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MEASURE-VALUED SOLUTIONS OF A HETEROGENEOUSCAHN�HILLIARD SYSTEM IN ELASTIC SOLIDSBYIRENA PAW�OW and WOJCIECH M. ZAJ�CZKOWSKI (Warszawa)Abstrat. The paper is onerned with the existene of measure-valued solutionsto the Cahn�Hilliard system oupled with elastiity. The system under onsideration isanisotropi and heterogeneous in the sense of admitting the elastiity and gradient en-ergy tensors dependent on the order parameter. Suh dependenes introdue additionalnonlinearities to the model for whih the existene of weak solutions is not known so far.1. Introdution. In reent years the Cahn�Hilliard problem oupledwith elastiity has been the subjet of extensive mathematial studies; werefer e.g. to Miranville (2003) and Bartkowiak and Pawªow (2005) for up-to-date referenes. The problem desribes the phase separation proess in abinary, deformable alloy quenhed below a ertain ritial temperature. It isknown from the materials siene literature that the elasti e�ets stronglyin�uene the mirostruture evolution of the phase separation and thatamong important fators are the material anisotropies and heterogeneities.In view of that it is of importane to study the Cahn�Hilliard models a-ounting for suh e�ets.Applying a thermodynamial theory based on a mirofore balaneM. E. Gurtin (1996) introdued a generalized Cahn�Hilliard system oupledwith elastiity. This system generalizes the lassial Cahn�Hilliard equationby admitting its more general struture, hemial anisotropy and heterogene-ity and the oupling with an elastiity system, in general anisotropi andheterogeneous as well. The anisotropies are represented by the matrix formsof the material oe�ients whereas the heterogeneities by the oe�ient de-pendene on the order parameter, a quantity desribing the mirostruture.In the ase of binary phase separation the order parameter is related to thevolumetri fration of a phase.From the mathematial point of view problems with anisotropi andheterogeneous e�ets lead to additional nonlinearities in the equations andmake the analysis muh more ompliated. The main di�ulty is in passing2000 Mathematis Subjet Classi�ation: 35D05, 35G30.Key words and phrases: measure-valued solutions, Cahn�Hilliard model, phase sepa-ration, elastiity system. [313℄ © Instytut Matematyzny PAN, 2008



314 I. PAW�OW AND W. M. ZAJ�CZKOWSKIto the limit within nonlinearities. So far the Cahn�Hilliard system oupledwith anisotropi, heterogeneous elastiity has been studied by Garke (2000,2003a, 2003b), and Bonetti et al. (2002). The existene results obtained inthese papers are restrited to the quasi-stationary approximation of the elas-tiity system. We remark that the mathematial arguments appliable forthe quasi-stationary ellipti elastiity do not extend to the nonstationaryhyperboli ase.The e�ets of hemial anisotropy and heterogeneity, to the best of theauthors' knowledge, have not been muh addressed so far. In this respetwe mention the paper by Bonetti et al. (2002) where the order parameterdependene of the gradient oe�ient representing surfae tensions has beenaounted for under ertain strutural simpli�ations. We also mention thepaper by Bartkowiak and Pawªow (2005) whih is onerned with the ex-istene of weak solutions to the Cahn�Hilliard�Gurtin system oupled withnonstationary elastiity. We point out, however, that beause of tehnialobstales in passing to the limit within nonlinearities, the authors of the lat-ter paper restrited themselves to a homogeneous problem with oe�ientsindependent of the order parameter.The present paper extends the results of Bartkowiak and Pawªow (2005)to the heterogeneous ase by using a onept of measure-valued solutions(see Málek et al. (1996)). We use a speial kind of measure-valued solu-tion whih was studied previously by Neustupa (1993) for barotropi �ows,and by Kröner and Zaj¡zkowski (1996) for Euler equations of ompressible�uids.The general Cahn�Hilliard�Gurtin system oupled with elastiity, withsome presribed initial and boundary onditions, an be represented in theform of the following system of problems for the displaement u, order pa-rameter χ and the hemial potential µ:
(1.1)

utt −∇ · W,ε(ε(u), χ) = b in ΩT = Ω × (0, T ),

u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 on ST = S × (0, T ),

(1.2)

χt −∇ · (M(χ)∇w + hχt) = 0 in ΩT ,

χ|t=0 = χ0 in Ω,

n · (M(χ)∇w + hχt) = 0 on ST ,

(1.3)

µ − g · ∇µ + ∇ · (Γ(χ)∇χ) − 1
2∇χ · Γ′(χ)∇χ

− Ψ ′(χ) − W,χ(ε(u), χ) − βχt = 0 in ΩT ,

n · (Γ(χ)∇χ) = 0 on ST ,



CAHN�HILLIARD SYSTEM 315where the funtion W (ε(u), χ) represents the elasti energy, de�ned by(1.4) W (ε(u), χ) = 1
2(ε(u) − ε(χ)) ·A(χ)(ε(u) − ε(χ)).The orresponding derivatives

W,ε(ε(u), χ) = A(χ)(ε(u) − ε(χ))and
W,χ(ε(u), χ) = −ε′(χ)·A(χ)(ε(u)−ε(χ))+1

2(ε(u)−ε(χ))·A′(χ)(ε(u)−ε(χ))represent respetively the stress tensor and the elasti ontribution to thehemial potential.Above, Ω ⊂ R
n, n = 2 or 3, is a bounded domain with smooth boundary

S, oupied by a solid body in a referene on�guration, with onstant massdensity ̺ = 1; n denotes the outward unit normal to S; T > 0 is an arbitrary�xed time.The unknown variables are the displaement �eld u : ΩT → R
n, thesalar order parameter χ : ΩT → R, and the hemial potential di�erenebetween the omponents (brie�y referred to as the hemial potential) µ :

ΩT → R. In the ase of a binary a-b alloy the order parameter is related tothe volumetri fration of one of the two phases, haraterized by di�erentrystalline strutures of the omponents, for example χ = −1 orrespondsto phase a and χ = 1 to phase b. The seond order symmetri tensor
ε(u) = 1

2(∇u + (∇u)T )denotes the linearized strain (for simpliity we write ε instead of ε(u)), and
b : ΩT → R

n is the external body fore.The free energy density underlying system (1.3)�(1.5) has the Landau�Ginzburg�Cahn�Hilliard form aounting for the elasti e�ets,(1.5) f(ε, χ,∇χ) = W (ε, χ) + Ψ(χ) + 1
2∇χ · Γ(χ)∇χ,where W (ε, χ) is the homogeneous elasti energy, Ψ(χ) is the exhange en-ergy, and the last term with the positive de�nite tensor Γ(χ) = (Γij(χ)) isthe gradient energy.The standard form of the elasti energy W (ε, χ) is given by (1.4) where

A(χ) = (Aijkl(χ)) is the fourth order elastiity tensor depending on the orderparameter, and ε(χ) = (εij(χ)) is the symmetri eigenstrain tensor, i.e. astress free strain at onentration χ. The exhange energy Ψ(χ) haraterizesthe energeti favorability of the individual phases a and b. The standard formis a double-well potential with equal minima at χ = −1 and χ = 1:(1.6) Ψ(χ) = 1
2(1 − χ2)2.Furthermore, M(χ) = (Mij(χ)) is the mobility matrix, β ≥ 0 is thedi�usional visosity, and the vetors g = (gi), h = (hi) represent the ross-oupling e�ets; for usual isotropi materials g = 0 and h = 0.



316 I. PAW�OW AND W. M. ZAJ�CZKOWSKIBy thermodynamial onsisteny the oe�ient matrix(1.7) B =

[
M h

gT β

]

has to satisfy the ondition(1.8) X · BX ≥ 0 ∀X = (∇µ, χt) ∈ R
n × R.If B is independent of X then (1.8) means the positive semi-de�niteness of

B. In general, however, the quantities M,g,h, β may depend on ∇µ, χt, ε, χ.Throughout this paper we shall assume that M = M(χ) is positive de�nite,and for simpliity we restrit ourselves to the speial ase (standard Cahn�Hilliard ase)(1.9) g = h = 0 and β = 0.Later on we shall refer to the system (1.1)�(1.3) with strutural simpli�a-tions (1.9) as problem (P0).In the heterogeneous ase the gradient energy tensor Γ(χ) and the elas-tiity tensor A(χ) may be di�erent in eah of the phases, i.e., dependent onthe order parameter χ. As already mentioned, the present paper is an exten-sion of Bartkowiak and Pawªow (2005) where the existene of weak solutionshas been proved for problem (P0) and its more general version (1.1)�(1.3)only in the homogeneous ase with onstant tensors Γ and A. The obstalewe were not able to overome to establish the existene of weak solutions inthe heterogeneous ase was the lak of su�iently strong a priori estimates.In fat, the χ dependene of Γ(χ) and A(χ) introdues to the �eld equationsthe nonlinear energy-like terms(1.10) 1
2∇χ · Γ′(χ)∇χ and 1

2(ε(u) − ε(χ)) · A′(χ)(ε(u) − ε(χ))whih are the soure of mathematial di�ulties. For these terms we areable to show only L∞(0, T ; L1(Ω))-norm energy estimates whih are notsu�ient to prove the existene of weak solutions by passing to the limit inapproximate problems.For this reason in the present paper we propose a weaker, measure-valuedsense in whih the equations of (P0) are satis�ed. The idea of measure-valued solutions is taken from the papers by Neustupa (1993) and Krönerand Zaj¡zkowski (1996) where the notion of a measure-valued solution wasapplied to the Euler and Navier�Stokes equations. The underlying idea is,roughly speaking, to assume that all quantities in the weak formulation ofthe problem are assoiated with some sets E ⊂ Ω (E is assumed to be aBorel set) rather than points x ∈ Ω.The paper is organized as follows. In Setion 2 we introdue a weakformulation of problem (P0) and its measure-valued generalization. On thebasis of this generalization we de�ne a measure-valued solution of (P0). In



CAHN�HILLIARD SYSTEM 317Setion 3 we formulate the assumptions and the main result of the paperwhih asserts the existene of measure-valued solutions to problem (P0). InSetion 4 we present the proof of the existene theorem. It is based on theFaedo�Galerkin approximation of (P0) studied in Bartkowiak and Pawªow(2005). We use the following notations:
• x ∈ R

n, n = 2 or n = 3, is the material point; f,i = ∂f/∂xi and
ft = df/dt are the material spae and time derivatives,

• ε = (εij)i,j=1,...,n,
• W,ε(ε, χ) = (∂W (ε, χ)/∂εij)i,j=1,...,n, W,χ(ε, χ) = ∂W (ε, χ)/∂χ,
• Γ′(χ) = (Γ ′

ij(χ))i,j=1,...,n, Γ ′
ij(χ) = dΓij(χ)/dχ.For simpliity, whenever there is no danger of onfusion, we omit the argu-ments (ε, χ). The spei�ation of tensor indies is omitted as well.Vetor and tensor-valued mappings are denoted by bold letters. The sum-mation onvention over repeated indies is used, and we apply the followingnotation:

• for vetors a = (ai), ã = (ãi), and tensors B = (Bij), B̃ = (B̃ij),
A = (Aijkl) we write a · ã = aiãi, B · B̃ = BijB̃ij , AB = (AijklBkl),
BA = (BijAijkl),

• |a| = (aiai)
1/2, |B| = (BijBij)

1/2,
• ∇ and ∇· denote the gradient and the divergene operators with re-spet to the material point x ∈ R

n. For the divergene of a tensor �eldwe use ontration over the last index, ∇ · ε(x) = (εij,j(x)).We apply the standard Sobolev spaes notation Hm(Ω) = Wm
2 (Ω) for

m ∈ N, and:
• L2(Ω) = (L2(Ω))n, V0 = H1

0(Ω) = (H1
0 (Ω))n, n = 2 or 3.

• (·, ·)L2(Ω), (·, ·)L2(Ω) denote the salar produts in L2(Ω) and L2(Ω).
• V ′ is the dual spae of V = H1(Ω) with duality pairing 〈·, ·〉V ′,V .
• V′

0 is the dual of V0 with duality pairing 〈·, ·〉V′

0
,V0

.
• C∞

c ([0, T )) is the spae of smooth funtions with ompat support in
[0, T ).Throughout the paper c denotes a generi positive onstant di�erent in va-rious instanes.2. Weak and measure-valued formulations. We introdue the fol-lowing weak formulation of problem (P0): Find funtions u : ΩT → R

n,
χ : ΩT → R and µ : ΩT → R de�ned a.e. in ΩT , satisfying
(2.1)

T\
0

ϑ′′
1(t)
\
Ω

u · η0(x) dx dt+

T\
0

ϑ1(t)
\
Ω

A(χ)(ε(u) − ε(χ)) · ε(η0(x)) dx dt
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=

T\
0

ϑ1(t)
\
Ω

b · η0(x) dx dt +
\
Ω

ϑ1(0)u1 · η0(x) dx −
\
Ω

ϑ′
1(0)u0 · η0(x) dx

∀η0 ∈ (C∞(Ω))3, ϑ1 ∈ C∞
c ([0, T )) with η0|S = 0,where the form of the seond term on the left-hand side follows from thesymmetry of A;

(2.2) −

T\
0

ϑ′
2(t)
\
Ω

χξ0(x) dx dt +

T\
0

ϑ2(t)
\
Ω

M(χ)∇µ · ∇ξ0(x) dx dt

=
\
Ω

ϑ2(0)χ0ξ0(x) dx ∀ξ0 ∈ C∞(Ω), ϑ2 ∈ C∞
c ([0, T ));

(2.3)

T\
0

ϑ3(t)
\
Ω

µζ0(x) dx dt −

T\
0

ϑ3(t)
\
Ω

Γ(χ)∇χ · ∇ζ0(x) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

∇χ · Γ′(χ)∇χ ζ0(x) dx dt −

T\
0

ϑ3(t)
\
Ω

Ψ ′(χ)ζ0(x) dx dt

+

T\
0

ϑ3(t)
\
Ω

ε′(χ) · A(χ)(ε(u) − ε(χ))ζ0(x) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

(ε(u) − ε(χ)) · A′(χ)(ε(u) − ε(χ))ζ0(x) dx dt = 0

∀ζ0 ∈ C∞(Ω), ϑ3 ∈ C∞([0, T ]).We now introdue a measure-valued generalization of (2.1)�(2.3). To thisend we apply the ideas and notations from Neustupa (1993) adapted toour setting. Assume for a while that we already know a weak solution to(2.1)�(2.3) whih provides funtions u, χ, µ and their spatial gradients ∇u,
∇χ, ∇µ. The idea underlying a measure-valued generalization of (2.1)�(2.3)is to assume that the quantities (u, ε(u), χ, ∇χ, µ, ∇µ) are onneted withsome sets in Ω rather than points. Then at time t ∈ (0, T ) the quantities(u, ε(u), χ,∇χ, µ,∇µ) assigned to a set E ⊂ Ω represent olletions of pointsfrom the spae

R
M ≡ R

n × R
n2

× R × R
n × R × R

n.Denote a point in R
M by

λ = (λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ) ∈ R

M .Let E ⊂ Ω and I ⊂ R
M be Borel sets. The olletion of unknowns assoiatedwith E ⊂ Ω an be haraterized by a measure νt,E on R

M suh that if I isa Borel set in R
M then νt,E(I) is the Lebesgue measure of the subset E′ of
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E onsisting of the points x suh that
(u(x, t), ε(u)(x, t), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t)) ∈ I.Denoting by δ[x,t] the Dira measure in R

M with support at (u(x, t),
ε(u)(x, t), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t)), and by κE′ the harateristifuntion of E′, we write

κE′(x) =
\
I

dδ[x,t](λ) for a.e. x ∈ Ω,and(2.4) νt,E(I) =
\
E

κE′(x) dx =
\
E

\
I

dδ[x,t](λ) dx.The measure νt,E(I) an be viewed as a value of a set funtion de�ned onsubsets of Ω×R
M of type E×I with E and I being Borel sets in Ω and R

M ,respetively. Suh a funtion has a unique extension to a nonnegative regularmeasure νt on Ω × R
M suh that νt(E × I) = νt,E(I) for all Borel sets E in

Ω and I in R
M .Making use of the introdued measure νt(x, λ) we now reformulate (2.1)�(2.3). To this end we note that the integrands in (2.1)�(2.3) ontain termsof the type(2.5) \

Ω

f(u, ε(u), χ,∇χ, µ,∇µ)ξ(x)dx.The funtion f(u, ε(u), χ,∇χ, µ,∇µ) with (u, ε(u), χ, ∇χ, µ,∇µ) evaluatedat (x, t) an be expressed in the form
f(u(x, t), ε(u(x, t)), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t))

=
\

RM

f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ) dδ[x,t](λ).Hene, the integral in (2.5) is equal to\

Ω

\
RM

f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ)ξ(x) dδ[x,t](λ) dx,and due to (2.4), it an also be expressed as(2.6) \

Ω

\
RM

f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ)ξ(x) dνt(x, λ).Consequently, we an write the integral identities (2.1)�(2.3) in the form

(2.7)

T\
0

ϑ′′
1(t)
\
Ω

\
RM

λu · η0(x) dνt(x, λ) dt

+

T\
0

ϑ1(t)
\
Ω

\
RM

A(λχ)(λ
ε(u) − ε(λχ)) · ε(η0(x)) dνt(x, λ) dt
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=

T\
0

ϑ1(t)
\
Ω

b · η0(x) dx dt +
\
Ω

ϑ1(0)u1 · η0(x) dx

−
\
Ω

ϑ′
1(0)u0 · η0(x) dx

∀η0 ∈ (C∞(Ω))3, ϑ1 ∈ C∞
c ([0, T )) with η0|S = 0;

(2.8) −

T\
0

ϑ′
2(t)
\
Ω

\
RM

λχξ0(x) dνt(x, λ) dt

+

T\
0

ϑ2(t)
\
Ω

\
RM

M(λχ)λ∇µ · ∇ξ0(x) dνt(x, λ) dt

=
\
Ω

ϑ2(0)χ0ξ0(x) dx ∀ξ0 ∈ C∞(Ω), ϑ2 ∈ C∞
c ([0, T ));and

(2.9)

T\
0

ϑ3(t)
\
Ω

\
RM

λwζ0(x) dνt(x, λ) dt

−

T\
0

ϑ3(t)
\
Ω

\
RM

Γ(λχ)λ∇χ · ∇ζ0(x) dνt(x, λ) dt

−
1

2

T\
0

ϑ3(t)
\
Ω

\
RM

λ∇χ · Γ′(λχ)λ∇χζ0(x) dνt(x, λ) dt

−

T\
0

ϑ3(t)
\
Ω

\
RM

Ψ ′(λχ)ζ0(x) dνt(x, λ) dt

+

T\
0

ϑ3(t)
\
Ω

\
RM

ε′(λχ) · A(λχ)(λ
ε(u) − ε(λχ))ζ0(x) dνt(x, λ) dt

−
1

2

T\
0

ϑ3(t)
\
Ω

\
RM

(λ
ε(u) − ε(λχ))

· A′(λχ)(λ
ε(u) − ε(λχ))ζ0(x) dνt(x, λ) dt = 0

∀ζ0 ∈ C∞(Ω), ϑ3 ∈ C∞([0, T ]).Let Y be the linear spae of all funtions on R
M whih an be expressedin the form

(2.10) f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ) = d1 ·λu +B ·A(λχ)(λ

ε(u)−ε(λχ))

+ a1λχ + d2 · M(λχ)λ∇µ
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+ a2λw + d3 · Γ(λχ)λ∇χ

+ a3Ψ
′(λχ) + a4ε

′(λχ) · A(λχ)(λ
ε(u) − ε(λχ))

+ a5λ∇χ · Γ′(λχ)λ∇χ

+ a6(λε(u) − ε(λχ)) · A′(λχ)(λ
ε(u) − ε(λχ)),where d1,d2,d3 ∈ R

n,B ∈ R
n2 is a symmetri seond order tensor, and

a1, . . . , a6 ∈ R.We an now introdue
Definition 2.1. Assume that u0, u1, χ0 are given funtions de�ned a.e.in Ω, and b is a given funtion de�ned a.e. in ΩT , suh that u0, u1 ∈ L1(Ω),

χ0 ∈ L1(Ω), b ∈ L1(Ω
T ). By a measure-valued solution of problem (P0)we mean a mapping assigning to a.e. t ∈ (0, T ) a regular nonnegative Borelmeasure νt on Ω × R

M suh that(2.11) \
Ω

\
RM

|f(λu, λ
ε(u), λχ, λ∇χ, λµ, λ∇µ)| dνt(x, λ) < ∞ ∀f ∈ Y,

and the identities (2.7)�(2.9) are satis�ed for all test funtions η0∈(C∞(Ω))3,
ϑ1 ∈ C∞

c ([0, T )) with η0|S = 0, ξ0 ∈ C∞(Ω), ϑ2 ∈ C∞
c ([0, T )), and ζ0 ∈

C∞(Ω), ϑ3 ∈ C∞([0, T ]).
Definition 2.2. For a given t ∈ (0, T ) a measure-valued solution νtis ontinuous with respet to the Lebesgue measure m in Ω (brie�y, m-ontinuous) if m(E) = 0 implies νt(E × R

M ) = 0 for eah Borel set E ⊂ Ω.We reall here the following property of m-ontinuous measure-valuedsolutions. If νt is m-ontinuous for a.a. t ∈ (0, T ) then for a.a. (x, t) ∈ ΩTthere exists a Borel measure ε[x,t] on R
M so that if g is a νt-integrablefuntion on Ω × R

M then\
Ω

\
RM

g(x, λ) dνt(x, λ) =
\
Ω

\
RM

g(x, λ) dε[x,t](λ) dx for a.a. t ∈ (0, T ).If in addition ε[x,t] is the Dira measure with support at the point
λ(x, t) = (u(x, t), ε(u)(x, t), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t)) ∈ R

Mfor a.a. (x, t) ∈ ΩT , then\
Ω

\
RM

g(x, λ) dνt(x, λ)

=
\
Ω

g(x,u(x, t), ε(u)(x, t), χ(x, t),∇χ(x, t), µ(x, t),∇µ(x, t)) dx.

3. The existene of measure-valued solutions to problem (P0).System (1.1)�(1.3) (and its speial ase (P0)) was studied in Bartkowiak



322 I. PAW�OW AND W. M. ZAJ�CZKOWSKIand Pawªow (2005) by means of the Faedo�Galerkin approximation. Theexistene results obtained there for approximate problems overed the het-erogeneous ase. The restrition to the homogeneous ase was needed topass to the limit in the weak formulation of approximate problems. It wasshown there that the approximate problem orresponding to (1.1)�(1.3) inthe heterogeneous ase, i.e. with tensors Γ and A depending on χ, has asolution. However, in order to pass to the limit in the weak formulations ofthe approximate problems it was neessary to impose the assumption that
Γ and A were onstant.In the present paper we apply the same Faedo�Galerkin approximationto prove the existene of measure-valued solutions in the heterogeneous ase.First, we reall from Bartkowiak and Pawªow (2005) the orresponding as-sumptions.(A1) The domain Ω ⊂ R

n, n = 2 or 3, is bounded with smooth bound-ary S.The subsequent assumptions onern the ingredients of the Landau�Ginz-burg free energy
f(ε, χ,∇χ) : S2 × R × R

n → Rgiven by (1.5), where S2 denotes the set of symmetri seond order tensorsin R
n.(A2) The elastiity tensor A(χ) = (Aijkl(χ)) : S2 → S2:(i) is a linear mapping, of lass C1,1 with respet to χ: Aijkl(·) ∈

C1(R) with A′
ijkl(·) Lipshitz ontinuous,(ii) satis�es the symmetry onditions Aijkl(·) = Ajikl(·) = Aklij(·),(iii) is positive de�nite and bounded uniformly with respet to χ:there exist onstants 0 < cA < cA suh that

cA|ε|
2 ≤ ε · A(χ)ε ≤ cA|ε|

2 ∀ε ∈ S2 and χ ∈ R,(iv) is suh that A′(χ) = (A′
ijkl(χ)) : S2 → S2 is uniformly boundedwith respet to χ: there exists a onstant cA′ > 0 suh that

|A′(χ)ε| ≤ cA′ |ε| ∀ε ∈ S2 and χ ∈ R.We remark that we do not require that A(χ) is isotropi.(A3) The eigenstrain ε(χ) = (εij(χ)) ∈ S2:(i) is of lass C1,1 with respet to χ: εij(·) ∈ C1(R) with ε′ij(·)Lipshitz ontinuous,(ii) satis�es growth onditions: there exists a onstant c > 0 suhthat
|ε(χ)| ≤ c(|χ| + 1), |ε′(χ)| ≤ c ∀χ ∈ R.
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W,ε(ε, χ), W,χ(ε, χ) are Lipshitz ontinuous with respet to ε, χ, and satisfythe following growth onditions:

|W (ε, χ)| ≤ c(|ε|2 + |χ|2 + 1),(3.1)
|W,ε(ε, χ)| ≤ c(|ε| + |χ| + 1),(3.2)
|W,χ(ε, χ)| ≤ c(|ε|2 + |χ|2 + 1), ∀(ε, χ) ∈ S2 × R.(3.3)(A4) The double-well potential Ψ(·) : R → R:(i) is of lass C1,1: Ψ(·) ∈ C1(R) with Ψ ′(·) Lipshitz ontinuous,(ii) satis�es a bound from below: there exist onstants c1 > 0,
c2 ≥ 0 and a number r > 2 suh that

Ψ(χ) ≥ c1|χ|
r − c2 ∀χ ∈ R,(iii) satis�es growth onditions: there exists a onstant c > 0 suhthat

Ψ(χ) ≤ c(|χ|q/2+1 + 1), Ψ ′(χ) ≤ c(|χ|q/2 + 1), ∀χ ∈ R,where q ∈ [1,∞) for n = 2, q ∈ [1, 6] for n = 3.We note that Ψ(χ) de�ned by (1.6) satis�es
Ψ(χ) ≥ 1

8χ4 − 1
2 ,hene (A4)(ii) is satis�ed, and learly so is (A4)(iii) as well.(A5) The gradient energy tensor Γ(χ) = (Γij(χ)) : R

n → R
n:(i) is a linear mapping, of lass C1,1 with respet to χ: Γij(·) ∈

C1(R) with Γ ′
ij(·) Lipshitz ontinuous,(ii) is symmetri: Γij(·) = Γji(·),(iii) is positive de�nite and bounded uniformly with respet to χ:there exist onstants 0 < cΓ < cΓ suh that

cΓ |ξ|
2 ≤ ξ · Γ(χ)ξ ≤ cΓ |ξ|

2 ∀ξ ∈ R
n and χ ∈ R,(iv) is suh that Γ′(χ) = (Γ ′

ij(χ)) : R
n → R

n is uniformly boundedwith respet to χ: there exists a onstant cΓ ′ > 0 suh that
|Γ′(χ)ξ| ≤ cΓ ′ |ξ| ∀ξ ∈ R

n and χ ∈ R.We reall that assumptions (A2)(iii), (A3)(ii), (A4)(ii), (A5)(iii) imply thefollowing bound for the free energy:
(3.4) f(ε, χ,∇χ) ≥ c(|ε|2 + |χ|r + |∇χ|2) − c

∀(ε, χ,∇χ) ∈ S2 × R × R
nwith some onstant c > 0. This is the main strutural property used in theanalysis of the problem.The next assumption onerns the mobility matrix.
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n → R

n:(i) is a linear mapping, of lass C0,1 with respet to χ: Mij(·) ∈
C0(R) are Lipshitz ontinuous,(ii) is symmetri: Mij = Mji,(iii) is positive de�nite and bounded uniformly with respet to χ:there exist onstants 0 < cM < cM suh that

cM |ξ|2 ≤ ξ · M(χ)ξ ≤ cM |ξ|2 ∀ξ ∈ R
n and χ ∈ R.The positive de�niteness M(χ) is the seond main property used in theanalysis.The last assumption onerns the data of the problem:(A7) The initial data u0, u1, χ0 and the fore term b satisfy

u0 ∈ V0, u1 ∈ L2(Ω), χ0 ∈ H1(Ω), b ∈ L1(0, T ;L2(Ω)).The main result of the paper is the following.
Theorem 3.1. Under assumptions (A1)�(A7), problem (P0) has ameasure-valued solution νt. Moreover , for a.a. t ∈ (0, T ), there exists a set

Mt ⊂ Ω with Lebesgue measure zero suh that νt is ontinuous with respetto the Lebesgue measure in Ω \ Mt.4. Proof of Theorem 3.1. The proof is split into several steps.4.1. The Faedo�Galerkin approximation of (P0). We follow the methodapplied in Bartkowiak and Pawªow (2005). Let {vj}j∈N with vj ∈ (C∞(Ω))3,
vj |S = 0 be an orthonormal basis of V0, and {zj}j∈N with zj ∈ C∞(Ω) bean orthonormal basis of H1(Ω). Without loss of generality we assume that
z1 = 1. For m ∈ N we set

Vm = span{v1, . . . ,vm}, Vm = span{z1, . . . , zm}.The approximate problem (P0)
m: For any m∈N �nd a triple (um, χm, µm)of the form

(4.1)
um(x, t) =

m∑

i=1

em
i (t)vi(x),

χm(x, t) =
m∑

i=1

cm
i (t)zi(x),

µm(x, t) =
m∑

i=1

dm
i (t)zi(x)
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(4.2) (um

tt , η
m)L2(Ω) + (W,ε(ε(um), χm), ε(ηm))L2(Ω)

= (b, ηm)L2(Ω) ∀ηm ∈ Vm,(4.3) (χm
t , ξm)L2(Ω) + (M(χm)∇µm,∇ξm)L2(Ω) = 0 ∀ξm ∈ Vm,

(4.4) (wm, ζm)L2(Ω) − (Γ(χm)∇χm,∇ζm)L2(Ω)

− (1
2∇χm · Γ′(χm)∇χm + Ψ ′(χm)

+ W,χ(ε(um), χm), ζm)L2(Ω) = 0 ∀ζm ∈ Vm,(4.5) um(0) = um
0 , um

t (0) = um
1 , χm(0) = χm

0where um
0 , um

1 ∈ Vm, χm
0 ∈ Vm satisfy, as m → ∞,

(4.6) um
0 → u0 strongly in V0,

um
1 → u1 strongly in L2(Ω),

χm
0 → χ0 strongly in H1(Ω).4.2. A priori estimates for solutions of (P0)

m

Lemma 4.1 (see Bartkowiak and Pawªow (2005), Lemma 5.2). Assumethat :(i) W,ε(ε, χ), W,χ(ε, χ), M(χ), Γ′(χ), Ψ ′(χ) are Lipshitz ontinuousfuntions of their arguments ,(ii) f(ε, χ,∇χ) satis�es the struture ondition (3.4),(iii) M(χ) satis�es the uniform positive de�niteness ondition (A6)(iii),(iv) the data satisfy (A7).Then there exists a solution (um, χm, µm) to problem (P0)
m on the interval

[0, T ], satisfying the energy estimates
(4.7) ‖um

t ‖L∞(0,T ;L2(Ω)) + ‖ε(um)‖L∞(0,T ;L2(Ω)) + ‖χm‖L∞(0,T ;Lr(Ω))

+ ‖∇χm‖L∞(0,T ;L2(Ω)) + ‖∇µm‖L2(ΩT ) ≤ c,with a onstant  depending only on the data and independent of m.We note that by Korn's inequality and Sobolev's imbedding, (4.7) implies(4.8) ‖um‖L∞(0,T ;V0) ≤ c,(4.9) ‖χm‖L∞(0,T ;H1(Ω)) + ‖χm‖L∞(0,T ;Lqn(Ω)) ≤ c.We reall also
Lemma 4.2 (see Bartkowiak and Pawªow (2005), Lemmas 5.3, 5.4). Un-der the assumptions of Lemma 4.1, suppose that :(i) W,ε(ε, χ) and W,χ(ε, χ) satisfy the growth onditions (3.2), (3.3),(ii) Ψ ′(χ) satis�es the growth ondition (A4)(iii),(iii) Γ′(χ) satis�es the uniform bound (A5)(iv),(iv) M(χ) satis�es the uniform bound (A6)(iii).
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‖µm‖L2(0,T ;H1(Ω)) ≤ c,(4.10)

‖um
tt ‖L2(0,T ;V′

0
) ≤ c,(4.11)

‖χm
t ‖L2(0,T ;V ′) ≤ c,(4.12)with a onstant  depending only on the data and independent of m.We note that in view of the growth onditions (A2)(iii), (iv) on A(χ),(A3)(ii) on ε(χ), (A4)(iii) on Ψ(χ), (A5)(iii), (iv) on Γ(χ), and (A6)(iii) on

M(χ), the estimates (4.7)�(4.9) imply the following uniform bounds:
(4.13)

‖ε(χm)‖L∞(0,T ;L2(Ω)) ≤ c,

‖A(χm)(ε(um) − ε(χm))‖L∞(0,T ;L2(Ω)) ≤ c,

‖ε′(χm) · A(χm)(ε(um) − ε(χm))‖L∞(0,T ;L2(Ω)) ≤ c,

‖Ψ ′(χm)‖L∞(0,T ;L2(Ω)) ≤ c,

‖Γ(χm)∇χm‖L∞(0,T ;L2(Ω)) ≤ c,

‖M(χm)∇µm‖L2(ΩT ) ≤ c,and(4.14) ‖∇χm · Γ′(χm)∇χm‖L∞(0,T ;L1(Ω)) ≤ c,

‖(ε(um) − ε(χm)) · A′(χm)(ε(um) − ε(χm))‖L∞(0,T ;L1(Ω)) ≤ c,with a onstant c depending only on the data.4.3. Weak formulation of (P0)
m. Using the identity

T\
0

〈φt, η〉V ′,V dt = −

T\
0

(φ, ηt)L2(Ω) dt − (φ0, η(0))L2(Ω),

whih holds true for all φ ∈ L2(0, T ; V ) ∩ H1(0, T ; V ′) with φ(0) = φ0, and
η ∈ L2(0, T ; V )∩H1(0, T ; L2(Ω)) with η(T ) = 0, we introdue the followingweak formulation of (P0)

m analogous to (2.1)�(2.3):
(4.15)

T\
0

(um, ηm
tt )L2(Ω)dt + (um

0 , ηm
t (0))L2(Ω) − (um

1 , ηm(0))L2(Ω)

+

T\
0

(W,ε(ε(um)χm), ε(ηm))L2(Ω) dt =

T\
0

(b, ηm)L2(Ω) dt

for all ηm(x, t) ≡ ϑ1(t)η
m
0 (x) where ϑ1 ∈ C∞

c ([0, T )) with ϑ1(T ) = 0,
ϑ′

1(T ) = 0, and the ηm
0 ∈ Vm satisfy ηm

0 → η0 in (C1(Ω))3 as m → ∞;
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(4.16) −

T\
0

(χm, ξm
t )L2(Ω)dt − (χm

0 , ξm(0))L2(Ω)

+

T\
0

(M(χm)∇µm,∇ξm)L2(Ω) dt = 0for all ξm(xm, t) ≡ ϑ2(t)ξ
m
0 (x) where ϑ2 ∈ C∞

c ([0, T )) with ϑ2(T ) = 0 andthe ξm
0 ∈ Vm satisfy ξm

0 → ξ0 in C1(Ω) as m → ∞; and
(4.17)

T\
0

(µm, ζm)L2(Ω) dt −

T\
0

(Γ(χm)∇χm,∇ζm)L2(Ω) dt

−
1

2

T\
0

(∇χm · Γ′(χm)∇χm, ζm)L2(Ω) dt

−

T\
0

(Ψ ′(χm), ζm)L2(Ω) dt −

T\
0

(W,χ(ε(um), χm), ζm)L2(Ω) dt = 0for all ζm(x, t) ≡ ϑ3(t)ζ
m
0 (x) where ϑ3 ∈ C∞([0, T ]) and the ζm

0 ∈ Vm satisfy
ζm
0 → ζ0 in C1(Ω) as m → ∞.In view of the forms of the test funtions ηm, ξm, ζm, the identities(4.15)�(4.17) an be rewritten as follows:

(4.18)

T\
0

ϑ′′
1(t)
\
Ω

um · η0(x) dx dt

+

T\
0

ϑ1(t)
\
Ω

A(χm)(ε(um) − ε(χm)) · ε(η0(x)) dx dt

=

T\
0

ϑ1(t)
\
Ω

b · η0(x) dx dt +
\
Ω

ϑ1(0)u1 · η0(x) dx

−
\
Ω

ϑ′
1(0)u0 · η0(x) dx + RI

m(um, χm)(ϑ1, η0)for all η0 ∈ (C∞(Ω))3, ϑ1 ∈ C∞
c ([0, T )) with η0|S = 0, ϑ1(T ) = 0,

ϑ′
1(T ) = 0, where

RI
m(um, χm)(ϑ1, η0) ≡

T\
0

ϑ′′
1(t)
\
Ω

um · (η0(x) − ηm
0 (x)) dx dt

+

T\
0

ϑ1(t)
\
Ω

A(χm)(ε(um) − ε(χm)) · ε(η0(x) − ηm
0 (x)) dx dt
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−

T\
0

ϑ1(t)
\
Ω

b · (η0(x) − ηm
0 (x)) dx dt

−
\
Ω

ϑ1(0)(u1 · η0(x) − um
1 · ηm

0 (x)) dx

+
\
Ω

ϑ′
1(0)(u0 · η0(x) − um

0 · ηm
0 (x)) dx;

(4.19) −

T\
0

ϑ′
2(t)
\
Ω

χmξ0(x) dx dt +

T\
0

ϑ2(t)
\
Ω

M(χm)∇µm · ∇ξ0(x) dx dt

=
\
Ω

ϑ2(0)χ0ξ0(x) dx + RII
m (χm, µm)(ϑ2, ξ0)for all ξ0 ∈ C∞(Ω), ϑ2 ∈ C∞

c ([0, T )) with ϑ2(T ) = 0, where
RII

m (χm, µm)(ϑ2, ξ0) ≡ −

T\
0

ϑ′
2(t)
\
Ω

χm(ξ0(x) − ξm
0 (x)) dx dt

+

T\
0

ϑ2(t)
\
Ω

M(χm)∇µm · ∇(ξ0(x) − ξm
0 (x)) dx dt

−
\
Ω

ϑ2(0)(χ0ξ0(x) − χm
0 ξm

0 (x)) dx;and
(4.20)

T\
0

ϑ3(t)
\
Ω

µmζ0(x) dx dt −

T\
0

ϑ3(t)
\
Ω

Γ(χm)∇χm · ∇ζ0(x) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

∇χm · Γ′(χm)∇χmζ0(x) dx dt−

T\
0

ϑ3(t)
\
Ω

Ψ ′(χm)ζ0(x) dx dt

+

T\
0

ϑ3(t)
\
Ω

ε′(χm) · A(χm)(ε(um) − ε(χm))ζ0(x) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

(ε(um) − ε(χm)) · A′(χm)(ε(um) − ε(χm))ζ0(x) dx dt

= RIII
m (um, χm, µm)(ϑ3, ζ0)for all ζ0 ∈ C∞(Ω), ϑ3 ∈ C∞([0, T ]), where

RIII
m (um, χm, µm)(ϑ3, ζ0) ≡

T\
0

ϑ3(t)
\
Ω

µm(ζ0(x) − ζm
0 (x)) dx dt

−

T\
0

ϑ3(t)
\
Ω

Γ(χm)∇χm · ∇(ζ0(x) − ζm
0 (x)) dx dt
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−
1

2

T\
0

ϑ3(t)
\
Ω

(∇χm · Γ′(χm)∇χm(ζ0(x) − ζm
0 (x)) dx dt

−

T\
0

ϑ3(t)
\
Ω

Ψ ′(χm)(ζ0(x) − ζm
0 (x)) dx dt

+

T\
0

ϑ3(t)
\
Ω

ε′(χm) · A(χm)(ε(um) − ε(χm))(ζ0(x) − ζm
0 (x)) dx dt

−
1

2

T\
0

ϑ3(t)
\
Ω

(ε(um) − ε(χm)) · A′(χm)

· (ε(um) − ε(χm))(ζ0(x) − ζm
0 (x)) dx dt.In view of the uniform estimates (4.7), (4.13), (4.14), the onvergenes(4.6), and the C1-onvergenes of ηm

0 , ξm
0 and ζm

0 to η0, ξ0 and ζ0, it followsthat, as m → ∞,
(4.21) RI

m(um, χm)(ϑ1, η0) → 0,

RII
m (χm, µm)(ϑ2, ξ0) → 0,

RIII
m (um, χm, µm)(ϑ3, ζ0) → 0for all test funtions mentioned above.4.4. Letting m → ∞ in (P0)

m. From estimates (4.7)�(4.12) it followsthat there exists a triple (u, χ, µ) with
(4.22)

u ∈ L∞(0, T ;V0), ut ∈ L∞(0, T ;L2(Ω)), utt ∈ L2(0, T ;V′
0),

χ ∈ L∞(0, T ; H1(Ω)), χt ∈ L2(0, T ; V ′), µ ∈ L2(0, T ; H1(Ω)),and a subsequene (um, χm, µm) of solutions to (P0)
m (denoted by the sameindies) suh that, as m → ∞:

um → u weak∗ in L∞(0, T ;V0),

um
t → ut weak∗ in L∞(0, T ;L2(Ω)),(4.23)

um
tt → utt weakly in L2(0, T ;V′

0(Ω)),

χm → χ weak∗ in L∞(0, T ; H1(Ω)),
(4.24)

χm
t → χt weakly in L2(0, T ; V ′),

µm → µ weakly in L2(0, T ; H1(Ω)).(4.25)Then by the standard ompatness results (see Simon (1987), Corollary 4)it follows in partiular that
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um → u strongly in L2(0, T ;Lq(Ω)) ∩ C([0, T ],Lq(Ω))and a.e. in ΩT ,(4.26)

um
t → ut strongly in C([0, T ];V′

0),

χm → χ strongly in L2(0, T ; Lq(Ω)) ∩ C([0, T ]; Lq(Ω))(4.27) and a.e. in ΩT ,where q ∈ [1,∞) for n = 2 and q ∈ [1, 6] for n = 3. Hene,
(4.28) um(0) = um

0 → u(0) strongly in Lq(Ω),

um
t (0) = um

1 → ut(0) strongly in V′
0,

χm(0) = χm
0 → χ(0) strongly in Lq(Ω),whih together with the onvergenes (4.6) implies that(4.29) u(0) = u0, ut(0) = u1, χ(0) = χ0.Our goal is to pass to the limit m → ∞ in the identities (4.18)�(4.20).Clearly, by the weak onvergenes (4.23)�(4.25) the linear terms in (4.18)�(4.20) onverge to the orresponding limits. Also,

(4.30) ε(um) → ε(u) weak∗ in L∞(0, T ; L2(Ω)),

∇χm → ∇χ weak∗ in L∞(0, T ;L2(Ω)),

∇µm → ∇µ weakly in L2(Ω
T ).Consider now the nonlinear terms in (4.18)�(4.20). By the uniform bounds(4.13) and the onvergene χm → χ a.e. in ΩT we an apply the lassialweak onvergene result for the nonlinear terms (see Lions (1969), Chap. 1,Lemma 1.3) to onlude that(4.31) ε(χm) → ε(χ) weak∗ in L∞(0, T ;L2(Ω)),

Ψ ′(χm) → Ψ ′(χ) weak∗ in L∞(0, T ; L2(Ω)).Due to the regularity and the boundedness assumptions on A(χ), ε′(χ),
M(χ) and Γ(χ) we have(4.32) A(χm) → A(χ), ε′(χm) → ε′(χ),

M(χm) → M(χ), Γ(χm) → Γ(χ) a.e. in ΩT .Therefore, in view of (4.30)�(4.32),
(4.33)

A(χm)(ε(um) − ε(χm)) → A(χ)(ε(u) − ε(χ))weak∗ in L∞(0, T ;L2(Ω)),

ε′(χm) · A(χm)(ε(um) − ε(χm)) → ε′(χ) · A(χ)(ε(u) − ε(χ))weak∗ in L∞(0, T ;L2(Ω)),

M(χm)∇µm → M(χ)∇µ weakly in L2(Ω
T ),

Γ(χm)∇χm → Γ(χ)∇χ weak∗ in L∞(0, T ;L2(Ω)).



CAHN�HILLIARD SYSTEM 331We now turn to the remaining two ruial terms in the identity (4.20),
1
2∇χm · Γ′(χm)∇χm and 1

2(ε(um) − ε(χm)) · A′(χm)(ε(um) − ε(χm)).The onvergene of these terms follows by repeating the arguments used inNeustupa (1993). Namely, from the uniform estimates (4.14) it follows thatfor a given φ ∈ C(Ω) there exist funtions fΓ′(φ) ∈ L∞(0, T ), fA′(φ) ∈
L∞(0, T ) and a subsequene (um, χm, µm) (denoted by the same indies)suh that
(4.34)

\
Ω

∇χm · Γ′(χm)∇χmφ(x) dx → fΓ′(φ) weak∗ in L∞(0, T ),\
Ω

(ε(um) − ε(χm)) · A′(χm)(ε(um) − ε(χm))φ(x) dx → fA(φ)weak∗ in L∞(0, T ).Moreover, there exist onstants c1, c2 > 0 suh that(4.35) |fΓ′(φ)(t)| ≤ c1‖φ‖C(Ω),

|fA′(φ)(t)| ≤ c2‖φ‖C(Ω) for a.a. t ∈ (0, T ).For t ∈ (0, T ), f ∈ Y (the spae of funtions on R
M of the form (2.10)) and

φ ∈ C(Ω) we set
(4.36) At,f (φ) = d1 ·

\
Ω

u φ(x) dx + B ·
\
Ω

A(χ)(ε(u− ε(χ))φ(x) dx

+ a1

\
Ω

χφ(x) dx + d2 ·
\
Ω

M(χ)∇µ φ(x) dx

+ a2

\
Ω

µφ(x) dx + d3 ·
\
Ω

Γ(χ)∇χ φ(x) dx

+ a3

\
Ω

Ψ ′(χ)φ(x) dx + a4

\
Ω

ε′(χ) · A(χ)(ε(u) − ε(χ))φ(x) dx

+ a5fΓ′(φ) + a6fA′(φ),where d ∈ R
n, B ∈ R

n2 and a1, . . . , a6 ∈ R. From the properties (4.22),(4.31), (4.33) and (4.35) it follows that for a.a. t ∈ (0, T ) and a given f ∈ Y ,
At,f is a bounded linear funtional on C(Ω).At this point we an repeat the arguments used by Neustupa (1993)based on the representation theorems for bounded linear funtionals. First,by the Riesz theorem (see e.g. Rudin (1974)), there exists a regular Borelmeasure θt,f on Ω so that

At,f (φ) =
\
Ω

φ(x) dθt,f (x).



332 I. PAW�OW AND W. M. ZAJ�CZKOWSKISeondly, if E is a Borel set in Ω then θt,f (E) (in its dependene on f) is alinear funtional on Y . Thirdly, there exists a regular Borel measure νt,E on
R

M suh that
θt,f (E) =

\
RM

f(λ) dνt,E(λ).

The measure νt,E an be extended to a regular Borel measure νt on Ω×R
M sothat νt(E×I) = νt,E(I) for all Borel sets E in Ω and I in R

M . Consequently,the funtional At,f an be represented in the form(4.37) At,f (φ) =
\
Ω

φ(x)
\

RM

f(λ) dνt(x, λ).Using the onvergenes (4.23)�(4.25), (4.33) and (4.34) we an let m → ∞in (4.18)�(4.20) to dedue the identities (2.7)�(2.9). Consider, for example,the term
T\
0

ϑ3(t)
\
Ω

∇χm · Γ′(χm)∇χmζ0(x) dx dt.In this ase we hoose
f(λ) = λ∇χ · Γ′(λχ)λ∇χ.By the onvergene (4.34)1, de�nition (4.36) of At,f and its representation(4.37), it follows that as m → ∞,

T\
0

ϑ3(t)
\
Ω

∇χm · Γ′(χm)∇χmζ0(x) dx dt

→

T\
0

ϑ3(t)fΓ′(ζ0)(t) dt =

T\
0

ϑ3(t)At,f (ζ0) dt

=

T\
0

ϑ3(t)
\
Ω

\
RM

λ∇χ · Γ′(λχ)λ∇χζ0(x) dνt(x, λ) dt.In the same way we an show that as m → ∞, all other terms in (4.18)�(4.20), exept RI
m, RII

m , RIII
m whih tend to zero, onverge to the orrespond-ing terms in the identities (2.7)�(2.9). Clearly, by onstrution, ondition(2.11) is also satis�ed. We onlude that νt is a solution of (P0) in the senseof De�nition 2.1.The statement onerning the ontinuity of νt follows by the same argu-ments as in Neustupa (1993). This ompletes the proof.

Remark. We should underline that from the abstrat theorems in Ali-bert and Bouhitté (1997) and Müller (1999) a result more preise thanTheorem 3.1 an be dedued.



CAHN�HILLIARD SYSTEM 333First, Theorem 2.5 of Alibert and Bouhitté (1997) guarantees the onver-gene of nonlinearities not only in �nite-dimensional subspae of ontinuousfuntions (as in (2.10)) but also in the in�nite-dimensional spae F . Dueto that onvergene some physial relations an be satis�ed in the measuresense.Seondly, the measure νt an be split into a probability measure ν(t,x)on R
d with d = n + 1 + M , a probability measure ν∞

(t,x) on the unit sphere
Sd−1 in R

d, and a Radon measure m de�ned only on Ω × [0, T ). Here ν(t,x)is the standard Young measure; the above three measures are usually alledDiPerna�Majda measures.Finally, Corollary 3.4 of Müller (1999) allows one to selet variables withdefet of strong onvergene in tensorial distribution of the measure ν(t,x).Aknowledgments. The authors thank the referee for valuable om-ments and pointing out the referenes Alibert�Bouhitté (1997) and Müller(1999).
REFERENCESJ. J. Alibert and G. Bouhitté (1997), Non-uniform integrability and generalized Youngmeasures, J. Convex Anal. 4, 129�147.�. Bartkowiak and I. Pawªow (2005), The Cahn�Hilliard�Gurtin system oupled with elas-tiity, Control Cybernet. 34, 1005�1043.E. Bonetti, P. Colli, W. Dreyer, G. Giliardi, G. Shimperna and J. Sprekels (2002), On amodel for phase separation in binary alloys driven by mehanial e�ets, Phys. D 165,48�65.H. Garke (2000),On mathematial models of phase separation in elastially stressed solids,Habilitation Thesis, Univ. Bonn.H. Garke (2003a), On Cahn�Hilliard systems with elastiity, Pro. Roy. So. Edinburgh133, 307�331.H. Garke (2003b), On a Cahn�Hilliard model for phase separation with elasti mis�t,Ann. Inst. H. Poinaré Anal. Non Linéaire 22, 165�185.H. Garke, M. Rumpf and U. Weikard (2001), The Cahn�Hilliard equation with elastiity��nite element approximation and qualitative studies, Interfaes Free Bound. 3, 101�118.M. E. Gurtin (1996), Generalized Ginzburg�Landau and Cahn�Hilliard equations based ona mirofore balane, Phys. D 92, 178�192.D. Kröner andW. M. Zaj¡zkowski (1996),Measure-valued solutions of the Euler equationsfor ideal ompressible polytropi �uids, Math. Methods Appl. Si. 19, 235�252.J.-L. Lions (1969), Quelques méthodes de résolution des problèmes aux limites non liné-aires, Dunod, Paris.J. Málek, J. Ne£as, M. Rokyta and M. R·ºi£ka (1996), Weak and Measure-Valued Solu-tions to Evolutionary PDEs, Appl. Math. and Math. Comput. 13, Chapman and Hall,London.A. Miranville (2003), Generalized Cahn�Hilliard equations based on a mirofore balane,J. Appl. Math. 4, 165�185.



334 I. PAW�OW AND W. M. ZAJ�CZKOWSKIS. Müller (1999), Variational models for mirostruture and phase transitions, in: Calulusof Variations and Geometri Evolution Problems (Cetraro, 1996), Leture Notes inMath. 1713, Springer, 1999, 85�210.J. Neustupa (1993), Measure-valued solutions of the Euler and Navier�Stokes equationsfor ompressible barotropi �uids, Math. Nahr. 163, 217�227.W. Rudin (1974), Real and Complex Analysis, 2nd ed., MGraw-Hill, New York.J. Simon (1987), Compat sets in the spae Lp(0, T ; B), Ann. Mat. Pura Appl. 146, 65�97.Systems Researh InstitutePolish Aademy of SienesNewelska 601-447 Warszawa, PolandE-mail: pawlow�ibspan.waw.plandInstitute of Mathematis and CryptologyCybernetis FaultyMilitary University of TehnologyKaliskiego 200-908 Warszawa, Poland

Institute of MathematisPolish Aademy of Sienes�niadekih 800-956 Warszawa, PolandE-mail: wz�impan.gov.plandInstitute of Mathematis and CryptologyCybernetis FaultyMilitary University of TehnologyKaliskiego 200-908 Warszawa, PolandReeived 24 Marh 2007;revised 29 Otober 2007 (4740)


