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SUM THEOREMS FOR OHIO COMPLETENESS

BY

D. BASILE, J. VAN MILL and G. J. RIDDERBOS (Amsterdam)

Abstract. We present several sum theorems for Ohio completeness. We prove that
Ohio completeness is preserved by taking σ-locally finite closed sums and also by taking
point-finite open sums. We provide counterexamples to show that Ohio completeness is
preserved neither by taking locally countable closed sums nor by taking countable open
sums.

1. Introduction. All spaces under consideration are Tikhonov. A topo-
logical space X is called Ohio complete if for every compactification γX of
X there is a Gδ-subset S of γX such that X ⊆ S and, for every y ∈ S \X,
there is a Gδ-subset of γX which contains y and misses X.

Ohio completeness was introduced by Arhangel′skĭı in [1] to study gen-
eralized metrizability properties of remainders of compactifications. It was
shown in [1] that among the Ohio complete spaces are all Čech-complete
spaces, Lindelöf spaces, p-spaces and spaces with a Gδ-diagonal. D. Basile
and J. van Mill [2] have studied the behaviour of Ohio completeness with
respect to taking products and closed subspaces.

In [2] it is shown that the disjoint sum of Ohio complete spaces is again
Ohio complete. In this paper we prove more sum theorems for Ohio complete-
ness. Below we prove that Ohio completeness is preserved by taking σ-locally
finite closed sums. This generalizes the disjoint sum theorem from [2], and it
also follows that a countable closed sum of Ohio complete subspaces is Ohio
complete. Moreover, we also prove that Ohio completeness is preserved by
taking point-finite open sums.

In the final section of this paper, we provide several examples of non-
Ohio complete spaces to show the sharpness of our results. We provide an
example of a space which is not Ohio complete but which is covered by a
locally countable family of closed subspaces all of which are Ohio complete.
This shows that there is no locally countable closed sum theorem for Ohio
completeness. We also provide an example of a first countable homogeneous
space which is not Ohio complete. This shows that the statement “Every
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first countable topological group is Ohio complete” cannot be generalized
to homogeneous spaces. Since every first countable space is an open image
of a metrizable space, it follows that Ohio completeness is not preserved by
taking open images. Finally, we present an example of a non-Ohio complete
space which is covered by a countable collection of open and Ohio complete
subspaces.

Our examples indicate that there is an essential difference between sum
theorems for open and for closed subspaces. Note that any space X is the
union of a point-finite family of closed and Ohio complete subspaces, namely
the family {{x} : x ∈ X}. So any example of a non-Ohio complete space
shows that there is no point-finite closed sum theorem for Ohio completeness.
This contrasts with the point-finite open sum theorem for Ohio complete-
ness which we will prove below. Furthermore, as mentioned before, we shall
provide a counterexample to a countable open sum theorem for Ohio com-
pleteness. So although Ohio completeness is preserved by taking countable
closed sums, this property is not preserved by taking countable open sums.

We would like to thank the referee for some helpful comments and re-
marks.

2. Preliminaries. Ohio completeness was introduced by Arhangel′skĭı
in [1] as a property of remainders of compactifications of spaces. In this
preliminary section we show that one may also study the Ohio completeness
property in a much wider setting. This leads to several characterizations of
Ohio completeness. We also prove that the Ohio completeness property is
transitive.

We say that a subspace X of a space Z is Ohio embedded in Z if there
is a Gδ-subset S of Z such that X ⊆ S and, for every y ∈ S \ X, there
is a Gδ-subset of Z which contains y and misses X. So a space X is Ohio
complete if and only if X is Ohio embedded in γX for every compactification
γX of X.

As in [2], we call a compactification γX a good compactification of X if
X is Ohio embedded in γX. Given spaces X and Z such that X is Ohio
embedded in Z, we say that a Gδ-subset S of Z is good with respect to X
if S contains X and every point in S \ X can be separated from X by a
Gδ-subset of Z.

For a space Z we shall study the collection of all Ohio embedded sub-
spaces of Z. Of course, this collection contains all Ohio complete subspaces
of Z. The following propositions provide some more properties of the collec-
tion of Ohio embedded subspaces. We omit the simple proofs.

Proposition 2.1. If X is either a Gδ- or an Fσ-subset of Z, then X
is Ohio embedded in Z.
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Proposition 2.2. If X ⊆ Y ⊆ Z and X is Ohio embedded in Z, then
X is Ohio embedded in Y .

We now prove that the Ohio completeness property is transitive.

Proposition 2.3. If X is Ohio embedded in Y and Y is Ohio embedded
in Z, then X is Ohio embedded in Z.

Proof. By hypothesis, we may fix a Gδ-subset R of Y and a Gδ-subset S
of Z such that R is good with respect to X and S is good with respect to Y .

We may fix a Gδ-subset R̃ of Z such that R = Y ∩ R̃. We claim that the
Gδ-subset R̃ ∩ S of Z is good with respect to X. So pick an arbitrary point
p ∈ (R̃∩S)\X. There are two cases to consider. First assume that p ∈ Y . In
this case, p ∈ R and therefore p is separated from X by a Gδ-subset T of Y .
We may fix a Gδ-subset T̃ of Z such that T = Y ∩ T̃ . But then T̃ separates
the point p from X.

Secondly, suppose that p 6∈ Y . Then p ∈ S \ Y , hence by the choice of S,
the point p can be separated from Y by a Gδ-subset T of Z. Since X ⊆ Y ,
the set T also separates p from X. This completes the proof.

Proposition 2.4. Let X be a space. The following are equivalent :

(1) X is Ohio complete,
(2) X is Ohio embedded in Z whenever X is a dense subspace of Z,
(3) X is Ohio embedded in Z whenever X is a subspace of Z.

Proof. The implication (3)⇒(1) is obvious. We first prove (1)⇒(2). So
let X be a dense subspace of Z. The Čech–Stone compactification βZ of Z
is also a compactification of X (since X is dense in Z). But then X is Ohio
embedded in βZ by (1). Since X ⊆ Z ⊆ βZ, it follows from Proposition 2.2
that X is Ohio embedded in Z.

Finally, we prove (2)⇒(3). So let X be a subspace of Z. Closures are
taken in Z. The set X is a closed subspace of Z and X is dense in X. By (2)
it follows that X is Ohio embedded in X. Since X is closed in Z, it follows
from Proposition 2.1 that X is Ohio embedded in Z.

So we see that X is Ohio embedded in X and X is Ohio embedded in Z.
By Proposition 2.3, it follows that X is Ohio embedded in Z.

Corollary 2.5. If X is Ohio embedded in Y , Y ⊆ Z and Y is Ohio
complete, then X is Ohio embedded in Z.

Proof. This follows from Propositions 2.3 and 2.4.

It was asked in [2, Question 3.3] whether a closed subspace of an Ohio
complete space is again Ohio complete, and it was proved there (see
[2, Theorem 3.1]) that this is the case for C∗-embedded subspaces. We do not
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know the answer to [2, Question 3.3], but the following proposition provides
some good compactifications of Fσ- and Gδ-subsets of Ohio complete spaces.

Proposition 2.6. Let X ⊆ Y ⊆ Z and suppose that Y is Ohio com-
plete. If γZ is any compactification of Z, then XγZ is a good compactifica-
tion of X in each of the following cases:

(1) X is an Fσ-subset of Z,
(2) X is a Gδ-subset of Z.

Proof. If X is either an Fσ- or a Gδ-subset of Z, then it is a subset of
similar kind of Y . So in either case it follows from Proposition 2.1 that X
is Ohio embedded in Y . By Corollary 2.5, we also know that X is Ohio
embedded in γZ. Since X ⊆ XγZ ⊆ γZ, it follows from Proposition 2.2 that
X is Ohio embedded in XγZ .

We do not know whether a Gδ-subspace of an Ohio complete space is
again Ohio complete, but we shall prove below (see Corollary 3.4) that the
assertion “Every closed subset of an Ohio complete space is again Ohio com-
plete” is equivalent to the assertion “Every Fσ-subspace of an Ohio complete
space is again Ohio complete”.

Question 2.7. Is a Gδ-subspace of an Ohio complete space again Ohio
complete?

3. Closed sum theorems for Ohio completeness. A family A of
subsets of a space X is called locally finite provided that for every x ∈ X
there is a neighbourhood U of x such that the set {A ∈ A : A ∩ U 6= ∅}
is finite. A family A of subsets of X is called σ-locally finite if A is the
countable union of locally finite families, i.e. A =

⋃
n∈ω An where each An

is locally finite.
For a subspace Y of Z, showing that Y is Ohio embedded in Z usually

consists of two tasks: the first is to find a special Gδ-subset S of Z which
contains Y , and secondly one needs to prove that S is good with respect
to Y . The following lemma provides Gδ-subsets containing Y that are only
good with respect to certain subsets of Y .

Lemma 3.1. Let X ⊆ Y ⊆ Z and suppose that X is the union of a
family F of closed subspaces of Y . Suppose moreover that every element of
F is Ohio embedded in Z, and that the family F is locally finite in Y . Then
there is a Gδ-subset S of Z which contains Y and such that every point of
S \ Y can be separated from X by a Gδ-subset of Z.

Proof. Let F = {Xi : i ∈ I} be the locally finite family consisting of
closed subspaces of Y such thatX =

⋃
F and such thatXi is Ohio embedded
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in Z, for every i ∈ I. For every y ∈ Y , fix an open neighbourhood Ũy of y
in Z such that if Uy = Y ∩ Ũy, then {i ∈ I : Xi ∩ Uy 6= ∅} is finite.

We will first find a Gδ-subset of Z containing Y and then we will prove
that this Gδ-subset has the required properties. All closures are taken in Z.
Note that by Proposition 2.2, Xi is Ohio embedded in Xi for every i ∈ I,
so we may fix a Gδ-subset Si of Xi which is good with respect to Xi. The
set Xi \ Si is an Fσ-subset of Xi and hence of Z, so we may fix a collection
{Fi,n : n ∈ ω} of closed subsets of Z such that Xi \ Si =

⋃
n∈ω Fi,n. Note

that since each Xi is a closed subset of Y , it follows that for every i ∈ I and
n ∈ ω, Y ∩ Fi,n = ∅. For every n ∈ ω, we define

Gn =
⋃
i∈I

Fi,n.

The set G =
⋃
n∈ω Gn is an Fσ-subset of Z, so its complement is a Gδ-subset

of Z. We claim that G∩Y = ∅. To see this, note that if y ∈ Y and y ∈ Gn for
some n ∈ ω, then the set {i ∈ I : Fi,n ∩ Ũy 6= ∅} is infinite. Since Fi,n ⊆ Xi,
it then follows that the collection {i ∈ I : Xi ∩ Uy 6= ∅} is infinite, and this
is impossible.

We now define our Gδ-subset of Z as follows: let U =
⋃
{Ũy : y ∈ Y } and

let S = U \G. Since G ∩ Y = ∅ and U is an open subset of Z containing Y ,
it follows that S is a Gδ-subset of Z containing Y . We will now prove that
this Gδ-subset has the required properties.

So fix z ∈ S \ Y . Then z ∈ Ũy for some y ∈ Y . Let J = {i ∈ I : z ∈ Xi}
and K = {i ∈ I : Xi ∩ Ũy 6= ∅}. Note that J ⊆ K and K is finite by the
choice of Ũy. Since z 6∈ G, it follows that z ∈ Sj for all j ∈ J . Since Sj is a
Gδ-subset of Xj which is good for Xi, for every j ∈ J we may fix a Gδ-subset
Tj of Z such that z ∈ Tj and Tj ∩Xj = ∅. Now let

T = Ũy ∩
⋂
j∈J

Tj ∩
⋂

k∈K\J

(Z \Xk).

It is not hard to verify that T is a Gδ-subset of Z which contains z and
misses X. Since z ∈ S was arbitrary, this shows that the Gδ-set S has the
required properties, and this completes the proof.

Theorem 3.2. Let X be the union of a σ-locally finite family F of closed
subspaces. If X ⊆ Z and every element of F is Ohio embedded in Z, then
X is Ohio embedded in Z.

Proof. Let F =
⋃
n∈ω Fn, where each Fn is locally finite in X. For n ∈ ω,

let Xn =
⋃

Fn. Applying Lemma 3.1, for every n ∈ ω we find a Gδ-subset Sn
of Z containing X such that every point in Sn \X can be separated from Xn

by a Gδ-subset of Z.
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Now let S =
⋂
n∈ω Sn. It is clear that S is a Gδ-subset of Z which

contains X. We will show that S is good with respect to X. So let z ∈ S \X.
For every n ∈ ω we may find a Gδ-subset Tn of Z such that z ∈ Tn and
Xn ∩ Tn = ∅. But then T =

⋂
n∈ω Tn is a Gδ-subset of Z which separates z

from X.

Corollary 3.3. Let X be the union of a σ-locally finite family of closed
subspaces. If every element of the family is contained in an Ohio complete
subspace of X, then X is itself Ohio complete.

Proof. Fix a σ-locally finite family F of closed subspaces of X such that
X =

⋃
F, and such that every element of F is contained in an Ohio complete

subspace of X. To show that X is Ohio complete, we fix an arbitrary com-
pactification γX of X. First note that by Proposition 2.1 and Corollary 2.5,
every element of F is Ohio embedded in γX. So it follows from the previ-
ous theorem that X is Ohio embedded in γX. Since γX was an arbitrary
compactification of X, this completes the proof.

It follows that if X is the union of a locally finite family of closed and
Ohio complete subspaces, then X is itself Ohio complete. This generalizes
the disjoint sum theorem proved in [2]. We also see that if X is the countable
union of closed and Ohio complete subspaces, then X is Ohio complete. So
Ohio completeness is also preserved by taking countable closed sums. This
yields the following equivalence.

Corollary 3.4. Let X be Ohio complete. Then the following statements
are equivalent :

(1) every closed subset of X is Ohio complete,
(2) every Fσ-subset of X is Ohio complete.

4. Open sum theorems for Ohio completeness. It is a well known
fact that a finite union of Gδ-subsets is again a Gδ-subset ([5, p. 26]). This
fact yields the following observation.

Proposition 4.1. Suppose G is a finite cover of X consisting of Gδ-
subsets of X. If X ⊆ Z and every element of G is Ohio embedded in Z,
then X is Ohio embedded in Z.

Proof. Let G = {Gi : i ∈ I}, where I is finite. For every i ∈ I, we may fix
a Gδ-subset Si of Z which is good with respect to Gi. Note that since Gi is a
Gδ-subset of X, we may assume without loss of generality that Si∩X = Gi.
Then S =

⋃
i∈I Si is a Gδ-subset of Z since it is a finite union of Gδ-subsets

of Z. We claim that S is good with respect to X. First of all, note that
X ⊆ S, since Gi ⊆ Si for i ∈ I. So it remains to verify that every point in
S \X can be separated from X by a Gδ-subset of Z.
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So fix an arbitrary point z ∈ S \X. Then z ∈ Si \Gi for some i ∈ I. So
by construction, there is a Gδ-subset T of Z such that z ∈ T and T ∩Gi = ∅.
But then, since Si ∩ X = Gi, the set Si ∩ T is a Gδ-subset of Z which
separates z from X.

Corollary 4.2. Let G be a finite cover of X whose members are Gδ-
subsets. If every element of G is contained in an Ohio complete subspace
of X, then X is itself Ohio complete.

Proof. Fix an arbitrary compactification γX of X. Since every element
of G is contained in an Ohio complete subspace of X, it follows from Proposi-
tion 2.1 and Corollary 2.5 that every element of G is Ohio embedded in γX.
So by the previous proposition, X is Ohio embedded in γX. Since γX was
an arbitrary compactification of X, this shows that X is Ohio complete.

So in particular, if X is covered by a finite family of open and Ohio
complete subspaces, then X is also Ohio complete.

The following lemma is well known (see [10, Lemma 3]). For completeness
we include the simple proof. Recall that a family A of subsets of X is called
point-finite if for every x ∈ X, the set {A ∈ A : x ∈ A} is finite.

Lemma 4.3. Let G be a family of Gδ-subsets of a space X. If there is
a point-finite family U = {U(G) : G ∈ G} of open subsets of X such that
G ⊆ U(G) for all G ∈ G, then

⋃
G is also a Gδ-subset of X.

Proof. Fix the point-finite family U = {U(G) : G ∈ G} of open subsets
of X such that G ⊆ U(G) for all G ∈ G. For every G ∈ G, we fix a decreasing
sequence (Gn)n∈ω of open subsets of U(G) (and hence of X) such that G =⋂
n∈ω Gn. We now let Wn =

⋃
{Gn : G ∈ G} and W =

⋂
n∈ωWn. Note that

W is a Gδ-subset of X.
We will prove that

⋃
G = W . Clearly,

⋃
G ⊆W . For the reverse inclusion,

let x ∈ W be arbitrary. By hypothesis, the set F = {G ∈ G : x ∈ U(G)} is
finite. Suppose, aiming at a contradiction, that x 6∈

⋃
F. Since F is finite, we

may find an index n ∈ ω so large that x 6∈ Gn for all G ∈ F. Then x 6∈ Wn,
which is a contradiction, since x ∈W . So it follows that x ∈

⋃
F and hence

x ∈
⋃

G.

We now come to the main result of this section.

Theorem 4.4. Let U be a point-finite open cover of X. If X ⊆ Z and
every element of U is Ohio embedded in Z, then X is Ohio embedded in Z.

Proof. Let U = {Ui : i ∈ I}, and for every i ∈ I, fix an open set Ũi of Z
such that Ui = X ∩ Ũi. We let Y be the subspace of Z given by

Y = {z ∈ Z : {i ∈ I : z ∈ Ũi} is finite}.
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Note that since U is a point-finite cover of X, we have X ⊆ Y . We now prove
that X is Ohio embedded in Z in two steps; first we show that X is Ohio
embedded in Y and then we show that Y is Ohio embedded in Z.

Claim 1. X is Ohio embedded in Y .

Proof. For U ∈ U we have U ⊆ Y ⊆ Z, so it follows from Proposition 2.2
that every element of U is Ohio embedded in Y . So for every i ∈ I, we may
fix a Gδ-subset Si of Y which is good with respect to Ui. Without loss of
generality, we may assume that Si ⊆ Ũi ∩ Y . Let S =

⋃
{Si : i ∈ I}. By

definition of Y , the family {Ũi ∩ Y : i ∈ I} is a point-finite family of open
subsets of Y . So it follows from Lemma 4.3 that S is a Gδ-subset of Y . We
leave it to the reader to verify that S is good with respect to X. J

Claim 2. Y is Ohio embedded in Z.

Proof. We will show that Z is good with respect to Y . So suppose that
z ∈ Z \ Y . By definition, the set {i ∈ I : z ∈ Ũi} is infinite. So we may fix a
countably infinite subset J of I such that z ∈ Ũj for every j ∈ J . But then
T =

⋂
j∈J Ũj is a Gδ-subset of Z which separates z from Y . J

It now follows from Proposition 2.3 that X is Ohio embedded in Z.

Corollary 4.5. Let U be a point-finite open cover of X. If every ele-
ment of U is contained in an Ohio complete subspace of X, then X is itself
Ohio complete.

Proof. Fix an arbitrary compactification γX of X. By Proposition 2.1
and Corollary 2.5, the assumptions imply that every element of U is Ohio
embedded in γX. So it follows from the previous theorem that X is Ohio
embedded in γX. Since γX was an arbitrary compactification of X, this
proves that X is Ohio complete.

So in particular it follows from the previous result that if X is covered by
a locally finite family of open and Ohio complete subspaces, then X is also
Ohio complete. Recall that a space X is (countably) metacompact if every
(countable) open cover of X has a point-finite open refinement. A space X
is (countably) submetacompact if for every (countable) open cover U of X,
there is a countable collection E of closed subsets of X such that for every
E ∈ E, there exists an open cover UE of X refining U and point-finite on E.
Gittings proved in [7] that countable submetacompactness is equivalent to
countable metacompactness.

Corollary 4.6. Let X be a (countable) submetacompact space and U a
(countable) open cover of X. If every element of U is contained in an Ohio
complete subspace of X, then X is itself Ohio complete.
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Proof. We may fix a countable collection E of closed subsets of X and for
every E ∈ E an open cover UE of X refining U and point-finite on E. Now
let γX be an arbitrary compactification of X. By Theorem 3.2 it suffices
to prove that each E ∈ E is Ohio embedded in γX. Fix E ∈ E. It follows
from Propositions 2.1 and 2.3 that for every U ∈ UE , the set U ∩E is Ohio
embedded in γX. Since {U ∩E : U ∈ UE} is a point-finite open cover of E,
it follows from Theorem 4.4 that E is Ohio embedded in γX. This completes
the proof.

With respect to countable open covers, the following corollary is the most
general result of this section. Note that if Question 2.7 has a positive answer,
then the countable case of the previous result follows from the next.

Corollary 4.7. Let X be a countably submetacompact space and let U

be a σ-point-finite open cover of X. If every element of U is Ohio complete,
then X is also Ohio complete.

Proof. Note that X is countably metacompact by [7, Theorem 2.2]. Let
X =

⋃
n∈ω Un, where every Un is the union of a point-finite family of open

and Ohio complete subspaces of X. By Corollary 4.5, every Un is Ohio
complete. Since X is countably metacompact, there exists a point-finite open
refinement V of the cover {Un : n ∈ ω}. Applying Corollary 4.5 for a second
time shows that X is Ohio complete.

Let U be a countable open cover of the space X. It follows from the
previous result that if X is countably submetacompact and every member
of U is Ohio complete, then X is also Ohio complete. Note that among
the countably submetacompact spaces are all countably compact, countably
paracompact and countably subparacompact spaces. In general, there is no
countable open sum theorem for Ohio completeness: in the final section of
this paper we present an example of a non-Ohio complete space which is
covered by countably many open and Ohio complete subspaces.

5. Examples. In this section we provide some simple examples of spaces
that are not Ohio complete. The following simple observation is used in every
example.

Lemma 5.1. Let X be an Ohio complete subspace of Z. If X is not a
Gδ-subset of Z, then Z \X contains a non-empty Gδ-subset of Z.

Proof. Since X is Ohio complete, it follows from Proposition 2.4 that X
is Ohio embedded in Z. So we may fix a Gδ-subset S of Z which is good with
respect to X. Since X is not a Gδ-subset of Z, the set S \X is non-empty.
Since every point of S \X can be separated from X by a Gδ-subset of Z, it
follows that Z \X contains a non-empty Gδ-subset of Z.
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The first simple example shows that a space which is the union of two
Ohio complete subspace, one open and the other closed, need not be Ohio
complete.

Example 5.2. Let Y be an uncountable discrete space and let αY =
Y ∪ {∞} be its one-point compactification. The example is the subspace X
of the product Z = αY × αY where X = (Y × Y ) ∪ {(∞,∞)}. Note that
both Y × Y and {(∞,∞)} are Ohio complete.

If G is a Gδ-subset of Z which contains the point (∞,∞), then G∩(Z\X)
is non-empty, so X is not a Gδ-subset of Z. Similarly, Z \ X contains no
non-empty Gδ-subset of Z, so it follows from Lemma 5.1 that X is not Ohio
complete.

A family A of subsets of a space X is called locally countable provided
that for every x ∈ X, there is a neighbourhood U of x such that the set
{A ∈ A : A ∩ U 6= ∅} is countable. Note that every σ-locally finite family is
locally countable. In view of Corollary 3.3 it is natural to ask whether Ohio
completeness is preserved by taking locally countable closed sums. We now
provide an example to show that this is not the case.

The spaces ω1 and ω1+1 carry the usual order topology. Whenever α <
β ≤ ω1, then (α, β), [α, β] and (α, β] denote the usual intervals in ω1+1.

Example 5.3. Let L be the set of all limit ordinals in ω1. We let Z =
ω1 × (ω1 + 1) and X be the subspace of Z given by

X = (ω1 × ω1) ∪ (L× {ω1}).
To avoid confusion with intervals, we denote elements of Z by 〈α, β〉. We use
Lemma 5.1 to show that X is not Ohio complete. Since every closed subset
of ω1 that misses L is finite, it follows that L is not a Gδ-subset of ω1. But
then X is not a Gδ-subset of Z. To conclude that X is not Ohio complete,
observe that Z \X contains no non-empty Gδ-subset of Z.

It remains to verify that X is the union of a locally countable family of
closed and Ohio complete subspaces of X. Let π be the projection of X onto
the first coordinate. That is, π : X → ω1 is given by π(〈α, β〉) = α. We let
the closed cover A of X be given by

A = {π−1(α) : α ∈ ω1}.
Note that the fibers of π are homeomorphic to ω1+1 or to ω1, which are
both Ohio complete spaces since they are (locally) compact. Furthermore,
since ω1 is locally countable in itself and π is continuous, it follows that A

is locally countable in X.

It follows from Corollary 3.3 that if the family {{x} : x ∈ X} is σ-locally
finite in X, then X × Y is Ohio complete whenever Y is Ohio complete. In
particular, if X is either countable or discrete and Y is Ohio complete, then
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X ×Y is Ohio complete. In the previous example we have made good use of
the fact that the family {{α} : α ∈ ω1} is locally countable but not σ-locally
finite in ω1. This raises the following question:

Question 5.4. Suppose that X is Ohio complete. Is ω1 × X also Ohio
complete?

We shall now provide several examples of first countable spaces that are
not Ohio complete. In the following theorem we use a modification of the well
known Aleksandrov duplicate to obtain examples of first countable non-Ohio
complete spaces.

Theorem 5.5. Suppose X is a dense Lindelöf subspace of Z such that
every Gδ-subset of Z containing X is uncountable. Then there is a non-Ohio
complete space Y which satisfies the following conditions:

(1) If X is first countable, then so is Y .
(2) If X is zero-dimensional , then so is Y .

Proof. The space ω1+2 carries the usual order topology, it is the disjoint
sum of the space ω1+1 and the point ω1+1. The setW is given by Z×(ω1+2)
and Y is given as the following subset of W :

Y = (Z × ω1) ∪ (X × {ω1+1}).

We define a topology on W as follows: basic open neighbourhoods of points
of the form 〈z, α〉, where z ∈ Z and α ∈ ω1+1, are of the form {z} × U
where U is an open subset of ω1+1. Basic open neighbourhoods of points of
the form 〈z, ω1+1〉 are given by

U(z) = (U × (ω1+2)) \ ({z} × (ω1+1)),

where U is an open neighbourhood of z in Z. We leave it to the reader to
verify that these sets may serve as a basis for a Tikhonov topology onW . We
point out that the topology on W may be viewed as a resolution topology
(see [6] and [11] for details on resolutions). The subset Y is given the subspace
topology inherited fromW and it is not hard to verify that (2) holds. For (1),
assume that X is first countable. Since X is dense in Z, it follows that Z is
first countable at every point of X (see for example [9, 2.7]). Now it follows
easily that Y is also first countable.

We shall now show that Y is not Ohio complete. Since {z} × (ω1+1)
is homeomorphic to ω1+1, no point of the set Z × {ω1} can be separated
from Y by a Gδ-subset of W . Using the techniques of Lemma 5.1, non-Ohio
completeness of Y follows from the following observation:

Claim 1. Whenever G is a non-empty Gδ-subset of W containing Y
then G ∩ (Z × {ω1}) 6= ∅.
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Proof. Let G =
⋂
n∈ω Gn be a Gδ-subset containing Y , where each Gn

is an open subset of W . Note that the closed subspace X × {ω1+1} of W
is homeomorphic to X. Since X is Lindelöf, for every n ∈ ω we may find a
countable subset Fn of X and for each x ∈ Fn an open neighbourhood Ux,n
of x in Z such that

X × {ω1+1} ⊆
⋃
{Ux,n(x) : x ∈ Fn} ⊆ Gn.

For n ∈ ω, we let Un =
⋃
{Ux,n : x ∈ Fn} and U =

⋂
n∈ω Un. We also

let F =
⋃
n∈ω Fn. Note that since each Fn is countable, the set F is also

countable. Since U is a Gδ-subset of Z which contains X, we see that U \F
is uncountable, so in particular it is non-empty. Now let z ∈ U \F . It is not
hard to realize that in this case we have

{z} × (ω1+2) ⊆ G,
so that 〈z, ω1〉 ∈ G ∩ (Z × {ω1}), and this proves the claim. J

As indicated before, this proves the theorem.

From this theorem follow many examples of first countable non-Ohio
complete spaces. For instance, the set of rationals Q is a Lindelöf subspace
of the reals. Since Q is not a Gδ-subset of the reals, it follows that every
Gδ-set containing Q is uncountable. Secondly, in the previous theorem we
may also take X = Z = C, where C is the usual Cantor set. Since C is
compact and uncountable, the previous theorem yields a first countable zero-
dimensional non-Ohio complete space Y . It was proved by Dow and Pearl
[4] that in this case Y ω is homogeneous. One verifies easily that since Y is
not Ohio complete, neither is Y ω. So Y ω is an example of a homogeneous
first countable space which is not Ohio complete.

It is well known that every first countable topological group is metriz-
able (see for example [8, Theorem 8.3]). Since every metrizable space is Ohio
complete, it follows that first countable topological groups are Ohio com-
plete. The last example demonstrates that this is not true in general for first
countable homogeneous spaces.

The fact that non-Ohio complete first countable spaces exist yields the
following:

Corollary 5.6. Ohio completeness is not preserved by open mappings.

Proof. Every first countable space is the image of a metrizable space
under an open mapping. This was proved by Ponomarev (see for example
[5, Problem 4.2.D]). We have just provided an example of a first countable
space which is not Ohio complete. Since every metrizable space is Ohio
complete, the statement follows.

Our final example shows that there is no countable open sum theorem
for Ohio completeness. We present an example of a non-Ohio complete, zero-
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dimensional and first countable space which is covered by countably many
open and Ohio complete subspaces.

Example 5.7. The example is a slight modification of [3, Example 2.4].
For each q ∈ Q, let A(q) be a maximal family of one-to-one functions from
the set N of natural numbers into the set P of irrationals, such that

(1) If a ∈ A(q), then |a(n)− q| < 1/n for all n ∈ N.
(2) If a, b ∈ A(q) are different, then a(N) ∩ b(N) is finite.

We fix an uncountable discrete space Y and let αY = Y ∪{∞} be its one-
point compactification. Put A =

⋃
{A(q) : q ∈ Q} and let Z = A∪ (P×αY ).

For a ∈ A and k ∈ N, we let

U(a, k) = {a} ∪
⋃
{a(n)× αY : n ≥ k}.

The collection B, which serves as a base for a topology on Z, is given by

B = {U(a, k) : a ∈ A, k ∈ N}∪{R×U : R ⊆ P, U is an open subset of αY }.

From now on we consider Z with the topology generated by B. It is easily
verified that Z is Hausdorff and locally compact and hence Tikhonov. We let
X be the subspace of Z wich is given by A∪ (P×Y ). We shall show that X
is the union of countably many open and Ohio complete subspaces but that
X itself is not Ohio complete. Note that for p ∈ P, the subspace {p} × αY
of Z is homeomorphic to αY and therefore Z \ X contains no non-empty
Gδ-subset of Z. So by Lemma 5.1, to show that X is not Ohio complete it
suffices to show that X is not a Gδ-subset of Z:

Claim 1. X is not a Gδ-subset of Z.

Proof. If X is a Gδ-subset of Z, then A is a Gδ-subset of the subspace
A ∪ (P× {∞}) of Z. This subspace is just the space Z4 in [3, Example 2.4]
and it is proved there that A is not a Gδ-subset of Z4. It follows that X is
not a Gδ-subset of Z. J

We now show that X is the union of countably many open and Ohio
complete subspaces. For each q ∈ Q, we letXq = A(q)∪(P×Y ). It is not hard
to verify thatXq is an open subspace ofX and of courseX =

⋃
{Xq : q ∈ Q}.

It remains to verify that each Xq is Ohio complete.

Claim 2. For each q ∈ Q, the space Xq is Ohio complete.

Proof. Fix q ∈ Q. Note that both A(q) and P×Y are discrete subspaces
of Xq. Since a discrete space is Ohio complete, we see that Xq is the union of
two Ohio complete subspaces. The space P× Y is clearly an open subspace
of Xq, and as in [3, Example 2.4], the set A(q) is a Gδ-subset of Xq. It follows
from Corollary 4.2 that Xq is Ohio complete. J
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