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ON ERGODIC PROPERTIES OF CONVOLUTION OPERATORS
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BY
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Abstract. Recent results of M. Junge and Q.Xu on the ergodic properties of the
averages of kernels in noncommutative Lp-spaces are applied to the analysis of almost
uniform convergence of operators induced by convolutions on compact quantum groups.

The classical ergodic theory was initially concerned with investigating
the limits of iterations (or iterated averages) of certain transformations of a
measure space. The resulting limit theorems were very quickly seen to have
natural generalisations in terms of the evolutions induced by operators act-
ing on the associated Lp-spaces (for an excellent treatment we refer to [Kre]).
The noncommutative counterpart of this theory is concerned with investiga-
tion of limit properties for the iterations of operators acting on von Neumann
algebras (viewed as generalisations of classical L∞-spaces) or, more gener-
ally, on noncommutative Lp-spaces associated with a von Neumann algebra
equipped with a faithful normal state. It turned out that, after introducing
appropriate counterparts of the classical notion of almost everywhere con-
vergence, one may consider in this generalised context not only mean ergodic
theorems, but also “pointwise” ones. This has been investigated intensively
in the 70s and 80s by C. E. Lance, F. Yeadon, R. Jajte and others. Sev-
eral results were obtained for the evolutions on both von Neumann algebras
and Lp-spaces associated with a faithful normal trace. Recently M. Junge
and Q. Xu in a beautiful paper [JX2] (whose main results were earlier an-
nounced in [JX1]) proved new noncommutative maximal inequalities and
thus extended many ergodic theorems to the context of Haagerup Lp-spaces,
which naturally arise when the relevant state is nontracial.

In this paper we apply the results of [JX2] to obtain ergodic theorems
for the evolutions induced by convolution operators on compact quantum
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groups ([Wor1]). Although it is generally natural to view compact quantum
groups as C∗-algebras, due to the nature of the problems considered we
prefer the von Neumann algebraic framework. It arises naturally as every
compact quantum group is equipped with a Haar state and one can pass
to the corresponding GNS representation. The importance of this approach,
where the Haar functional is a central notion from which in a sense the
whole theory is developed, is fully revealed in the context of locally compact
quantum groups ([KV1]). Here it provides us both with a von Neumann
algebra and with a canonical reference state on it.

The plan of the paper is as follows: after establishing notation and quoting
preliminary results in the first section, in Section 2 we introduce convolution
operators and obtain the ergodic theorems for their actions on a compact
quantum group M. Section 3 contains a discussion of the extensions to the
case of Haagerup Lp-spaces associated with the Haar state on M, and in
Section 4 we signal possible directions of further investigations.

1. Notations and preliminary results. The symbol ⊗ will denote the
spatial tensor product of C∗-algebras, ⊗ the ultraweak tensor product of von
Neumann algebras (and relevant extension of the algebraic tensor product
of normal maps); � will be reserved for the purely algebraic tensor product.

Compact quantum groups. The notion of compact quantum groups has
been introduced in [Wor1]. Here we adopt the definition from [Wor2]:

Definition 1.1. A compact quantum group is a pair (A, ∆), where A is
a unital C∗-algebra, ∆ : A → A ⊗ A is a unital, ∗-homomorphic map which
is coassociative:

(∆⊗ idA)∆ = (idA ⊗∆)∆,

and A satisfies the quantum cancellation properties:

Lin((1⊗ A)∆(A)) = Lin((A⊗ 1)∆(A)) = A⊗ A.

One of the most important features of compact quantum groups is the
existence of a dense ∗-subalgebra A (the algebra of matrix coefficients of
irreducible unitary representations of A), which is in fact a Hopf ∗-algebra—
so for example ∆ : A → A�A. As explained in the introduction, for us it
is more convenient to work in the von Neumann algebraic context.

Definition 1.2. A von Neumann algebraic (vNa) compact quantum
group is a pair (M, ∆), where M is a von Neumann algebra, ∆ : M→ M⊗M
is a normal unital, ∗-homomorphic map which is coassociative:

(∆⊗ idA)∆ = (idA ⊗∆)∆,

and there exists a faithful normal state h ∈ M∗ (called a Haar state) such
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that for all x ∈M ,

(h⊗ idM) ◦∆(x) = (idM ⊗ h) ◦∆(x) = h(x)1.

The next lemma and the comments below it should help to understand
the connection between these two types of objects.

Proposition 1.3 ([Wor2]). Let A be a compact quantum group. There
exists a unique state h ∈ A∗ (called the Haar state of A) such that for all
a ∈ A,

(h⊗ idA) ◦∆(a) = (idA ⊗ h) ◦∆(a) = h(a)1.

A compact quantum group is said to be in reduced form if the Haar state
h is faithful. If it is not the case we can always quotient out the null space
of h ({a ∈ A : h(a∗a) = 0}). This procedure in particular does not influence
the underlying Hopf ∗-algebra A; in fact, the reduced object may be viewed
as the natural completion of A in the GNS representation with respect to
h (as opposed for example to the universal completion of A; for details see
[BMT]). We will therefore always assume that our compact quantum groups
are in reduced form.

Let A be a compact quantum group and let (πh,H) be the (faithful) GNS
representation with respect to the Haar state of A. Define M = πh(A)′′. Then
M is a von Neumann algebra, the coproduct has a normal extension to M
(denoted by the same symbol) with values in M⊗M, and by construction the
Haar state retains its invariance properties in this new framework—we obtain
a vNa compact quantum group. Conversely, given a vNa compact quantum
group there is a way of associating to it a C∗-algebraic object, which is a
compact quantum group (see [KV1−2] for the details of this construction and
the statements which follow). As applying these constructions twice yields
the same (i.e. isomorphic) object as the original one, we can without loss of
generality assume that whenever a vNa compact quantum group (M, ∆) is
considered, it is in its standard form given by a GNS representation with
respect to the Haar state and that it has a w∗-dense unital C∗-subalgebra A
such that (A, ∆|A) is a compact quantum group.

Whenever (M, ∆) is a vNa compact quantum group, there exists a ∗-anti-
automorphism of M (called the unitary antipode and denoted by R) and a σ-
strongly∗ continuous one-parameter group τ of ∗-automorphisms of M (called
a scaling group of (M, ∆)) such that Lin{(idM ⊗ h)(∆(x)(1⊗ y)) : x, y ∈ M}
is contained in the domain of a (densely defined) operator S = Rτ−i/2, called
the antipode. In fact, the above set is a σ-strong∗ core for S and

S((idM ⊗ h)(∆(x)(1⊗ y))) = (idM ⊗ h)((1⊗ x)∆(y)), x, y ∈ M.

The unimodularity of compact quantum groups is expressed by the condition
h = h ◦ R — in general the unitary antipode exchanges the left invariant
and the right invariant weights. Therefore we also have (by the strong left
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invariance of the antipode)

S((h⊗ idM)(∆(x)(1⊗ y))) = (h⊗ idM)((1⊗ x)∆(y)), x, y ∈ M.

Additionally denote by T the algebra of all analytic elements with respect
to the modular group ([Tak]).

The coassociativity of ∆ implies that the predual of M equipped with
the convolution product

φ ? ψ = (φ⊗ ψ)∆, φ, ψ ∈ M∗,

is a Banach algebra. It contains an important dense subalgebra that may
be equipped with the involution relevant for considering noncommutative
counterparts of symmetric measures. Define, following [KV1],

M#
∗ = {ω ∈ M∗ : ∃θ∈M∗ θ(x) = ω(S(x)) for all x ∈ D(S)}.

The involution ∗ in M#
∗ is introduced with the help of the obvious formula:

ω∗ ⊃ ω ◦ S.
The modular group of the Haar state will be denoted simply by σ. Let

us gather here a few useful commutation relations:

(τt ⊗ σt)∆ = (σt ⊗ τ−t)∆ = ∆ ◦ σt,(1.1)
(τt ⊗ τt)∆ = ∆ ◦ τt,(1.2)
R ◦ τt = τt ◦R.(1.3)

Notions of “pointwise” convergence in the von Neumann algebraic context.
Let M be a von Neumann algebra with a faithful normal state φ ∈ M∗, called
the reference state.

Definition 1.4. A sequence (xn)∞n=1 of operators of M is almost uni-
formly (a.u.) convergent to x ∈ M if for each ε > 0 there exists e ∈ PM such
that φ(e⊥) < ε and

‖(xn − x)e‖∞
n→∞−−→ 0.

A sequence (xn)∞n=1 of operators in M is bilaterally almost uniformly (b.a.u.)
convergent to x ∈ M if for each ε > 0 there exists e ∈ PM such that φ(e⊥) < ε
and

‖e(xn − x)e‖∞
n→∞−−→ 0.

Definition 1.5. A linear map T : M→ M is called a kernel (or a positive
L1-L∞ contraction) if it is a positive contraction:

∀x∈M 0 ≤ x ≤ I ⇒ 0 ≤ T (x) ≤ I,

and has the property

∀x∈M, x≥0 φ(T (x)) ≤ φ(x).
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It is well known that for each kernel T and for each x ∈ M the sequence
(Mn(T )(x))∞n=1, where

(1.4) Mn(T )(x) =
1
n

n∑
k=1

T k(x),

is w∗-convergent to F (x), where F : M → M denotes the w∗-continuous
projection on the space of fixed points of T .

The following individual ergodic theorem is due to B. Kümmerer (see
also [CD-N]):

Theorem 1.6 ([Küm]). If T : M→ M is a kernel , then for each x ∈ M
the sequence (Mn(T )(x))∞n=1 converges to F (x) almost uniformly.

2. Convolution operators and ergodic theorems on the level of
a von Neumann algebra. Let (M, ∆) be a vNa compact quantum group
with the Haar state h ∈ M∗. For any φ ∈ M∗, by the convolution operator
associated with φ we shall understand the map Tφ : M→ M defined by

(2.1) Tφ = (idM ⊗ φ)∆.

There is also an obvious left version, given by

(2.2) Lφ = (φ⊗ idM)∆.

The basic properties of the convolution operators are summarised below:

Proposition 2.1. Let φ, φi ∈ M∗ (i ∈ I). Then the following hold :

(i) if φ ∈ M+
∗ then Tφ is completely positive; if φ(1) = 1 then Tφ is

unital ;
(ii) Tφ is normal and decomposable (the latter means it can be repre-

sented as a linear combination of completely positive maps);
(iii) the map φ 7→ Tφ is a contractive homomorphism between the Banach

algebras M∗ and B(M);
(iv) h ◦ Tφ = φ(1)h;
(v) if φi

i∈I−→ φ in norm then Tφi

i∈I−→ Tφ in norm;
(vi) if φi

i∈I−→ φ weakly then Tφi
(x) i∈I−→ Tφ(x) in w∗-topology for each

x ∈ M.

Proof. Property (i) is obvious (as positive functionals are automatically
CP), and (ii) follows from (i) and the existence of Jordan decomposition of
normal functionals. Property (iii) is a consequence of coassociativity, con-
tractivity of ∆ and the fact that for each linear functional the completely
bounded norm is equal to the standard norm. (iv) follows from the invariance
of the Haar state, (v) is a consequence of (iii), and (vi) of the formula

ψ(Tφ(x)) = φ(Lψ(x)) for all x ∈ M, ψ ∈ M∗.
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All the above properties have their counterparts for left convolution op-
erators (this time the map φ 7→ Lφ is an antihomomorphism).

For φ ∈ M+
∗ we define (for each n ∈ N)

(2.3) φn =
1
n

n∑
k=1

φ?k.

The properties above in conjunction with Theorem 1.6 imply the follow-
ing fact (the notation as in the previous subsection); the reference state on
M will always be the Haar state.

Theorem 2.2. For any φ ∈ M+
∗ and x ∈ M,

Mn(Tφ)(x) = Tφn(x) n→∞−−→ F (x) almost uniformly.

Properties of compact quantum groups allow us in fact to identify (in
most of the cases) the limit in the above theorem. First let us mention the
following result due to V. Runde (Corollary 3.5 in [Run]).

Theorem 2.3. The Banach algebra M∗ is an ideal in M∗ (equipped with
the Arens multiplication).

It is elementary to check that if φ ∈ M∗, % ∈ M∗ the Arens multiplication
“ · ” (both left and right version, known to coincide in this situation) may be
written in terms of convolution operators:

% · φ = % ◦ Tφ, φ · % = % ◦ Lφ.
Therefore the above theorem of Runde may be interpreted as the counterpart
of the classical fact that for compact groups the convolution of a bounded
measure that has a density and any bounded measure is again a measure
with a density. In two propositions below we identify the “pointwise” limits
whose existence was guaranteed by Theorem 2.2.

Proposition 2.4. Let φ ∈ M+
∗ be a faithful state. The fixed point space

of Tφ consists only of scalar multiples of 1 (in other words, Tφ is ergodic).

Proof. Consider the restriction of φ to the w∗-dense compact quantum
group A. As the restriction is also a faithful state, a remark ending Section 2
of [Wor2] implies that for each a ∈ A we have φn(a) → h(a) as n → ∞. It
follows (see the proof of Proposition 2.1(iii)) that for each a ∈ A the sequence
(Mn(Tφ)(a))∞n=1 converges to Th(a) = h(a)1 in w∗-topology. Let now % ∈ M∗

be any w∗-accumulation point of (φn)∞n=1 in the unit ball of M∗. It is easy
to check that (for each x ∈ M)

%(x) = %(Tφ(x)) = %(Lφ(x)).

Theorem 2.3 yields normality of %, and as the first part of the proof shows
that %|A = h and A is dense, we must have % = h. Therefore the projection
on the fixed point space is given by the formula F (x) = h(x)1 (x ∈ M).
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Note that in fact we did not need the theorem of Runde; it was enough
to conclude by recalling the w∗-continuity of F . The next corollary, however,
makes essential use of Theorem 2.3.

Proposition 2.5. Let φ ∈ M+
∗ . The sequence (φn)∞n=1 is weakly conver-

gent to a normal functional %. In particular , for each x ∈ M,

Mn(Tφ)(x)
n→∞−−→ T%(x) almost uniformly.

Proof. We can assume that φ is a state. Choosing this time two, poten-
tially different, accumulation points %1, %2 of the sequence (φn)∞n=1 in the unit
ball of M∗ we deduce as above that both %1, %2 are normal. Theorem 1.6 and
Properties 2.1 imply that in fact T%1 = F = T%2 . Further, the cancellation
properties of A yield the implication

T%1 = T%2 ⇒ %1|A = %2|A,
and the density of A in M gives the equality %1 = %2.

3. Extensions to Lp-spaces and iterates of symmetric convolu-
tion operators. This section will only briefly introduce bits of notation
and terminology—for a precise treatment of Haagerup Lp-spaces we refer
for example to [JX2]. The “density” operator of the Haar state will be de-
noted by D, the canonical trace-like functional on L1(M) by τ , and p′ will
be the exponent conjugate to p. For each φ ∈ M∗ the operator defined by

T
(p)
φ (D1/2pxD1/2p) = D1/2pTφ(x)D1/2p, x ∈ M,

extends uniquely to a continuous operator on Lp(M). This follows from the
fact that each Tφ may be written (in a canonical way) as a linear combination
of four kernels, and from the results of [JX2]. One of the main theorems of
the latter paper assert the almost sure convergence of ergodic averages in
Lp-spaces. Recall first the definition, due to R. Jajte.

Definition 3.1. Let p ∈ [1,∞), xn, x ∈ Lp(M), n ∈ N. The sequence
(xn)∞n=1 is said to converge almost surely (a.s.) to x if for each ε > 0 there
exists a projection e ∈ M and a family (an,k)∞n,k=1 of operators in M such
that

φ(e⊥) < ε, xn − x =
∞∑
k=1

an,kD
1/p, lim

n→∞

∥∥∥ ∞∑
k=1

an,ke
∥∥∥ = 0.

Analogously the sequence (xn)∞n=1 is said to converge bilaterally almost surely
(b.a.s.) to x if for each ε > 0 there exists a projection e ∈ M and a family
(an,k)∞n,k=1 of operators in M such that

φ(e⊥) < ε, xn − x =
∞∑
k=1

D1/2pan,kD
1/2p, lim

n→∞

∥∥∥ ∞∑
k=1

ean,ke
∥∥∥ = 0.
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Note the following fact, which can be easily deduced from the properties
of the modular action described in the introduction (see formula (1.1)):

Proposition 3.2. Let φ ∈ M∗. The operator Tφ commutes with the
modular action of the Haar state if and only if φ ◦ τt = φ for each t ∈ R.

The set of all normal states satisfying the equivalent conditions above
will be denoted by Mτ

∗ . It is easy to check that it is closed under convolution
multiplication of M∗. Moreover, Mτ

∗ ∩M#
∗ is a ∗-subsemigroup of M#

∗ , by the
commutation relations (1.2)–(1.3).

Corollary 7.12 of [JX2] therefore yields the following theorem:

Theorem 3.3. Let φ ∈ Mτ
∗ be a state and x ∈ Lp(M). The sequence

(Mn(T
(p)
φ )(x))∞n=1 is b.a.s. (and for p > 2 even a.s.) convergent to F (p)(x),

where F (p) : Lp(M) → Lp(M) denotes the projection on the fixed points
of T (p)

φ . If φ is faithful , then F (p)(x) = τ(D1/p′x)D1/p.

The classical Stein theorem ([Ste]) and its noncommutative generalisation
([JX2]) allow one to deduce the convergence of the iterates (as opposed to
averages) of Tφ if it induces a symmetric operator on the L2-space. The
states whose associated convolution operators have this property correspond
to “symmetric” measures and can be characterised by an invariance property
with respect to the antipode. This is the context of the next proposition.

Proposition 3.4. Let ω ∈ M#
∗ ∩Mτ

∗. Then (T (2)
ω )∗ = T

(2)
ω∗ .

Proof. Assume that ω is as above and a, b ∈ T . Note that Proposition 3.2
implies in particular that Tω(a) ∈ T . Moreover,

〈T (2)
ω (D1/4aD1/4), D1/4bD1/4〉 = τ(D1/4(Tω(a))∗D1/4D1/4bD1/4)

= τ(σi/2(Tω(a)∗)bD) = h(σi/2(Tω(a)∗)b) = h(σi/2((idM⊗ω)∆(a∗))b)

= h((idM⊗ω)∆(σi/2(a
∗))b) = ω((h⊗ idM)(∆(σi/2(a

∗))(b⊗ 1)))

= ω ◦ S((h⊗ idM)((σi/2(a
∗)⊗ 1)∆(b))) = ω∗((h⊗ idM)((σi/2(a

∗)⊗ 1)∆(b)))

= h(σi/2(a
∗)(idM⊗ω∗)∆b) = τ(σi/2(a

∗)Tω∗(b)D)

= τ(D1/2a∗D1/2(Tω∗(b))) = 〈D1/4aD1/4, T
(2)
ω∗ (D1/4bD1/4)〉.

The claim now follows from the density of T in M.

Therefore the Stein theorem in our context implies the following result:

Theorem 3.5. Let φ ∈ M#
∗ ∩Mτ

∗ be a state with φ = φ∗. For p ∈ (1,∞)
and x ∈ Lp(M) the sequence ((T (p)

φ )2n(x))∞n=1 is b.a.s. (and for p > 2
even a.s.) convergent to F (p)(x), where F (p) : Lp(M) → Lp(M) denotes
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the projection on the fixed points of (T (p)
φ )2. If x ∈ M then the sequence

((Tφ)2n(x))∞n=1 converges almost uniformly.

Continuous semigroups. The theorems stated above, exactly as in [JX2],
have their multi-parameter versions and counterparts for continuous semi-
groups. We mention for example the following (F denotes this time a pro-
jection on the space of fixed points of the semigroup in question):

Theorem 3.6. Let (φt)t>0 be a (weakly continuous) convolution semi-
group of normal states on M. Then for each x ∈ M,

Mt(x) =
1
t

t�

0

Tφs(x) ds
t→∞−−→ F (x) almost uniformly.

If φt ∈ Mτ
∗ for all t ≥ 0 then for every p ∈ [1,∞) and x ∈ Lp(M),

M
(p)
t (x) =

1
t

t�

0

T
(p)
φs

(x) ds t→∞−−→ F (p)(x) b.a.s.

(and a.s. if p > 2). If additionally φt ∈ M#
∗ ∩Mτ

∗ and φt = φ∗t (t ≥ 0) then
for every p ∈ (1,∞) and x ∈ Lp(M),

T
(p)
φt

(x) t→∞−−→ F (p)(x) b.a.s.

(and a.s. if p > 2).

4. Questions and comments. The first natural question to consider is
the following: what are the limit properties of the sequence (Tnφ = Tφ?n)∞n=1

if no symmetry properties of φ are assumed? In the classical case a general
answer is given by the Itô–Kawada theorem. Suppose that G is a subgroup
generated by the support of the measure in question. Then the limit exists
if and only if the support is not contained in a nonzero coset of any closed
normal subgroup of G (as otherwise a “periodicity effect” arises), and is
the Haar measure on G (see for example [Gre]). Commutative proofs sug-
gest that the way to obtain results of such type probably leads through the
Fourier analysis, which is also available for compact quantum groups. The
quantum answer is however clearly more complicated, as the example of
A. Pal ([Pal]) shows the existence of atypical idempotent states (i.e. idem-
potent states which are not Haar measures on a quantum subgroup) on a
Kac–Palyutkin quantum group. For more examples of this type and charac-
terisation of atypical states on various types of compact quantum groups we
refer to the forthcoming paper [FrS].

The second question concerns the ergodic properties of convolution op-
erators on locally compact (but noncompact) quantum groups. One differ-
ence lies in the fact that one has to deal with the left and right invariant
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weights (and not states), which in general will not be equal. If discrete quan-
tum groups are considered, the invariant weights are strictly normal (that
is, arise as sums of normal states with orthogonal supports), as M is a di-
rect sum of matrix algebras. There is, however, no reason to expect that
the convolution operators would respect the underlying decomposition; their
behaviour is governed by the fusion rules for unitary (co)representations.
Satisfactory general results seem to be currently out of reach, and in all
probability even the consideration of concrete examples (such as, say, convo-
lution operators on the quantum deformation of the Lorentz group) should
involve the extensive use of von Neumann algebraic techniques and exploit
certain compatibility between the modular theory of the Haar weights and
the behaviour of the convolution operator in question. We hope that the
introductory results of this note may provide motivation and framework for
further investigations in this area.
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