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ABSOLUTELY CONVERGENT FOURIER SERIES
AND GENERALIZED LIPSCHITZ CLASSES OF FUNCTIONS

BY

FERENC MÓRICZ (Szeged)

Abstract. We investigate the order of magnitude of the modulus of continuity of a
function f with absolutely convergent Fourier series. We give sufficient conditions in terms
of the Fourier coefficients in order that f belong to one of the generalized Lipschitz classes
Lip(α,L) and Lip(α, 1/L), where 0 ≤ α ≤ 1 and L = L(x) is a positive, nondecreasing,
slowly varying function such that L(x) → ∞ as x → ∞. For example, a 2π-periodic
function f is said to belong to the class Lip(α,L) if

|f(x+ h)− f(x)| ≤ ChαL(1/h) for all x ∈ T, h > 0,

where the constant C does not depend on x and h. The above sufficient conditions are
also necessary in the case of a certain subclass of Fourier coefficients. As a corollary, we
deduce that if a function f with Fourier coefficients in this subclass belongs to one of
these generalized Lipschitz classes, then the conjugate function f̃ also belongs to the same
generalized Lipschitz class.

1. Introduction. Let {ck : k ∈ Z} be a sequence of complex numbers
(in symbols, {ck} ⊂ C) such that

(1.1)
∑
k∈Z
|ck| <∞.

Then the trigonometric series

(1.2)
∑
k∈Z

cke
ikx =: f(x)

converges uniformly in x and it is the Fourier series of its sum f .
We recall (see, e.g., [1, p. 6]) that a positive measurable function L

defined on some neighborhood [a,∞) of infinity is said to be slowly varying
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(in Karamata’s sense) if

(1.3)
L(λx)
L(x)

→ 1 as x→∞ for every λ > 0.

The neighborhood [a,∞) is of little importance. One may suppose that L is
defined on (0,∞), for instance, by setting L(x) := L(a) on (0, a). A typical
slowly varying function is

L(x) :=
{

1 for 0 < x < 2,
log x for x ≥ 2,

where the logarithm is to base 2.
In this paper, we consider positive, nondecreasing, slowly varying func-

tions. In this case, it is enough to require (1.3) only for the single value
λ := 2. To be more specific, condition (∗) below will be required in our
theorems and lemmas.

Condition (∗). L is a positive nondecreasing function defined on (0,∞)
and satisfying the limit relations

(1.4) L(x)→∞ and
L(2x)
L(x)

→ 1 as x→∞.

Given α > 0 and a function L satisfying condition (∗), a periodic function
f is said to belong to the generalized Lipschitz class Lip(α,L) if its modulus
of continuity satisfies

(1.5) ω(f ;h) := sup
x∈T
|f(x+ h)− f(x)| ≤ ChαL(1/h) for all h > 0,

where the constant C = C(f) does not depend on h. Given α ≥ 0 and
L with condition (∗), f is said to belong to the generalized Lipschitz class
Lip(α, 1/L) if

(1.6) ω(f ;h) ≤ C hα

L(1/h)
for all h > 0.

Remark 1. Clearly, a function f satisfying (1.5) for some α > 0, or
(1.6) for some α ≥ 0, is continuous. Furthermore, if f ∈ Lip(α,L) for some
α > 1, or if f ∈ Lip(α, 1/L) for some α ≥ 1, then f ≡ constant (cf. [7,
p. 42]).

Remark 2. Various kinds of “generalized” Lipschitz classes of periodic
functions were introduced in [2, 3, 4], where necessary and sufficient condi-
tions were proved in order that the sum of an absolutely convergent sine or
cosine series with nonnegative coefficients belong to a generalized Lipschitz
class of order α for some 0 < α < 1.
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2. New results

Theorem 1. Suppose {ck} ⊂ C satisfies (1.1), f is defined in (1.2), and
L satisfies condition (∗).

(i) If for some 0 < α ≤ 1,

(2.1)
∑
|k|≤n

|kck| = O(n1−αL(n)), n ∈ N,

then f ∈ Lip(α,L).
(ii) Conversely, if {ck} is a sequence of real numbers such that kck ≥ 0

for all k, and if f ∈ Lip(α,L) for some 0 < α ≤ 1, then (2.1) holds.

Remark 3. Due to Lemma 3 in Section 3, in case 0 < α < 1 condition
(2.1) is equivalent to

(2.2)
∑
|k|≥n

|ck| = O(n−αL(n)), n ∈ N.

Remark 4. In a certain sense, Theorem 1 is a generalization of [6, The-
orems 1 and 2] by Németh. Furthermore, in case L ≡ 1, Theorem 1 was
proved in [5, Theorem 1].

The next theorem is a natural counterpart of Theorem 1.

Theorem 2. Suppose {ck} ⊂ C satisfies (1.1), f is defined in (1.2), and
L satisfies condition (∗).

(i) If for some 0 ≤ α < 1,

(2.3)
∑
|k|≥n

|ck| = O

(
n−α

L(n)

)
, n ∈ N,

then f ∈ Lip(α, 1/L).
(ii) Conversely , if {ck} is a sequence of nonnegative real numbers and if

f ∈ Lip(α, 1/L) for some 0 ≤ α < 1, then (2.3) holds.

Remark 5. Due to Lemma 4 in Section 3, in case 0 < α < 1 condition
(2.3) is equivalent to

(2.4)
∑
|k|≤n

|kck| = O

(
n1−α

L(n)

)
, n ∈ N.

Remark 6. In case α = 0, Theorem 2 may be considered as a general-
ization of [6, Theorem 5] by Németh.

3. Auxiliary results. To prove Theorems 1 and 2, we will need six
lemmas, which may be useful in other investigations.
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Lemma 1. Suppose L satisfies condition (∗). If η < −1, then

(3.1)
∞∑
k=n

kηL(k) = O(nη+1L(n)), n ∈ N.

Proof. Clearly, it is enough to prove (3.1) in the special case n := 2m,
m ∈ N. We fix a constant C such that

(3.2) 1 < C < 2−η−1,

which is possible since −η − 1 > 0. It follows from (1.4) that there exists
m0 ∈ N such that

(3.3) L(2m+1) ≤ CL(2m) for m ≥ m0.

By forming dyadic sums, an elementary estimation gives

∞∑
k=2m

kηL(k) =
∞∑
l=m

2l+1−1∑
k=2l

kηL(k) ≤
∞∑
l=m

2l(η+1)L(2l+1)(3.4)

≤ L(2m)
∞∑
l=m

2l(η+1)C l−m+1

= C2m(η+1)L(2m)[1 + 2η+1C + 22(η+1)C2 + · · · ].

Due to (3.2), the geometric series in brackets is convergent. Consequently,
(3.4) results in

∞∑
k=2m

kηL(k) = O(2m(η+1)L(2m)),

whence (making use of (1.4) again) (3.1) follows.

Lemma 2. Suppose L satisfies condition (∗). If η > −1, then

(3.5)
n∑
k=1

kη

L(k)
= O

(
nη+1

L(n)

)
, n ∈ N.

Proof. Clearly, it is enough to prove (3.5) in the special case n := 2m.
This time we fix another constant C for which

(3.6) 1 < C < 2η+1,

which is possible since η+1 > 0. By (1.4), there exists another m0 ∈ N such
that (3.3) holds. Let m > m0; then we may write

(3.7)
2m∑
k=1

kη

L(k)
=
{2m0∑
k=1

+
2m∑

k=2m0+1

} kη

L(k)
=: Am0 +Bm,
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say. We form dyadic sums again, and making use of (3.3) gives

Bm =
m∑

l=m0+1

2l∑
k=2l−1+1

kη

L(k)
≤

m∑
l=m0+1

2l(η+1)−1

L(2l−1)
(3.8)

≤ 2m(η+1)−1

L(2m)
C

[
1 +

C

2η+1
+

C2

22(η+1)
+ · · ·

]
,

provided that η ≥ 0. Due to (3.6), the geometric series in brackets is con-
vergent. Consequently, (3.8) results in

(3.9) Bm = O

(
2m(η+1)

L(2m)

)
, m ∈ N,

provided that η ≥ 0.
In the remaining case when −1 < η < 0, we make use of the inequality

(analogous to one in (3.8))

Bm ≤
m∑

l=m0+1

2(l−1)(η+1)

L(2l−1)
,

where Bm is defined in (3.7). Then an estimation similar to the one which
led to (3.8) gives (3.9) in the case −1 < η < 0 as well.

Taking into account that the ratio in parentheses on the right-hand side
of (3.9) tends to ∞ as m → ∞ (since η + 1 > 0), by (3.7) and (3.9) we
conclude that

2m∑
k=1

kη

L(k)
= O

(
2m(η+1)

L(2m)

)
, m ∈ N.

Making use of (1.4) again, we deduce (3.5).

Lemma 3. Suppose {ak : k ∈ N} is a sequence of nonnegative real num-
bers (in symbols, {ak} ⊂ R+) with

∑
ak < ∞, and L satisfies condition

(∗).
(i) If for some δ > γ ≥ 0,

(3.10)
n∑
k=1

kδak = O(nγL(n)),

then

(3.11)
∞∑
k=n

ak = O(nγ−δL(n)), n ∈ N.

(ii) Conversely , if (3.11) holds for some δ ≥ γ > 0, then (3.10) also holds.
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Remark 7. Clearly, in case δ > γ > 0 conditions (3.10) and (3.11) are
equivalent, while in case δ = γ ≥ 0 both are trivially satisfied, due to the
assumption

∑
ak <∞.

Proof of Lemma 3. (i) Suppose (3.10) is satisfied for some δ > γ ≥ 0.
Then there exists a constant C such that

sn :=
n∑
k=1

kδak ≤ CnγL(n), n ∈ N.

A summation by parts gives

rn :=
∞∑
k=n

ak =
∞∑
k=n

sk − sk−1

kδ
(3.12)

= − sn−1

nδ
+
∞∑
k=n

(
1
kδ
− 1

(k + 1)δ

)
sk

≤
∞∑
k=n

δ

kδ+1
CkγL(k) = δC

∞∑
k=n

kγ−δ−1L(k), n ∈ N, s0 := 0.

Applying Lemma 1 (with η := γ − δ − 1) yields (3.11).
It is worth observing that the assumption

∑
ak <∞ follows from (3.10)

holding for some δ > γ ≥ 0. Indeed, this can be immediately seen if in (3.12)
the summation by parts is performed for the finite sum

∑N
k=n ak in place of∑∞

k=n ak and then we let N →∞.
(ii) Conversely, if (3.11) is satisfied for some δ ≥ γ > 0, then there exists

another constant C such that

rn ≤ Cnγ−δL(n), n ∈ N.
Again, a summation by parts gives

sn :=
n∑
k=1

kδak =
n∑
k=1

kδ(rk − rk+1)(3.13)

=
n∑
k=1

(kδ − (k − 1)δ)rk − nδrn+1

≤ r1 + max{1, 21−δ}
n∑
k=2

δδ−1
k rk

≤ r1 + max{1, 21−δ}
n∑
k=2

δkδ−1Ckγ−δL(k)

≤ r1 + max{1, 21−δ}δCL(n)
n∑
k=2

kγ−1 = O(nγL(n)),

which is (3.10).
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Lemma 4. Suppose {ak} ⊂ R+ with
∑
ak <∞, and L satisfies condition

(∗).
(i) If for some δ > γ > 0,

(3.14)
n∑
k=1

kδak = O

(
nγ

L(n)

)
,

then

(3.15)
∞∑
k=n

ak = O

(
nγ−δ

L(n)

)
, n ∈ N.

(ii) Conversely , if (3.15) holds for some δ ≥ γ > 0, then (3.14) also holds.

Remark 8. Clearly, in case δ > γ > 0 conditions (3.14) and (3.15) are
equivalent.

Proof of Lemma 4. (i) Suppose (3.14) is satisfied for some δ > γ > 0.
Then there exists a constant C such that

sn :=
n∑
k=1

kδak ≤ C
nγ

L(n)
, n ∈ N.

Similarly to (3.12), we conclude that

rn :=
∞∑
k=n

ak ≤ δC
∞∑
k=n

kγ−δ−1

L(k)
≤ δC

L(n)

∞∑
k=n

kγ−δ−1 = O

(
nγ−δ

L(n)

)
,

which is (3.15).
It is worth observing again that

∑
ak < ∞ follows from (3.14) holding

for some δ > γ > 0.
(ii) Conversely, if (3.15) is satisfied for some δ ≥ γ > 0, then there exists

another constant C such that

rn ≤ C
nγ−δ

L(n)
, n ∈ N.

Similarly to (3.13), we find that

sn ≤ r1 + max{1, 21−δ}δC
n∑
k=2

kγ−1

L(k)
.

Applying Lemma 2 (with η := γ − 1) yields (3.14).

The last two lemmas may be considered as nondiscrete versions of Lem-
mas 1 and 2.
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Lemma 5. If L satisfies condition (∗) and η > −1, then

(3.16)
h�

0

xηL(1/x) dx = O(hη+1L(1/h)), 0 < h < 1.

Proof. Clearly, it is enough to prove (3.16) in the special case h := 2−m,
where m ∈ N. We fix a constant C for which (3.6) is satisfied. By (1.4),
there exists m0 ∈ N such that (3.3) holds.

Let m > m0. In case η ≥ 0, we estimate as follows:

2−m�

0

xηL(1/x) dx =
∞∑
k=m

2−k�

2−k−1

xηL(1/x) dx ≤
∞∑
k=m

2−k(η+1)−1L(2k+1)(3.17)

≤ 2−m(η+1)−1L(2m)
[
1 +

C

2η+1
+

C2

22(η+1)
+ · · ·

]
.

Due to (3.6), the geometric series in brackets is convergent. Thus, from
(3.17) it follows that

(3.18)
2−m�

0

xηL(1/x) dx = O(2−m(η+1)L(2m)), m ∈ N.

In case −1 < η < 0 an analogous estimation gives
2−m�

0

xηL(1/x) dx ≤
∞∑
k=m

2−(k−1)(η+1)L(2k+1),

which also results in the same estimate (3.18), as η + 1 is still positive.
By (1.4) again, (3.16) is a simple consequence of (3.18).

Lemma 6. If L satisfies condition (∗) and η > −1, then

(3.19)
h�

0

xη

L(1/x)
dx = O

(
hη+1

L(1/h)

)
, 0 < h < 1.

Proof. Clearly, it is enough to prove (3.19) in the special case h := 2−m,
m ∈ N. It is easy to check that

2−m�

0

xη

L(1/x)
dx =

∞∑
k=m

2−k�

2−k−1

xη

L(1/x)
dx ≤

∞∑
k=m

2−k(η+1)−1

L(2k)
(3.20)

≤ 1
2L(2m)

∞∑
k=m

2−k(η+1) = O

(
2−m(η+1)

L(2m)

)
, m ∈ N,

provided that η ≥ 0 (the case −1 < η < 0 can be treated analogously). In
view of (1.4), (3.19) is a simple consequence of (3.20).
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4. Proofs of Theorems 1 and 2

Proof of Theorem 1. (i) Suppose (2.1) is satisfied for some 0 < α ≤ 1.
By (1.1) and (1.2), we may write

|f(x+ h)− f(x)| =
∣∣∣∑
k∈Z

cke
ikx(eikh − 1)

∣∣∣(4.1)

≤
{∑
|k|≤n

+
∑
|k|>n

}
|ck| |eikh − 1| =: Sn +Rn,

say, where

(4.2) n := [1/h], h > 0,

and [·] means the integer part.
We will use the inequality

(4.3) |eikh − 1| =
∣∣∣∣2 sin

kh

2

∣∣∣∣ ≤ min{2, |kh|}, k ∈ Z.

By (2.1) and (4.2), we obtain

(4.4) |Sn| ≤ h
∑
|k|≤n

|kck| = hO(n1−αL(n)) = O(hαL(1/h)).

On the other hand, by (4.2) and Lemma 3 (applied with γ := 1 − α and
δ := 1 in the case of (2.1)) we find that

(4.5) |Rn| ≤ 2
∑
|k|>n

|ck| = 2O(n−αL(n)) = O(hαL(1/h)).

Combining (4.1), (4.4) and (4.5) yields f ∈ Lip(α,L).
(ii) Conversely, suppose that kck ≥ 0 for all k and f ∈ Lip(α,L) for some

0 < α ≤ 1. Then there exists a constant C such that

(4.6) |f(x)− f(0) =
∣∣∣∑
k∈Z

ck(eikx − 1)
∣∣∣ ≤ CxαL(1/x), x > 0.

Taking the imaginary part of the above series, we have∣∣∣∑
k∈Z

ck sin kx
∣∣∣ ≤ CxαL(1/x), x > 0.

By uniform convergence, due to (1.1), the series
∑
ck sin kx may be in-

tegrated term by term on any interval (0, h). By Lemma 5, we obtain∣∣∣∣∑
|k|≥1

ck
k

2 sin2 kh

2

∣∣∣∣ =
∣∣∣∣∑
|k|≥1

ck
1− cos kh

k

∣∣∣∣(4.7)

= O(hα+1L(1/h)), h > 0.
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Making use of the well-known inequality

sin t ≥ 2
π
t for 0 ≤ t ≤ π

2
,

and the fact that kck ≥ 0 for all k, we conclude that

(4.8) 2
∑
|k|≤n

kck
h2

π2
≤ 2

∑
|k|≥1

ck
k

sin2 kh

2
= O(hα+1L(1/h)), h > 0,

where n is defined in (4.2). Now, from (1.4) and (4.8) it follows that∑
|k|≤n

kck = O(hα−1L(1/h)) = O(n1−αL(n)),

which is (2.1).

Proof of Theorem 2. (i) Suppose (2.2) is satisfied for some 0 ≤ α < 1.
We start with (4.1), where n is defined in (4.2). Making use of the first
inequality in (4.4) and applying Lemma 4 (with γ := 1 − α and δ := 1 in
the case of (2.3)) yields

(4.9) |Sn| ≤ h
∑
|k|≤n

|kck| = hO

(
n1−α

L(n)

)
= O

(
hα

L(1/h)

)
.

On the other hand, it follows from (2.3) and (4.2) that

(4.10) |Rn| ≤ 2
∑
|k|>n

|ck| = O

(
n−α

L(n)

)
= O

(
hα

L(1/h)

)
.

Combining (4.1), (4.9) and (4.10) yields f ∈ Lip(α, 1/L).
(ii) Conversely, suppose that ck ≥ 0 for all k and f ∈ Lip(α, 1/L) for

some 0 ≤ α < 1. Similarly to (4.6), this time we have

(4.11) |f(x)− f(0)| =
∣∣∣∑
k∈Z

ck(eikx − 1)
∣∣∣ = O

(
xα

L(1/x)

)
, x > 0.

Taking the real part of the above series, we have∑
k∈Z

ck(1− cos kx) =
∣∣∣∑
k∈Z

ck(cos kx− 1)
∣∣∣ = O

(
xα

L(1/x)

)
,

where we took into account that ck ≥ 0 for all k. By uniform convergence,
due to (1.1), the series

∑
ck(1− cos kx) may be integrated term by term on

any interval (0, h). Applying Lemma 6 gives∑
|k|≥1

ck

(
h− sin kh

k

)
≤ Chα+1

L(1/h)
, h > 0,
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where C is a constant. Substituting h := 1/n, we have∑
|k|≥2n

ck

(
1
n
− sin(k/n)

k

)
≤ Cn−α−1

L(n)
, n ∈ N.

Since

(4.12)
1
n
− sin(k/n)

k
≥ 1

2n
for all |k| ≥ 2n,

it follows that
1

2n

∑
|k|≥2n

ck ≤
Cn−α−1

L(n)
, n ∈ N.

Due to (1.4), this inequality is equivalent to (2.3).

5. Concluding remarks. We make the following supplements to parts
(ii) of our Theorems 1 and 2.

Theorem 3. Suppose {ck} is a sequence of nonnegative real numbers
satisfying (1.1), and f is defined in (1.2). If f ∈ Lip(α,L) for some 0 < α < 1
and L satisfying condition (∗), then (2.1) holds.

Theorem 4. Suppose {ck} is a sequence of real numbers satisfying (1.1)
and such that kck ≥ 0 for all k, and f is defined in (1.2). If f ∈ Lip(α, 1/L)
for some 0 < α < 1 and L satisfying condition (∗), then (2.3) holds.

Before proving Theorems 3 and 4, we recall that the series

(5.1)
∑
k∈Z

(−i sign k)ckeikx

is said to be the conjugate series of the trigonometric series in (1.2). It is
well known (see, e.g., [7, Ch. 7, §§1–2]) that if f ∈ L1(T), then the conjugate
function f̃ defined by

f̃(x) := lim
h→0+

− 1
π

π�

h

f(x+ t)− f(x− t)
2 tan 1

2 t
dt

exists at almost every x ∈ T. Furthermore, if (1.2) is the Fourier series of
f ∈ L1(T) and if f̃ ∈ L1(T), then (5.1) is the Fourier series of f̃ .

After these preliminaries, the following corollary can be immediately
deduced from the combination of Theorems 1 and 3, or Theorems 2 and 4,
respectively.

Corollary. Suppose {ck} is a sequence of real numbers satisfying (1.1)
and one of the following conditions:

ck ≥ 0 for all k ∈ Z,
or
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kck ≥ 0 for all k ∈ Z,
and let f be defined in (1.2). If f ∈ Lip(α,L) or f ∈ Lip(α, 1/L) for some
0 < α < 1 and L satisfying condition (∗), then f̃ ∈ Lip(α,L) or f̃ ∈
Lip(α, 1/L), respectively , for the same α and L.

Now we turn to the proofs of Theorems 3 and 4.

Proof of Theorem 3. We begin with inequality (4.6) in the proof of The-
orem 1, with h in place of x. This time we take the real part of the relevant
series to obtain∑

k∈Z
ck(1− cos kh) =

∣∣∣∑
k∈Z

ck(cos kh− 1)
∣∣∣ ≤ ChαL(1/h), h > 0,

where C is a constant and we used the assumption that ck ≥ 0 for all k.
Analogously to (4.8), we conclude that

2
∑
|k|≤n

ck
k2h2

π2
≤ 2

∑
k∈Z

ck sin2 kh

2
≤ ChαL(1/h),

where n is defined in (4.2). Hence

(5.2)
∑
|k|≤n

k2ck ≤
Cπ2

2
hα−2L(1/h) = O(n2−αL(n)).

Applying part (i) of Lemma 3 (with δ = 2 and γ = 1) shows that (5.2)
is equivalent to (2.2). Then part (ii) of Lemma 3 (with δ = 1 and γ = 1−α)
implies that (2.2) is equivalent to (2.1), provided that 0 < α < 1 (because
γ = 1− α must be positive).

Proof of Theorem 4. We begin with inequality (4.11) in the proof of
Theorem 2. This time we take the imaginary part of the relevant series to
obtain ∣∣∣∑

k∈Z
ck sin kx

∣∣∣ = O

(
xα

L(1/x)

)
, x > 0.

By uniform convergence, due to (1.1), the series
∑
ck sin kx may be inte-

grated term by term on any interval (0, y). Applying Lemma 6 yields

(5.3)
∑
|k|≥1

ck
k

(1− cos ky) = O

(
yα+1

L(1/y)

)
, y > 0,

where we have taken into account that kck ≥ 0 for all k.
Again we may integrate the series in (5.3) term by term on any interval

(0, h). Applying Lemma 6 one more time, we find that∑
|k|≥1

ck
k

(
h− sin kh

k

)
≤ C hα+2

L(1/h)
, h > 0,
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where C is a constant. Substituting h := 1/n, we have∑
|k|≥2n

ck
k

(
1
n
− sin(k/n)

k

)
≤ C n−α−2

L(n)
, n ∈ N.

In view of inequality (4.12), it follows that

1
2n

∑
|k|≥2n

ck
k
≤ C n−α−2

L(n)
.

Due to (1.4), this is equivalent to

(5.4)
∑
|k|≥n

ck
k

= O

(
n−α−1

L(n)

)
, n ∈ N.

Applying part (ii) of Lemma 4 (with δ = 2 and γ = α + 1) shows that
(5.4) is equivalent to (2.4). Then part (i) of Lemma 4 (with δ = 1 and
γ = 1−α) implies that (2.4) is equivalent to (2.3), provided that 0 < α < 1
(since γ = 1− α must be less than δ = 1).
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