation. The
existence results obtained there for approximate problems covered the het-
erogeneous case. The restriction to the homogeneous case was needed to
pass to the limit in the weak formulation of approximate problems. It was
shown there that the approximate problem corresponding to (1.1)—(1.3) in
the heterogeneous case, i.e. with tensors I' and A depending on x, has a
solution. However, in order to pass to the limit in the weak formulations of
the approximate problems it was necessary to impose the assumption that
T’ and A were constant.

In the present paper we apply the same Faedo—Galerkin approximation
to prove the existence of measure-valued solutions in the heterogeneous case.
First, we recall from Bartkowiak and Pawlow (2005) the corresponding as-
sumptions.

(A1) The domain 2 C R", n = 2 or 3, is bounded with smooth bound-
ary S.

The subsequent assumptions concern the ingredients of the Landau—Ginz-
burg free energy

fle,x,Vx): S2xRxR" - R
given by (1.5), where S? denotes the set of symmetric second order tensors
in R™.
(A2)  The elasticity tensor A(x) = (Aim(x)) : S? — 8%
(i) is a linear mapping, of class C! with respect to : Aiia(-) €
CY(R) with Al () Lipschitz continuous,
(ii) satisfies the symmetry conditions A;jx(-) = Ajiri(-) = Aguij(+),
(iii) is positive definite and bounded uniformly with respect to x:
there exist constants 0 < ¢4 < ¢4 such that
calel? <e-A(x)e <Cale|* Ve e S%and y €R,
(iv) issuch that A'(x) = (4;;, (X)) : S8? — S?is uniformly bounded
with respect to x: there exists a constant c4, > 0 such that
|A/(x)e| < carle] Ve € S? and x € R.
We remark that we do not require that A(x) is isotropic.
(A3)  The eigenstrain () = (£;;(x)) € 8

(i) is of class C1! with respect to x: &;;(-) € CH(R) with & ()
Lipschitz continuous,

(ii) satisfies growth conditions: there exists a constant ¢ > 0 such
that

ECOI<clxl+1), [EF)l<e VxeR
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In view of (1.4) assumptions (A2), (A3) imply that the functions W (e, x),
We(e, x), Wy(e, x) are Lipschitz continuous with respect to €, x, and satisfy
the following growth conditions:

(3.1) W (e, x)| < e(le” + [x[* + 1),

(3.2) (Wele, )| < ellel + x|+ 1),

(3-3) Wle,x)| < clle? + Ix[* + 1), ¥(e,x) € S* xR.
(A4)  The double-well potential ¥(-) : R — R:

(i) is of class C11l: w(.) € CY(R) with ¥/(-) Lipschitz continuous,
(ii) satisfies a bound from below: there exist constants ¢; > 0,
¢co > 0 and a number r > 2 such that
P(x) = alx]"—c2 Vx ER,

(iii) satisfies growth conditions: there exists a constant ¢ > 0 such
that

V) < e 1), P <e(XP+1), VX ER,
where ¢ € [1,00) for n =2, ¢ € [1,6] for n = 3.
We note that ¥(x) defined by (1.6) satisfies

W(X)Z% 4_%)

hence (A4)(ii) is satisfied, and clearly so is (A4)(iii) as well.
(A5)  The gradient energy tensor I'(x) = (I3;(x)) : R" — R™
(i) is a linear mapping, of class CH! with respect to x: I3;(-) €
C*(R) with I7;(-) Lipschitz continuous,
(ii) is symmetric: 15;(-) = Iji(-),
(iii) is positive definite and bounded uniformly with respect to x:
there exist constants 0 < ¢y < ¢r such that

crlél’ <€ T()E <erlg]’ VEEeR" and x € R,
(iv) is such that I'(x) = (I7};(x)) : R" — R™ is uniformly bounded
with respect to x: there exists a constant ¢y > 0 such that
IT'(x)€ < crlé] VEER"and x € R.
We recall that assumptions (A2)(iii), (A3)(ii), (A4)(ii), (A5)(iii) imply the
following bound for the free energy:
(34)  fle,x,VX) = clle* + [x|" +[Vx|?) — ¢
Y(e,x,Vx) € 8 x R x R"

with some constant ¢ > 0. This is the main structural property used in the
analysis of the problem.

The next assumption concerns the mobility matrix.
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(A6)  The mobility matrix M(x) = (M;;(x)) : R — R™

(i) is a linear mapping, of class C%! with respect to x: M;;(-) €
C%(R) are Lipschitz continuous,
(ii) is symmetric: M;; = Mj;,
(iii) is positive definite and bounded uniformly with respect to x:
there exist constants 0 < ¢j; < €37 such that

cu €l < €-M(x)€ <enlél* VEER" and x €R.

The positive definiteness M(x) is the second main property used in the
analysis.

The last assumption concerns the data of the problem:
(A7)  The initial data ug, uy, xo and the force term b satisfy
u € Vo, u; €Lo(2), xo€ HY(N), beLi(0,T;L(R2)).
The main result of the paper is the following.

THEOREM 3.1. Under assumptions (A1)—(AT), problem (FPy) has a
measure-valued solution vi. Moreover, for a.a. t € (0,T), there exists a set
M; C 2 with Lebesgue measure zero such that v; is continuous with respect
to the Lebesgue measure in 2\ M.

4. Proof of Theorem 3.1. The proof is split into several steps.

4.1. The Faedo—Galerkin approzimation of (Py). We follow the method
applied in Bartkowiak and Pawlow (2005). Let {v;};en with v; € (C*(£2))3,
vj|s = 0 be an orthonormal basis of Vg, and {z;},en with z; € C°°(§2) be
an orthonormal basis of H!(§2). Without loss of generality we assume that

z1 = 1. For m € N we set
V., =span{vy,...,vin}, Vi =span{zi,...,zm}.

The approximate problem (Py)™: For any m €N find a triple (u™, ™, u™)
of the form



CAHN-HILLIARD SYSTEM 325

satisfying for a.e. t € [0, 7] the system
(42)  (uif,n")r,0) + Wele(@™),x™),e(n™))w,

= (b n )LQ(Q) vn'™ € Vi,
(4.3) (" €M) o) + MOX™)VE™, VE ) Ly) =0 V™ € Vi,
(4.4) (W™, ") 1y) — TXT)VX™ V)L,

— (VX" T'(™) VX" +W/( ™)
+ Wo(e(™),Xx™), (") Ly) =0 V¢ € Vi,
(4.5) u”(0) = vy, u"(0) =", Xm(o) = X0

where ug®, u* € V,,,, x(' € Vi, satisfy, as m — oo,
uy’ — ug strongly in Vy,
(4.6) ul” — u;  strongly in La(£2),
Xo' — xo  strongly in H'(£2).
4.2. A priori estimates for solutions of (Py)™

LEMMA 4.1 (see Bartkowiak and Pawlow (2005), Lemma 5.2). Assume
that:

(1) Wele,x), Wyle,x), M(x), I'(x), ¥'(x) are Lipschitz continuous
functions of their arguments,
(ii) f(e,x, Vx) satisfies the structure condition (3.4),
(iii) M(x) satisfies the uniform positive definiteness condition (A6)(iii),
(iv) the data satisfy (AT).
Then there ezists a solution (0™, x™, u™) to problem (Py)™ on the interval
[0, T, satisfying the energy estimates

(4.7) vz o,riLa2) + €™ L 0,15L2(2)) + X Lo (0,72, (2))
- HvaHLoo(O,T;Lz(Q)) + Hv:u'm”Lg(QT) <ec,
with a constant c¢ depending only on the data and independent of m.

We note that by Korn’s inequality and Sobolev’s imbedding, (4.7) implies

(4.8) ™o 0.15v0) < €
(4.9) X" | Lo (07311 (2)) F IIX" | Loo (0,7 Ly (2)) < €
We recall also

LEMMA 4.2 (see Bartkowiak and Pawtow (2005), Lemmas 5.3, 5.4). Un-
der the assumptions of Lemma 4.1, suppose that:

(i) We(e, x) and Wy (e,x) satisfy the growth conditions (3.2), (3.3),
i) ¥ ( ) satisfies the growth condition (A4)(iii),

(111) I''(x) satisfies the uniform bound (A5)(iv),
) M(x) satisfies the uniform bound (A6)(iii).
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Then

(4.10) ™ Lo (2)) < €
(4.11) [t [l Lo 0,r5vy) < ¢
(4.12) It Lo,y < e

with a constant ¢ depending only on the data and independent of m.

We note that in view of the growth conditions (A2)(iii), (iv) on A(x),
(A3)(ii) on &(x), (A4)(iil) on ¥(x), (A5)(iii), (iv) on I'(x), and (A6)(iii) on
M(x), the estimates (4.7)—(4.9) imply the following uniform bounds:

IEX" M Lo 0,7:L2(02)) <
[A(X™)(e(u™) — (Xm))HLoo(O,T;LQ(.Q))SCa

(4.13) IE'(¢™) - AGX™) (™) = E™) | b 0.73L(22)) < €5
HW/(Xm)HLOO(O’T;LQ(Q)) <cg,
HF(Xm)VXm||LOO(07T;L2(_Q)) <eg,
HM(Xm)vaHLQ(QT) <cg,

and

(4.14) IVX™ - T (™) VX" | o (0.7 (2)) < 5

I(e(™) =2(x™)) - A'(X™) (™) = X" N Loe (0,700 (2)) < €5

with a constant ¢ depending only on the data.

3. Weak formulation of (Po)m. Using the identity

T

S<¢t7 77>V’,V dt =

0

which holds true for all ¢ € Ly(0,T;V) N HY(0,T; V") with ¢(0) = ¢o, and
n € Ly(0,T; V)N H(0,T; Ly(£2)) with n(T) = 0, we introduce the following
weak formulation of (Py)™ analogous to (2.1)—(2.3):

¢’7]t La(2) At — (60, 1(0)) 1o(2)5

/\O!’:

T
(4.15) S(um, Nt ) La(2)dt + (g, 117 (0)) 1o (0) — (", 1™ (0)) 1,0
0
T T
+ \(We(e(™)x™), e(™)ra0) dt = | (b, 01, (0) dt
0 0

for all n™(x,t) = 191(75)7)0 (x) where 91 € C°([0,T)) with ¥1(T) = 0,
91(T) = 0, and the i € V,, satisfy n* — 1, in (C1(£2))3 as m — oo;
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T

(4.16) - S(Xm,ﬁln)Lg(Q)dt — (X0 €™(0)) 1o(02)
0

T
+ MGV, VEM) L) dt =0
0

for all ™ (x™,t) = ¥2(t)&"(x) where Y2 € C°([0,T)) with J2(T) = 0 and
the &0t € Vi, satisfy &' — & in C1(£2) as m — oo; and

T
(4.17) Su ™) 1o dt — T ™)VX™, V™)L, (0 dt
0 0

| =

T
L™ T (XM VX, ™) o) it
0

;,aﬂ

T
"),¢") Ly() dt = S(WX(E(um)7Xm)7 (") py(2ydt =0
0

for all ¢"(x, t) = 93(t)()" (x) where 93 € C*°([0,T]) and the ([* € V,, satisfy
(I — (o in CH(2) as m — oo.
In view of the forms of the test functions n™, £&™, (", the identities
(4.15)—(4.17) can be rewritten as follows:
T
(4.18) [ 0i(®) {u™ mo(x) da dt
0 2

+ 10100 | AGC) (e(u™) — E(6¢™) - e(imo(x) da d
0 2

T
= Sﬁl(t) S b - ny(x) dz dt + S J1(0)ur - mo(x) dx
0 2 2

— §910) 0 - mo(x) d + RE, (0™, ™) (91, mp)
(0]
for all p, € (C®(2))3, 91 € C2([0,T)) with nyls = 0, ¥1(T) = 0,
¥, (T) = 0, where

T
Ry, (™, x"™)(91,m0) = { 97(1) | u™ - (mo(x) — ' (x)) du dt
0 2
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+ ) 91(0)(uo - o (x) — ug' - g’ (x)) dz
T T
(419) = [ 05() [ x"&o(x) dwdt + | 0a(t) | M(x™) Véo(x) da dt
0 2 0 2

for all {§o € C™°(£2), 92 € C([0,T)) with ¥2(T") = 0, where

T
RE(X™, ™) (02, 60) = — | 95(8) | X (&0(x) — &0'(x)) du dt
0 0
+ {9a(t) | M(x V(&o(x) - &' (x)) da dt
0 0
S ¥2(0) (x0é0(x) — X0'&0" (%)) da;
0
and
T T
(4.20)  {0s(t) | wmGo(x) dwdt — | 05(t) | T(X™)VX™ - Vo(x) dar dt
L0 7 0 7 .
5 §s0) VX T ) Vo) dr i — () § 9 () Gol) i di
0 Q 0 Q
T
+ 1031 [ 2 (™) - A (™) = E(X™))Go(x) dar dt
%
— 5 150 [ (™) —2(6¢M) - A (™) — 2 Go(x) der
0 19
= R (™, X, ™) (93, o)
for all ¢y € C™(£2), ¥3 € C°°(]0,T]), where
T
R (™ ™, u™) (95, Go) = | 9s(t) | 1™ (Go(x) = (%)) dar dt
0 0

T
= 95() | T(X™ V™ - V(Go(x) — G (x)) da dt
0 2
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T
— 5 150 (VX7 T VX o) — G () e
0

= 105 [ eum) —20m) - A
2
2

(e(u™) —e(x™))(Co(x) — (0" (x)) da dt.

In view of the uniform estimates (4.7), (4.13), (4.14), the convergences
(4.6), and the C'-convergences of B, & and (J* to n, & and (p, it follows
that, as m — oo,

R} (u™, x™) (1, m0) — 0,
(4.21) REL(x™, ™) (02, &) — 0,
R{’r{](u » X 7/’Lm)(7937(0) — 0
for all test functions mentioned above.

4.4. Letting m — oo in (Py)". From estimates (4.7)—(4.12) it follows

that there exists a triple (u, x, 1) with

o € Loo(0,T5 Vo),  w € Loo(0,T;Lo(2)), uy € La(0,T; V),
4.22
X € Loo(0,T; HY(2)), x¢ € Lo(0,T; V"), 1€ Lo(0,T; H'(02)),

and a subsequence (u™, ", 1) of solutions to (Py)™ (denoted by the same
indices) such that, as m — oo:

u” —u  weak” in L (0,75 Vy),

(4.23) u" —u;  weak™ in Lo (0,73 La(£2)),
uy} —uy  weakly in Ly (0, T3 Vi (£2)),

(
X" —x  weak® in Loo(0,T; H'(£2)),
X7t — xt  weakly in Lo(0,T; V"),
(4.25) p™ = weakly in Ly(0,T; H'(£2)).

(4.24)

Then by the standard compactness results (see Simon (1987), Corollary 4)
it follows in particular that
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u” —u  strongly in L2(0,T;L,(£2)) N C([0, T, Ly(£2))
(4.26) and a.e. in 27,
u)” —u; strongly in C([0,T]; V{),
(4.27)  x™ — x  strongly in Lo(0,T; Ly(£2)) N C([0,T7; Lq(£2))
and a.e. in 27,
where ¢ € [1,00) for n =2 and ¢ € [1, 6] for n = 3. Hence,
u”(0) =ug’ — u(0)  strongly in Ly(42),
(4.28) u}"(0) = u" — u(0) strongly in VY,
X"(0) = xgp" — x(0)  strongly in Lg(£2),
which together with the convergences (4.6) implies that
(4.29) u(0) =ug, uw(0)=1us, x(0)=xo.

Our goal is to pass to the limit m — oo in the identities (4.18)—(4.20).
Clearly, by the weak convergences (4.23)—(4.25) the linear terms in (4.18)-
(4.20) converge to the corresponding limits. Also,

e(u™) — e(u) weak™ in Loo(0,T; La(£2)),
(4.30) Vx™ — Vx  weak™ in Ly (0,T;La(£2)),
V™ — Vu  weakly in Ly(027).

Consider now the nonlinear terms in (4.18)—(4.20). By the uniform bounds
(4.13) and the convergence Y™ — x a.e. in 27 we can apply the classical
weak convergence result for the nonlinear terms (see Lions (1969), Chap. 1,
Lemma 1.3) to conclude that
e(x™) —&(x)  weak” in Lo (0,T; La(2)),

(4.31) V(") — W' (x) weak® in Loo(0,T; La(£2)).

Due to the regularity and the boundedness assumptions on A(x), & (x),
M(x) and I'(x) we have

AX™) — A, FKXM) —E ),
M(x™) — M(x), T'(x™) —T(x) ae. in 2T
Therefore, in view of (4.30)—(4.32),
A(X™)(e(u™) —a(x™)) = Al)(e(w) —E(x))
weak™ in Lo (0,7 La(£2)),
X - AX™)(e(u™) —E(X™)) = E'(x) - AC)(e(w) —E(x))
weak™ in Lo (0, T; La(£2)),
M(X™)Vu™ — M(x)Vp  weakly in Ly(27),
L'(x™Vx™ — T(x)Vx weak™ in Lo (0,75 La(2)).

(4.32)

(4.33)
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We now turn to the remaining two crucial terms in the identity (4.20),
VX T(X™VX™ and  g(e(u™) —E(™)) - A'(X™)(e(u™) —E(X™)).
The convergence of these terms follows by repeating the arguments used in
Neustupa (1993). Namely, from the uniform estimates (4.14) it follows that
for a given ¢ € C(£2) there exist functions fr/(¢) € Loo(0,T), fa/(¢) €

Lo (0,T) and a subsequence (u,x™, ™) (denoted by the same indices)
such that

VX" -T'(X™)VXx"o(x) dz — fr(¢) weak™ in Loo(0,7T),

(4.34) ™) - A/ (™) (e(u™) — E(X™))p(x) dx — fa()

weak™ in Lo (0,T).

)
e

Moreover, there exist constants ci, co > 0 such that

|fr(9) (1) < Cl”¢”c(§)>

(4.35)
@) < calldll g for aa. t € (0,7).

For t € (0,T), f €Y (the space of functions on R of the form (2.10)) and
¢ € C(f2) we set

(4.36)  Ans(¢) =di- {uox)dz+B- | A(y)(e(u—E(x))$(x) dx
2

+ a5 fr/(¢) + asfar(®),

where d € R", B ¢ R" and ai,...,ag € R. From the properties (4.22),
(4.31), (4.33) and (4.35) it follows that for a.a. t € (0,7) and a given f € Y,
Ay ¢ is a bounded linear functional on C({2).

At this point we can repeat the arguments used by Neustupa (1993)
based on the representation theorems for bounded linear functionals. First,
by the Riesz theorem (see e.g. Rudin (1974)), there exists a regular Borel
measure 6; ; on 2 so that

Arp(9) = | 6(x) dby 5(x).

n
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Secondly, if E is a Borel set in {2 then 6; (F) (in its dependence on f) is a

linear functional on Y. Thirdly, there exists a regular Borel measure v; g on
RM such that

Orp(B) = | fN) dvis(N).
RM

The measure v g can be extended to a regular ]iorel measure v; on 2xRM so
that v4(E x I) = vy g(I) for all Borel sets E in 2 and I in R™. Consequently,
the functional 4; ; can be represented in the form

(4.37) A (@) = [ o(x) | FON) dun(x N).

N RM

Using the convergences (4.23)—(4.25), (4.33) and (4.34) we can let m — oo
in (4.18)—(4.20) to deduce the identities (2.7)—(2.9). Consider, for example,
the term

T
0s(t) | V™ T/ (¢™) VX" Co(x) da dt.
0 2

In this case we choose

f) = ’\Vx : F,()‘X))‘VX'

By the convergence (4.34)1, definition (4.36) of A; ¢ and its representation
(4.37), it follows that as m — oo,

T
95(0) | VX D) VX Go ) e
0 02

T T
— V 05(8) fro (o) (1) dt = | V(t) A £(Go) dt

0 0
= {05 | | vy (0D Avyo(x) dua(x, A) dt.
0 QRIM
In the same way we can show that as m — oo, all other terms in (4.18)—
(4.20), except R,In, R% , R;’nH which tend to zero, converge to the correspond-
ing terms in the identities (2.7)—(2.9). Clearly, by construction, condition
(2.11) is also satisfied. We conclude that 14 is a solution of (P) in the sense
of Definition 2.1.

The statement concerning the continuity of v; follows by the same argu-

ments as in Neustupa (1993). This completes the proof. m

REMARK. We should underline that from the abstract theorems in Ali-
bert and Bouchitté (1997) and Miiller (1999) a result more precise than
Theorem 3.1 can be deduced.
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First, Theorem 2.5 of Alibert and Bouchitté (1997) guarantees the conver-
gence of nonlinearities not only in finite-dimensional subspace of continuous
functions (as in (2.10)) but also in the infinite-dimensional space F. Due
to that convergence some physical relations can be satisfied in the measure
sense.

Secondly, the measure 14 can be split into a probability measure vy )
on R? with d = n + 1 + M, a probability measure V(Otow) on the unit sphere

S9-1in R, and a Radon measure m defined only on 2 x [0,T). Here V(tz)
is the standard Young measure; the above three measures are usually called
DiPerna—Majda measures.

Finally, Corollary 3.4 of Miiller (1999) allows one to select variables with
defect of strong convergence in tensorial distribution of the measure v(; ;).

Acknowledgments. The authors thank the referee for valuable com-
ments and pointing out the references Alibert—Bouchitté (1997) and Miiller
(1999).
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