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GENERAL SHEAVES OVER WEIGHTED PROJECTIVE LINES

BY

WILLIAM CRAWLEY-BOEVEY (Leeds)

Abstract. We develop a theory of general sheaves over weighted projective lines. We
define and study a canonical decomposition, analogous to Kac’s canonical decomposition
for representations of quivers, study subsheaves of a general sheaf, general ranks of mor-
phisms, and prove analogues of Schofield’s results on general representations of quivers.
Using these, we give a recursive algorithm for computing properties of general sheaves.
Many of our results are proved in a more abstract setting, involving a hereditary abelian
category.

1. Introduction. In his work on representations of quivers, Kac [13–
15] studied properties of the general representation of a given dimension
vector, for example he showed that any dimension vector α has a canonical
decomposition, say α = β + γ + · · · , such that the general representation of
dimension α is a direct sum of representations of dimensions β, γ, . . . , each
with trivial endomorphism algebra. The theory of general representations
was further developed by Schofield [19], who found a recursive algorithm for
computing the canonical decomposition, as well as the dimensions of Hom
and Ext spaces between general representations, and possible dimension
vectors of subrepresentations of a general representation. Later, Derksen
and Weyman [9] and Schofield [20] found efficient algorithms for computing
the canonical decomposition.

The theory of general representations of quivers, and invariant theory
for representations of quivers, have been useful in a number of areas, for
example in Horn’s problem on eigenvalues of a sum of Hermitian matrices
[8], in the theory of preprojective algebras [5], and in the study of vector
bundles on the projective plane [21]. Therefore it would be nice to generalize
this theory to quivers with relations, or equivalently to the module varieties
moddA classifying the A-module structures on a d-dimensional vector space,
for an arbitrary finitely generated algebra A. Some progress is made in [7],
but the theory is far from complete.
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In this paper we instead study another hereditary situation, the category
of coherent sheaves on a weighted projective line in the sense of Geigle and
Lenzing [10]. This is an abelian category which contains the category of
vector bundles on P1 equipped with a quasi-parabolic structure of a certain
type. We show that most of the theory can be developed along similar lines
in this setting. We implicitly use the ideas of [19] throughout.

Throughout, K is an algebraically closed field. In the first part of the
paper we work with a K-category C which has the following three properties:

(H) C is a hereditary abelian K-category with finite-dimensional Hom
and Ext spaces.

(T) For every object X in C there is a tilting object T such that X ∈
Fac(T ).

(R) For any objects X and Y the set Hom(X,Y ) is partitioned into
finitely many locally closed subsets according to the rank of the
morphism. The sets of monomorphisms and epimorphisms are open.

Here C being hereditary means that Extn(X,Y ) = 0 for n ≥ 2. Given an
object T , one defines Fac(T ) to be the set of objects which are quotients
of a finite direct sum of copies of T , and T is a tilting object if Fac(T ) =
{X | Ext1(T,X) = 0}. We consider Hom(X,Y ) as affine space with the
Zariski topology. We call the class of an object X in the Grothendieck group
K0(C) its dimension type, and denote it [X]. The rank of a morphism is the
dimension type of its image.

Condition (H) ensures that the Euler form

(1) 〈X,Y 〉 = dim Hom(X,Y )− dim Ext1(X,Y )

depends only on the dimension types of X and Y , so it induces a bilinear
form on K0(C). We define

K0(C)+ = {α ∈ K0(C) | α = [X] for some object X}.
Condition (T) implies that if [X] = 0 then X = 0, since X ∈ Fac(T ) for
some tilting object T , but then dim Hom(T,X) = 〈T,X〉 = 〈[T ], 0〉 = 0. It
follows that K0(C)+ is the positive cone for a partial ordering on K0(C).

In Section 2 we introduce varieties Fac(T, α) parametrizing the objects
in Fac(T ) of dimension type α ∈ K0(C)+, where T is a tilting object. These
varieties depend on certain choices, and we study the effect of changing the
choices, or changing the tilting object, in Section 3.

We remark that, instead of using an infinite number of varieties to
parametrize the objects in C of dimension type α, we should perhaps have
used the language of stacks.

Another remark: our varieties Fac(T, α) are essentially Quot schemes,
except that we avoid quotienting out by a certain group action. When T is
a tilting object, however, these Quot schemes are particularly well behaved.
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In Section 4 we define what it means for the general object of dimension
type α to have a given property P . Following Kac [13, §2.8(a)], we show that
any α ∈ K0(C)+ has a canonical decomposition α = β1 + · · ·+βm, unique up
to reordering, such that the general object of dimension type α is a direct
sum of indecomposable objects of dimension types β1, . . . , βm. We say that
α ∈ K0(C)+ is generally indecomposable if this canonical decomposition is
trivial, that is, if the general object of dimension type α is indecomposable,
and we prove the following analogue of Kac’s result.

Theorem 1.1. The canonical decomposition α = β1+· · ·+βm is charac-
terized by the fact that the βi are generally indecomposable and ext(βi, βj)=0
for i 6= j.

Here hom(β, γ) and ext(β, γ) are the minimal dimensions of Hom(X,Y )
and Ext1(X,Y ) with X of dimension β and Y of dimension γ, or equivalently
the general dimensions.

Given α, γ ∈ K0(C)+ one defines γ ↪→ α to mean that the general object
of dimension type α has a subobject of dimension type γ. In Sections 5 and 6
we prove the analogues of Schofield’s results on subobjects of a general object
and general ranks of morphisms.

Theorem 1.2. Let α = β+ γ with β, γ ∈ K0(C)+. If ext(γ, β) = 0, then
γ ↪→ α. If the field K has characteristic 0, then the converse is also true.

Theorem 1.3. Given α, β ∈ K0(C)+, we have

ext(α, β) = min{−〈α− η, β − η〉 | α− η ↪→ α, η ↪→ β}
= min{−〈δ, β − η〉 | δ ↪→ α, η ↪→ β}.

Corollary 1.4. If the base field K has characteristic 0 and α ∈ K0(C)+,
then the following are equivalent :

(1) α is generally indecomposable.
(2) The general object of dimension type α has one-dimensional endo-

morphism algebra.
(3) There is no nontrivial expression α = β+γ with β ↪→ α and γ ↪→ α.
(4) 〈β, α〉 − 〈α, β〉 > 0 for all β ↪→ α with β 6= 0, α.

The equivalence of (1) and (2) was proved by Kac for representations of
quivers using completely different ideas. It is not clear how those ideas can
be adapted to this situation.

We now turn to weighted projective lines. The category of coherent
sheaves on a weighted projective line is well known to have properties (H)
and (T), and in Section 7 we show it has property (R). Therefore, the results
above apply in this case.

Schofield’s results easily give a recursive algorithm for computing
ext(α, β) for representations of quivers. Our analogous results, Theorems 1.2
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and 1.3, do not give an algorithm for weighted projective lines so easily, but
in Section 8, by exploiting the decomposition of a general sheaf into the
direct sum of a vector bundle and a torsion sheaf, we are able to give an
algorithm.

Theorem 1.5. For a weighted projective line, if the base field K has
characteristic 0, then there is a recursive algorithm for computing ext(α, β),
and hence also hom(α, β), γ ↪→ α, and the canonical decomposition.

Remark 1.6. Recall that quasi-tilted algebras [11] may be characterized
as the finite-dimensional algebras of global dimension at most 2 such that
any indecomposable module has projective dimension or injective dimen-
sion at most 1. Equivalently, they are the endomorphism algebras of tilting
objects in K-categories C with property (H).

Tilted algebras are the special case when C is the category of repre-
sentations of a quiver. In [7, §12.7] it is shown how the theory of general
representations of quivers solves the problem of classifying the irreducible
components of module varieties for tilted algebras A.

In the same way, our theory of general sheaves for weighted projective
lines should solve the problem of classifying the irreducible components of
module varieties for quasi-tilted algebras of the form A = End(T ), with T
a tilting sheaf for a weighted projective line.

Remark 1.7. The theory of general representations of quivers is inti-
mately related to Schubert calculus. Exploiting the fact that Schubert cal-
culus has been developed in a characteristic-free way, this was used in [4]
to extend Schofield’s results to fields of positive characteristic. It would be
interesting to explore the relationship between the theory developed in this
paper and quantum Schubert calculus [3]. See also [2].

2. A variety parametrizing objects. In Sections 2–6 we work with
a K-category C with properties (H), (T) and (R). Let T be a tilting object
in C. If T ′′ ∈ add(T ), that is, T ′′ is isomorphic to a direct summand of a
finite direct sum of copies of T , then by a standard argument from tilting
theory, the map Hom(T, T ′′) → Hom(T,X) induced by an epimorphism
f : T ′′ → X is onto if and only if Ker f ∈ add(T ). In particular, for any
X ∈ Fac(T ), taking f to be the universal morphism from a direct sum of
copies of T to X, one sees that X belongs to an exact sequence

0→ T ′ → T ′′ → X → 0

with T ′, T ′′ ∈ add(T ). If Y is any object, then the universal extension

0→ Y → E → T⊕n → 0

has the property that Ext1(T,E) = 0, so that E ∈ Fac(T ). These exact
sequences show that the dimension types of the nonisomorphic indecom-
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posable summands Ti of T generate K0(C), and they are free generators
since the argument of [12, Lemma 4.1, Corollary 4.2] shows that the matrix
〈Ti, Tj〉 is nonsingular. Thus also the Euler form is nondegenerate.

Lemma 2.1. For any α ∈ K0(C) there are objects T ′α, T
′′
α ∈ add(T ) with

α = [T ′′α ]− [T ′α]

and such that any object X in Fac(T ) of dimension type α belongs to an
exact sequence

0→ T ′α → T ′′α → X → 0.

Proof. If there is no such X, the existence of T ′α, T
′′
α follows since the

dimension types of the indecomposable summands are a basis for K0(C).
Let m = 〈T, α〉. We have m ≥ 0, because if X ∈ Fac(T ), then m =

dim Hom(T,X). Take T ′′α = T⊕m. If X ∈ Fac(T ), then the universal map
T⊕m → X is an epimorphism. Its kernel is in add(T ), and has dimension
type m[T ] − α. This determines the kernel up to isomorphism. We take it
as T ′α.

Note that T ′α and T ′′α are not uniquely determined in the lemma. For
example they can be replaced by T ′α ⊕ S and T ′′α ⊕ S for any S ∈ add(T ).

Definition 2.2. Given T and α ∈ K0(C), we fix objects T ′α, T
′′
α sat-

isfying the conditions in the lemma. We define Fac(T, α) to be the set of
monomorphisms T ′′α → T ′α. It is an open subset of Hom(T ′′α , T

′
α), so a vari-

ety. We define
G(T, α) = Aut(T ′α)×Aut(T ′′α).

It is an algebraic group, and it acts on Fac(T, α) via

(f, g) · θ = gθf−1, (f, g) ∈ Aut(T ′α)×Aut(T ′′α).

Later we repeatedly use the fact that Fac(T, α) is an irreducible variety
(if it is nonempty), and for tangent space arguments we use the fact that it
is smooth.

If θ ∈ Fac(T, α) then there is an exact sequence

0→ T ′α
θ−→ T ′′α

pθ−→ Coker θ → 0,

so Coker θ has dimension type α. By hypothesis any object in Fac(T ) of
dimension type α is isomorphic to Coker θ for some θ ∈ Fac(T, α).

For ease of notation we write Fac(T, α) × Fac(T, β) as Fac(T, α, β). Let
C(T, α, β) be the variety of tuples

((θ, φ), f, g) ∈ Fac(T, α, β)×Hom(T ′α, T
′
β)×Hom(T ′′α , T

′′
β )
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with gθ = φf , so forming a commutative square

T ′α
θ−−−−→ T ′′α

f

y g

y
T ′β

φ−−−−→ T ′′β

For any such commutative square there is a unique h giving a morphism of
exact sequences

(2)

0 −−−−→ T ′α
θ−−−−→ T ′′α

pθ−−−−→ Coker θ −−−−→ 0

f

y g

y h

y
0 −−−−→ T ′β

φ−−−−→ T ′′β
pφ−−−−→ Cokerφ −−−−→ 0

Conversely, given θ and φ, any morphism h arises in this way for some f, g.
More precisely, letting

π : C(T, α, β)→ Fac(T, α, β)

be the projection, the following is straightforward.

Lemma 2.3. If (θ, φ) ∈ Fac(T, α, β) then there is an exact sequence of
vector spaces

(3) 0→ Hom(T ′′α , T
′
β)→ π−1(θ, φ) κ−→ Hom(Coker θ,Cokerφ)→ 0,

where κ((θ, φ), f, g) is the unique h in (2).

Lemma 2.4. The function (θ, φ) 7→ dim Hom(Coker θ,Cokerφ) is upper
semicontinuous on Fac(T, α, β)

Proof. Let s : Fac(T, α, β) → C(T, α, β) be the zero section sending
(θ, φ) to ((θ, φ), 0, 0). Since the fibres of π are vector spaces, they inter-
sect the image of the zero section. The result thus follows from the upper
semicontinuity theorem applied to π (see [17, §I.8, Corollary 3]).

Similarly, for any fixed object X, the functions θ 7→ dim Hom(X,Coker θ)
and θ 7→ dim Hom(Coker θ,X) are upper semicontinuous on Fac(T, θ). Also,
thanks to the Euler form, the analogous functions with dim Hom replaced
by dim Ext1 are upper semicontinuous.

Lemma 2.5. There is a one-to-one correspondence between the orbits of
G(T, α) on Fac(T, α) and the isomorphism classes of objects in Fac(T ) of
dimension type α.

Proof. We need to show that if θ, φ ∈ Fac(T, α) and there is an isomor-
phism h : Coker θ → Cokerφ, then θ and φ are in the same orbit under
G(T, α).
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One can decompose T ′′α = X0 ⊕ X1 so that pθ|X0 is right minimal and
pθ|X1 = 0, and T ′′α = Y0 ⊕ Y1 so that pφ|Y0 is right minimal and pφ|Y1 = 0
(see for example [1]). By Lemma 2.3, h lifts to an endomorphism of T ′′α ,
and if a is the component X0 → Y0 then pφ|Y0a = hpθ|X0 . Similarly, h−1

lifts to an endomorphism of T ′′α , and if b is the component Y0 → X0 then
pθ|X0b = h−1pφ|Y0 . Thus by minimality ab and ba are automorphisms, so
a and b are isomorphisms. Now by the Krull–Remak–Schmidt theorem,
X1
∼= Y1, and taking the morphism X0 ⊕X1 → Y0 ⊕ Y1 with components a

and an arbitrary isomorphism X1 → Y1, we obtain an automorphism g of
T ′′α with pφg = hpθ. There is now a unique morphism f , necessarily an au-
tomorphism, completing the diagram (2). The group element (f, g) acting
on θ ∈ Fac(T, α) then gives φ.

Later we will need the following.

Lemma 2.6. If ((θ, φ), f, g) ∈ C(T, α, β), and h is as in (2), then there
are exact sequences

(4) 0→ Ker(hpθ)→ T ′′α ⊕ T ′β
( g φ )−−−→ T ′′β → Cokerh→ 0

and

(5) 0→ T ′α → Ker(hpθ)→ Kerh→ 0.

Proof. Straightforward.

Lemma 2.7. Given a tilting object T in C and α, β ∈ K0(C), there are
only finitely many possible ranks of morphisms from an object of dimension α
in Fac(T ) to one of dimension β in Fac(T ).

Proof. By (4), the rank of h is determined by that of (g φ), and by
condition (R) there are only finitely many possibilities for this.

3. Changing the tilting object or the presentation. Suppose S
and T are tilting objects with Fac(S) ⊆ Fac(T ), or equivalently S ∈ Fac(T ),
i.e. Ext1(T, S) = 0. Given α, one can consider Fac(S, α) and Fac(T, α), say
given by objects S′, S′′ and T ′, T ′′. (We drop the subscript α in this section,
to simplify notation.) In this section we relate the variety Fac(S, α) and

Fac(T, α)S = {θ ∈ Fac(T, α) | Coker θ ∈ Fac(S)}.

As a special case this includes the possibility that S = T , but we choose
different objects of add(T ) in the definition of Fac(T, α).

Since Coker θ ∈ Fac(S) if and only if Ext1(S,Coker θ) = 0, upper semi-
continuity of dim Ext1(S,Coker θ) implies that Fac(T, α)S is an open subset
of Fac(T, α).
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Let E be the variety of commutative squares

T ′
θ−−−−→ T ′′

f

y g

y
S′

φ−−−−→ S′′

such that θ and φ are monomorphisms (so θ ∈ Fac(T, α) and φ ∈ Fac(S, α))
and such that the morphism h : Coker θ → Cokerφ induced by f and g is
an isomorphism. Under the hypothesis that θ and φ are monomorphisms,
the latter condition is equivalent to the sequence

0→ T ′

(
θ
−f
)

−−−−→ T ′′ ⊕ S′ ( g φ )−−−→ S′′ → 0

being exact. This last condition is open since by dimensions one only needs
to ensure that T ′ → T ′′ ⊕ S′ is a monomorphism and T ′′ ⊕ S′ → S′′ is an
epimorphism.

We consider elements of E as endomorphisms of T ′⊕T ′′⊕S′⊕S′′ of the
shape 

0 0 0 0
θ 0 0 0
f 0 0 0
0 −g φ 0


and square zero. We consider the action by conjugation of the group G of
automorphisms of T ′ ⊕ T ′′ ⊕ S′ ⊕ S′′ of the form

a 0 0 0
0 b 0 0
0 e c 0
0 0 0 d

 .

The inverse matrix is 
a−1 0 0 0
0 b−1 0 0
0 −c−1eb−1 c−1 0
0 0 0 d−1

 .

Thus the action is given by

(a, b, c, d, e) · (θ, φ, f, g) = (bθa−1, dφc−1, cfa−1 + eθa−1, dgb−1 +dφc−1eb−1).

The group G has natural homomorphisms to G(S, α) and G(T, α), so it acts
on Fac(S, α) and Fac(T, α).
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Lemma 3.1. The projection E → Fac(S, α) is smooth and onto, and it
is equivariant for the action of G. The fibres are orbits for the kernel of the
group homomorphism G → G(S, α). The inverse image of a G(S, α)-orbit
in Fac(S, α) is a G-orbit in E.

Proof. Let P be the subset of Hom(T ′′, S′′) × Fac(S, α) given by those
pairs (g, φ) such that the morphism T ′′ ⊕ S′ → S′′ is an epimorphism, and
furthermore the map Hom(T, T ′′ ⊕ S′) → Hom(T, S′′) is onto. These are
both open conditions, so P is an open subset. Now Hom(T ′′, S′′) is a vector
space, hence a smooth variety, so the projection P → Fac(S, α) is smooth.

Let R be the set of tuples (θ, φ, f, g) with (g, φ) ∈ P , θ ∈ Hom(T ′, T ′′),
f ∈ Hom(T ′, S′), and satisfying gθ = φf . Observe that R is identified with
the kernel of the surjective map of trivial vector bundles over P ,

P ×Hom(T ′, T ′′ ⊕ S′)→ P ×Hom(T ′, S′′),

so R is a vector bundle over P .
Now E is the open subset of R defined by the condition that θ is a

monomorphism. It follows that the projection E → P is smooth, and hence
so is E → Fac(S, α). It is easy to see that it is onto, equivariant for the
action of G(S, α), and constant on orbits of G(T, α).

Now suppose that (θ, φ, f, g) and (θ′, φ, f ′, g′) are in E (same φ). There
are induced isomorphisms Coker θ → Cokerφ and Coker θ′ → Cokerφ. Let
Coker θ′ → Coker θ be the corresponding isomorphism. By Lemma 2.5, any
such isomorphism lifts to an element (a, b) ∈ Aut(T ′)×Aut(T ′′) = G(T, α).
Thus θa = bθ′, and the induced map on cokernels is as given. Thus the
morphisms Coker θ′ → Cokerφ induced by (f ′, g′) and (fa, gb) are the same.
Hence (f ′−fa, g′−gb) induces the zero map on cokernels. Thus g′−gb=φe for
some (uniquely determined) morphism e∈Hom(T ′′, S′). Then φ(f ′ − fa)=
φf ′−φfa = g′θ′−gθa = (gb + φe)θ′ − gθa = φeθ′ and so f ′ − fa = eθ′

= eb−1θa. Thus

(θ, φ, f, g) = (a, b, 1, 1,−e) · (θ′, φ, f ′, g′).
Lemma 3.2. The projection E → Fac(T, α) is smooth and has image

Fac(T, α)S. It is G-equivariant. The fibres are orbits for the kernel of the
group homomorphism G → G(T, α). The inverse image of a G(T, α)-orbit
in Fac(T, α) is a G-orbit in E.

Proof. The image is contained in Fac(T, α)S since Coker θ ∼= Cokerφ is
in Fac(S). It is equal to Fac(T, α)S , since if θ ∈ Fac(T, α)S then there is some
φ ∈ Fac(S, α) with Cokerφ ∼= Coker θ; then any such isomorphism between
the cokernels lifts to a morphism g : T ′′ → S′′ since Ext1(T ′′, S′) = 0, and
there is an induced morphism f : T ′ → S′ giving a tuple (θ, φ, f, g) ∈ E.

Consider the open set Q of pairs (f, θ) ∈ Hom(T ′, S′)× Fac(T, α)S such
that the induced maps Hom(T ′′ ⊕ S′, S) → Hom(T ′, S) and Ext1(S, T ′) →
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Ext1(S, T ′′ ⊕ S′) are onto. Note that since θ is a monomorphism, so is the
morphism T ′ → T ′′ ⊕ S′. The projection Q→ Fac(T, α)S is smooth.

Let R be the set of tuples (θ, φ, f, g) with (f, θ) ∈ Q, φ ∈ Hom(S′, S′′),
g ∈ Hom(T ′′, S′′), and satisfying gθ = φf . It is a vector bundle over Q since
it is identified with the kernel of the surjective map of trivial vector bundles
over Q,

Q×Hom(T ′′ ⊕ S′, S′′)→ Q×Hom(T ′, S′′).

Now E is the open subset of R defined by the condition that φ is a
monomorphism and T ′′ ⊕ S′ → S′′ is an epimorphism. Thus E → Q is
smooth, and hence so is E → Fac(T, α)S .

Now we show that each fibre is an orbit for the kernel of the group
homomorphism G→ G(S, α). Suppose (θ, φ, f, g) and (θ, φ′, f ′, g′) are in E
(same θ). There are induced isomorphisms Coker θ → Cokerφ and Coker θ
→ Cokerφ′. Consider the corresponding isomorphism Cokerφ → Cokerφ′.
By Lemma 2.5 this lifts to (c, d) ∈ Aut(S′)×Aut(S′′) = G(S, α), so dφ = φ′c.
Then (f ′, g′) and (cf, dg) induce the same morphism Coker θ → Cokerφ′.
Thus g′ − dg = φ′e for some e ∈ Hom(T ′′, S′). Then also f ′ − cf = eθ, and

(θ, φ′, f ′, g′) = (1, 1, c, d, e) · (θ, φ, f, g).

Combining the above we get the following.

Theorem 3.3. There is a one-to-one correspondence between the G(T, α)
-stable open subsets of Fac(T, α)S and the G(S, α)-stable open subsets of
Fac(S, α), corresponding open subsets being determined by the possible iso-
morphism classes of objects they classify.

4. Properties of the general object. Let P be a property of objects
in C of dimension type α, depending only on the isomorphism class of the
object.

Definition 4.1. Given α ∈ K0(C)+, we say that the general object of
dimension type α has property P if there exists a tilting object T , and a
nonempty open subset U ⊆ Fac(T, α), such that Coker θ has property P for
all θ ∈ U .

By Theorem 3.3 this does not depend on the choice of objects used to
define Rep(T, α). In fact, one does not need to consider all possible tilt-
ing objects, but only one with Fac(T, α) nonempty. Namely, we have the
following.

Lemma 4.2. If the general object of dimension type α has property P ,
and if Fac(T, α) is nonempty , then there is a nonempty open subset U ⊆
Fac(T, α) such that Coker θ has property P for all θ ∈ U .
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Proof. By definition this holds for some tilting object T ′. Let T ′′ be a
tilting object with T ⊕T ′ ∈ Fac(T ′′). There is a nonempty open subset U ′ of
Fac(T ′, α) such that the corresponding objects have property P . Since the
property only depends on isomorphism classes we may assume that U ′ is
G(T ′, α)-stable. Thus it corresponds to a nonempty G(T ′′, α)-stable subset
U ′′ which is open in Fac(T ′′, α)T ′ , and hence in Fac(T ′′, α). Now U ′′ must
meet the nonempty open set Fac(T ′′, α)T , and if their intersection is V , then
V corresponds to a nonempty open subset U of Fac(T, α) with the required
property.

Similarly, if Q is a property of pairs of objects (X,Y ), depending only
on the isomorphism classes, we say that the general pair of objects (X,Y ),
with X of dimension α and Y of dimension β, has property Q if there exists
a tilting object T , and a nonempty open subset U ⊆ Fac(T, α, β), such that
(Coker θ,Cokerφ) has property Q for all (θ, φ) ∈ U . The argument above
shows the following.

Lemma 4.3. If the general pair (X,Y ), with X of dimension α and Y of
dimension β, has property Q, and if Fac(T, α, β) is nonempty , then there is
a nonempty open subset U ⊆ Fac(T, α, β) such that (Coker θ,Cokerφ) has
property Q for all (θ, φ) ∈ U .

Given α, β ∈ K0(C)+ we define hom(α, β) to be the minimal possible
value of dim Hom(X,Y ) with X of dimension type α and Y of dimension
type β. Similarly, we define ext(α, β) to be the minimal possible value of
dim Ext1(X,Y ). Clearly, we have

hom(α, β)− ext(α, β) = 〈α, β〉.
The upper semicontinuity of the dimension of Hom spaces, together with
the lemma above, shows that the general pair of objects (X,Y ), with X of
dimension α and Y of dimension β, has dim Hom(X,Y ) = hom(α, β) and
dim Ext1(X,Y ) = ext(α, β).

Let α = β1 + · · · + βm with βi ∈ K0(C)+. If T is a tilting object, then
the set of θ ∈ Fac(T, α) such that Coker θ is a direct sum of objects of
dimensions β1, . . . , βm is the image of the map

(6) F : G(T, α)×
m∏
i=1

Fac(T, βi)→ Fac(T, α)

defined by
((f, g), (θi)) 7→ g diag(θ1, . . . , θm)f−1.

In particular, this set is constructible. By considering possible refinements of
this decomposition (by a previous lemma one only needs to consider finitely
many such refinements), one sees that the set of θ with Coker θ a direct sum
of indecomposable objects of dimensions β1, . . . , βm is also constructible. The
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irreducibility of Fac(T, α) then implies that any α ∈ K0(C)+ has a canonical
decomposition α = β1 + · · · + βm, unique up to reordering, such that the
general object of dimension type α is a direct sum of indecomposable objects
of dimension types β1, . . . , βm.

Theorem 4.4. Let α = β1 + · · ·+ βm with βi ∈ K0(C)+. The following
are equivalent :

(i) ext(βi, βj) = 0 for i 6= j.
(ii) The general object of dimension α can be written as a direct sum of

objects of dimension types β1, . . . , βm.

Proof. (i)⇒(ii). Choose T such that Rep(T, βi) is nonempty for all i. We
may assume that T ′α =

⊕m
i=1 T

′
βi

and T ′′α =
⊕m

i=1 T
′′
βi

. By irreducibility we
can find

(θ1, . . . , θm) ∈ Fac(T, β1)× · · · × Fac(T, βm)

such that Ext1(Coker θi,Coker θj) = 0 for all i 6= j.
Let F be the map (6), and consider the induced map dF on tangent

spaces at the point ((1, 1), (θi)). It is the map

End(T ′α)⊕ End(T ′′α)⊕
m⊕
i=1

Hom(T ′βi , T
′′
βi

)→ Hom(T ′α, T
′′
α).

given (in suggestive notation) by

(df, dg, (dθ1, . . . , dθm)) 7→ (dgijθj − θidfij + δijdθi)ij ,

where we consider df and dg as matrices, with entries dfij ∈ Hom(T ′βj , T
′
βi

)
and dgij ∈ Hom(T ′′βj , T

′′
βi

).
To compute the dimension of Ker dF , observe that if i 6= j, the (i, j)

component of this matrix vanishes if and only if (dfij , dgij) ∈ π−1(θj , θi),
and the vanishing of the (i, i) component uniquely determines dθi. There is
no restriction on the diagonal components dfii and dgii. Thus

dim Ker dF =
∑
i 6=j

(dim Hom(Coker θj ,Coker θi) + 〈T ′′βj , T
′
βi
〉)

+
m∑
i=1

(〈T ′βi , T
′
βi
〉+ 〈T ′′βi , T

′′
βi
〉).

A dimension count shows that dF is onto. Thus F is smooth at the point
(1, 1, (θi)). Thus F is dominant. Thus Fac(T, α) contains a nonempty open
subset U such that for all θ ∈ U one can write Coker θ as a direct sum of
objects of dimensions βi. Thus (ii) holds.
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(ii)⇒(i). Choose T such that Fac(T, α) contains a nonempty open subset
U consisting of morphisms whose cokernel is a direct sum of objects of
dimension βi. Consider the nonempty open set W of Fac(T, α) consisting of
the θ with dim End(Coker θ) minimal.

By irreducibility the intersection W ∩U must be nonempty, so it contains
a morphism θ. By assumption Coker θ ∼= X1⊕· · ·⊕Xm with Xi of dimension
type βi. Now if i 6= j then Ext1(Xi, Xj) = 0, for otherwise there is a nonsplit
extension 0 → Xj → E → Xi → 0, but then the long exact sequences
associated to this short exact sequence show that

dim End
(
E ⊕

⊕
k 6=i,j

Xk

)
< dim End

( m⊕
i=1

Xi

)
.

Since E⊕
⊕

k 6=i,j Xk is in Fac(T ) and has dimension type α, this contradicts
the definition of W .

Note that since the argument for (i)⇒(ii) in the theorem shows that the
map (6) is dominant, if the general objects of dimension βi have proper-
ties Pi, then the general object of dimension α can be written as a direct
sum of objects of dimension types βi satisfying Pi. It follows that

(7) ext(α, γ) =
m∑
i=1

ext(βi, γ) and ext(γ, α) =
m∑
i=1

ext(γ, βi)

for all γ ∈ K0(C)+.
If α ∈ K0(C)+ we say that α is generally indecomposable if the general

object of dimension type α is indecomposable. The following corollary is
immediate.

Corollary 4.5. A dimension type α is generally indecomposable if and
only if there is no nontrivial decomposition α = β+γ with 0 6= β, γ ∈ K0(C)+
and ext(β, γ) = ext(γ, β) = 0.

Proof of Theorem 1.1. If α = β1 + β2 + · · · is a decomposition satisfy-
ing the conditions of Theorem 4.4, then some object has a decomposition
into direct summands, with dimension types given by the βi, and a decom-
position into indecomposables, with dimension types given by the canonical
decomposition α = γ1 +γ2 + · · · . By the Krull–Remak–Schmidt theorem, we
deduce that each βi is a sum of a collection of the γj . Now by Corollary 4.5
and (7), βi is generally indecomposable if and only if this collection consists
of only one γj .

5. Subobjects of general objects. For α, γ ∈ K0(C)+ we define γ ↪→
α to mean that the general object of dimension type α has a subobject of
dimension type γ.
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Lemma 5.1. If γ ↪→ α then there is a tilting object S such that Fac(S, α)
has a nonempty open subset U such that for all θ ∈ U , Coker θ has a subob-
ject of dimension type γ which belongs to Fac(S).

Proof. Choose T so that Fac(T, α) is nonempty and let β = α − γ. Let
L be the variety of ((θ, φ), f, g) in C(T, α, β) with (g φ) : T ′′α ⊕ T ′β → T ′′β an
epimorphism, or equivalently such that the induced map h on cokernels is
an epimorphism.

By assumption, the image of the projection p : L → Fac(T, α) is dense
in Fac(T, α). Choose an irreducible locally closed subset L′ of L which dom-
inates Fac(T, α).

Suppose S is a tilting object with Fac(T ) ⊆ Fac(S). We show that the
set

LS = {((θ, φ), f, g) ∈ L | Kerh ∈ Fac(S)}

is an open subset of L. Now Kerh ∈ Fac(S) if and only if Ext1(S,Kerh) = 0,
and thanks to the exact sequence

0→ T ′α → Ker(hpθ)→ Kerh→ 0,

it is equivalent that Ext1(S,Ker(hpθ)) = 0. Now if ((θ, φ), f, g) ∈ L then
there is an exact sequence

0→ Ker(hpθ)→ T ′′α ⊕ T ′β → T ′′β → 0,

so Ext1(S,Ker(hp)) = 0 if and only if the induced map

Hom(S, (g φ)) : Hom(S, T ′′α ⊕ T ′β)→ Hom(S, T ′′β )

is onto, and this is clearly an open condition.
Now L =

⋃
S LS , so L′∩LS is a nonempty open subset of L′ for some S,

and hence it dominates Fac(T, α). Any element θ in the image has the prop-
erty that Coker θ has a subobject of dimension type γ in Fac(S). Now The-
orem 3.3 enables one to pass from the open subset of Fac(T, α) to an open
subset of Fac(S, α).

Proof of Theorem 1.2. Choose T with Fac(T, β) and Fac(T, γ) nonempty.
We may assume that

T ′α = T ′β ⊕ T ′γ and T ′′α = T ′′β ⊕ T ′′γ .

Suppose Y is an object in Fac(T, α) of dimension type α and that Y has
a subobject X in Fac(T ) of dimension type γ. Then there is a commutative
diagram
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0 0 0y y y
0 −−−−→ T ′γ

ψ−−−−→ T ′′γ
pψ−−−−→ X −−−−→ 0

( 0
1 )

y ( 0
1 )

y yi
0 −−−−→ T ′β ⊕ T ′γ

θ−−−−→ T ′′β ⊕ T ′′γ
(g ipψ)
−−−−→ Y −−−−→ 0

(1 0)

y (1 0)

y yp
0 −−−−→ T ′β

φ−−−−→ T ′′β
pφ−−−−→ Y/X −−−−→ 0y y y

0 0 0
with exact rows and columns. Namely, X and the quotient Y/X are both
in Fac(T ), so there are φ ∈ Fac(T, β) and ψ ∈ Fac(T, γ) giving the top and
bottom rows. Since X ∈ Fac(T ), the map Hom(T ′′β , Y )→ Hom(T ′′β , Y/X) is
onto, so pφ lifts to a morphism g ∈ Hom(T ′′β , Y ), and this defines a morphism
(g ipψ) : T ′′β ⊕ T ′′γ → Y . This gives the right hand half of the diagram. Now
the snake lemma gives an exact sequence of the kernels

0→ T ′γ → Ker(g ipψ)→ T ′β → 0,

and this sequence must split, so it is equivalent to the split exact sequence

0→ T ′γ

(
0
1

)
−−−→ T ′β ⊕ T ′γ

(1 0)−−−→ T ′β → 0.

Clearly, the morphism θ in the diagram must be of shape

θ =

(
φ 0
χ ψ

)
for some χ ∈ Hom(T ′β, T

′′
γ ). It follows that an object Y in Fac(T ) of dimen-

sion type α has a subobject in Fac(T ) of dimension type γ if and only if Y
is isomorphic to Coker θ for some θ of this shape, with (φ, ψ, χ) in

Z = Fac(T, β)× Fac(T, γ)×Hom(T ′β, T
′′
γ ).

Consider the morphism

F : G(T, α)× Z → Fac(T, α), ((f, g), (φ, ψ, χ)) 7→ g

(
φ 0
χ ψ

)
f−1.

The induced map dF on tangent spaces at ((1, 1), (φ, ψ, χ)) sends the ele-



134 W. CRAWLEY-BOEVEY

ment ((df, dg), (dφ, dψ, dχ)) to(
dφ+ dg11φ+ dg12χ− φdf11 dg12ψ − φdf12

dχ+ dg21φ+ dg22χ− χdf11 − ψdf21 dψ + dg22ψ − χdf12 − ψdf22

)
,

where we write df and dg as block matrices

df =

(
df11 df12

df21 df22

)
, dg =

(
dg11 dg12

dg21 dg22

)
.

To compute the kernel of dF , observe that dφ, dψ, dχ are fixed by three
of the entries of the matrix, and that the entries of df and dg are uncon-
strained, except for the requirement that dg12ψ = φdf12, or equivalently that
(df12, dg12) ∈ π−1(ψ, φ). Thus

dim Ker dF = dim Hom(Cokerψ,Cokerφ) + 〈T ′′γ , T ′β〉
+ 〈T ′α, T ′α〉 − 〈T ′γ , T ′β〉+ 〈T ′′α , T ′′α〉 − 〈T ′′γ , T ′′β 〉.

It follows that the cokernel of dF has dimension

dim Hom(Cokerψ,Cokerφ) + 〈[T ′γ ]− [T ′′γ ], [T ′′β ]− [T ′β]〉.
Here the Euler form term is equal to −〈γ, β〉, so the cokernel of dF has the
same dimension as Ext1(Cokerψ,Cokerφ).

Now if ext(γ, β) = 0 then at some point dF is onto, and hence by Sard’s
lemma, F is dominant, and so γ ↪→ α. Conversely, if γ ↪→ α, then F
is dominant so if the base field has characteristic zero then the induced
map on tangent spaces at some point of G(T, α) × Z is surjective. Clearly,
we may assume that this point has the form ((1, 1), (φ, ψ, χ)), and then
Ext1(Cokerψ,Cokerφ) = 0, so that ext(γ, β) = 0.

6. The general rank. Given two objects X and Y in C, we have a
finite partition into disjoint locally closed subsets

Hom(X,Y ) =
⋃
γ

Hom(X,Y )γ ,

where Hom(X,Y )γ denotes the set of morphisms of rank γ ∈ K0(C). Thus
there is a unique γ such that Hom(X,Y )γ is dense in Hom(X,Y ). We say
that γ is the general rank for (X,Y ).

Given α, β ∈ K0(C)+, we say that the pair (α, β) has general rank γ if
γ is the general rank for the general pair (X,Y ), with X of dimension α
and Y of dimension β. We show below that every pair (α, β) has a general
rank, which is clearly unique. We then use its existence to find a formula for
hom(α, β).

Let T be a tilting object such that Fac(T, α) and Fac(T, β) are both
nonempty. We define Fac(T, α, β)′ to be the set of (θ, φ) ∈ Fac(T, α, β) with
dim Hom(Coker θ,Cokerφ) = hom(α, β). By upper semicontinuity it is an
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open subset of Fac(T, α, β), and we have seen that it is nonempty. We also
define

C(T, α, β)′ = π−1(Fac(T, α, β)′).

Lemma 6.1. The map C(T, α, β)′ → Fac(T, α, β)′ obtained by restrict-
ing π is a vector bundle of rank hom(α, β) + 〈T ′′α , T ′β〉. Thus C(T, α, β)′ is
irreducible.

Proof. C(T, α, β)′ is the kernel of the homomorphism of trivial vector
bundles

Fac(T, α, β)′×Hom(T ′α, T
′
β)×Hom(T ′′α , T

′′
β )→ Fac(T, α, β)′×Hom(T ′α, T

′′
β ),

sending ((θ, φ), f, g) to ((θ, φ), gθ−φf), and its fibres have constant dimen-
sion by (3). Thus it is a subbundle.

Given γ, let C(T, α, β)′γ be the subset of C(T, α, β)′ such that the induced
morphism h : Coker θ → Cokerφ has rank γ.

Lemma 6.2. There are only finitely many γ such that the sets C(T, α, β)′γ
are nonempty , and they are locally closed in C(T, α, β)′.

Proof. If h is the induced morphism Coker θ → Cokerφ, then we have
an exact sequence T ′′α ⊕ T ′β → T ′′β → Cokerh → 0. Now the rank of h is
determined by the dimension type of Cokerh, so by the rank of the mor-
phism T ′′α ⊕ T ′β → T ′′β . Now the morphisms of any given rank form a locally
closed subset of Hom(T ′′α ⊕ T ′β, T ′′β ), so they define locally closed subsets of
C(α, β)′.

It follows that if Fac(T, α) and Fac(T, β) are both nonempty, then there
is a unique γ such that C(T, α, β)′γ is a nonempty open subset of C(T, α, β)′.
The next lemma shows that this is the general rank for (α, β), so general
ranks always exist.

Lemma 6.3. If C(T, α, β)′γ is a nonempty open subset of C(T, α, β)′ then
γ is the general rank for (α, β).

Proof. The map C(T, α, β)′ → Fac(T, α, β)′ obtained by restricting π
is a vector bundle, so U = π(C(T, α, β)′γ) is a nonempty open subset of
Fac(T, α, β)′. Moreover, if (θ, φ)∈U then the set of ((θ, φ), f, g)∈C(T, α, β)′γ
is a nonempty open subset of π−1(θ, φ). Now for fixed (θ, φ) ∈ U , the map

π−1(θ, φ)→ Hom(Coker θ,Cokerφ)

is a surjective linear map, hence a flat morphism of varieties. Therefore the
image of an open set is open. Thus Hom(Coker θ,Cokerφ)γ is a nonempty
open subset of Hom(Coker θ,Cokerφ). It follows that γ is the general rank
for (Coker θ,Cokerφ).
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Lemma 6.4. If γ is the general rank for (α, β), then α − γ ↪→ α and
γ ↪→ β.

Proof. Clear.

Now let γ be the general rank for (α, β). Given a tilting object T , we
define C(T, α, β)′′γ to be the set of ((θ, φ), f, g) ∈ C(T, α, β)′γ such that the
induced morphism h on cokernels has Kerh ∈ Fac(T ).

Lemma 6.5. C(T, α, β)′′γ is an open subset of C(T, α, β)′.

Proof. We know thatC(T, α, β)′γ is a nonempty open subset ofC(T, α, β)′.
There is a mapping

C(T, α, β)′γ → Hom(Hom(T, T ′′α ⊕ T ′β),Hom(T, T ′′β ))

sending ((θ, φ), f, g) to Hom(T, (g φ)). If h is the morphism on cokernels
induced by ((θ, φ), f, g), we show that

rank Hom(T, (g φ)) ≤ 〈T, [T ′′β ]− β + γ〉,
with equality if and only if Kerh ∈ Fac(T ), from which the result follows.

Let Z be the image of the morphism (g φ) : T ′′α ⊕T ′β → T ′′β . Breaking the
sequence (4) into two short exact sequences, we obtain a long exact sequence

0→ Hom(T,Ker(hpθ))→ Hom(T, T ′′β )

→ Hom(T,Z)→ Ext1(T,Ker(hpθ))→ 0,

and
0→ Hom(T,Z)→ Hom(T, T ′′β )→ Hom(T,Cokerh)→ 0

since Z ∈ Fac(T ), so that Ext1(T,Z) = 0. Thus the rank of Hom(T, (g φ))
is the same as the rank of the map Hom(T, T ′′β ) → Hom(T,Z), which is at
most

dim Hom(T,Z) = 〈T,Z〉 = 〈T, [T ′′β ]− β + γ〉.

One has equality if and only if Ext1(T,Ker(hpθ)) = 0. Now the sequence (5)
gives a long exact sequence

· · · → Ext1(T, T ′α)→ Ext1(T,Ker(hpθ))
→ Ext1(T,Kerh)→ Ext2(T, T ′α)→ · · · ,

and since Ext1(T, T ′α) = Ext2(T, T ′α) = 0 we have Ext1(T,Ker(hpθ)) = 0 if
and only if Ext1(T,Kerh) = 0, so if and only if Kerh ∈ Fac(T ).

Lemma 6.6. There is a tilting object T in C such that C(T, α, β)′′γ is
nonempty.

Proof. Assuming just that Fac(S, α) and Fac(S, β) are nonempty, we
know that C(S, α, β)′γ is nonempty. Let ((θ, φ), f, g) be an element of it, and
let h be the induced morphism Coker θ → Cokerφ. Clearly, if T is a tilting
object such that Fac(T ) contains S⊕Kerh, then C(T, α, β)′′γ is nonempty.
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Henceforth, let T be a tilting object with C(T, α, β)′′γ nonempty.

Lemma 6.7. If ((θ, φ), f, g) ∈ C(T, α, β)′′γ and h is the induced morphism
on cokernels, then the kernel of the epimorphism T ′′α → Imh is in add(T )
and has dimension type [T ′′α ]− γ, and the kernel of the epimorphism T ′′β →
Cokerh is in add(T ) and has dimension type [T ′β] + γ.

Proof. The map Hom(T, T ′′α) → Hom(T,Coker θ) is onto since the next
term in the long exact sequence is Ext1(T, T ′α) = 0. Also, Hom(T,Coker θ)→
Hom(T, Imh) is onto since the next term in the long exact sequence is
Ext1(T,Kerh) = 0. Thus the map Hom(T, T ′′α) → Hom(T, Imh) is onto.
Thus the kernel of T ′′α → Imh is in add(T ).

The map Hom(T ′′β ,Cokerφ) → Hom(T ′′β ,Cokerh) is onto, for the next
term is Ext1(T ′′β , Imh). Thus the kernel of T ′′β → Cokerh is in add(T ). Its
dimension type is [T ′′β ]− [Cokerh] = [T ′′β ]− [Cokerφ] + γ = [T ′β] + γ.

Because of the lemma we know that there are objects T ′∗ and T ′′∗ in
add(T ) with

[T ′∗] = [T ′′α ]− γ, [T ′′∗ ] = [T ′β] + γ.

We define V to be the set of tuples (a, b, c, d, u, v) in

Hom(T ′∗, T
′′
α)×Hom(T ′∗, T

′
β)×Hom(T ′′α , T

′′
∗ )×Hom(T ′β, T

′′
∗ )

×Hom(T ′α, T
′
∗)×Hom(T ′′∗ , T

′′
β )

such that ca = db and such that a, d, u, v are monomorphisms and

(c d) : T ′′α ⊕ T ′β → T ′′∗

is an epimorphism. This is clearly a locally closed subset, so a variety.
Observe that these conditions imply that au and vd are monomorphisms.

Also, the complex

0→ T ′∗

(−a
b

)
−−−−→ T ′′α ⊕ T ′β

( c d )−−−→ T ′′∗ → 0

is exact at the right hand term by definition, it is exact at the left hand
term since a is a monomorphism, and then by dimensions it is exact at the
middle term. Thus it is a (necessarily split) short exact sequence. It follows
that the map

Hom(T, (c d)) : Hom(T, T ′′α ⊕ T ′β)→ Hom(T, T ′′∗ )

is surjective. Now since v is a monomorphism, one obtains a left exact se-
quence

0→ T ′∗

(−a
b

)
−−−−→ T ′′α ⊕ T ′β

( vc vd )−−−−−→ T ′′β .

Lemma 6.8. Suppose that (a, b, c, d, u, v) ∈ V and let θ = au, φ = vd. If
c0, c1, c2, c3 are the induced maps on cokernels
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0 −−−−→ T ′α
u−−−−→ T ′∗ −−−−→ Cokeru −−−−→ 0∥∥∥ a

y c0

y
0 −−−−→ T ′α

θ−−−−→ T ′′α
pθ−−−−→ Coker θ −−−−→ 0

u

y ∥∥∥ c1

y
0 −−−−→ T ′∗

a−−−−→ T ′′α −−−−→ Coker a −−−−→ 0

b

y vc

y c2

y
0 −−−−→ T ′β

φ−−−−→ T ′′β
pφ−−−−→ Cokerφ −−−−→ 0

d

y ∥∥∥ c3

y
0 −−−−→ T ′′∗

v−−−−→ T ′′β −−−−→ Coker v −−−−→ 0,

then the sequences

0→ Cokeru c0−→ Coker θ c1−→ Coker a→ 0

and
0→ Coker a c2−→ Cokerφ c3−→ Coker v → 0

are exact.

Proof. Although we are working in an abstract category C, as usual we
can verify this by diagram chasing.

c0 is mono. (Diagram chase: if w ∈ Cokeru is sent to 0, and w comes
from t′∗, then a(t′∗) = θ(t′α) for some t′α. Then a(t′∗ − u(t′α)) = 0. Thus since
a is mono, t′∗ = u(t′α). Thus w = 0.)

Exact at Coker θ. (If c ∈ Coker θ is sent to 0 in Coker a, and c comes
from t′′α, then t′′α = a(t′∗) for some t′∗. But then the image of t′∗ in Cokeru
maps to c.)

Clearly, the maps c1 and c3 are epimorphisms.
c2 is a monomorphism. (Diagram chase: if z ∈ Coker a is sent to 0 by

c2, and z comes from t′′α, then the image of t′′α in T ′′β is also in the image of
T ′β, say from t′β. Then by the left exact sequence there is an element t′∗ ∈ T ′∗
with a(t′∗) = t′′α and b(t′∗) = t′β. Then t′′α is sent to 0 in Coker a.)

Exact at Cokerφ. (Diagram chase: if z ∈ Cokerφ is sent to 0, and z
comes from t′′β, then t′′β must come from an element t′′∗. Then since (−c d)
is an epimorphism there are t′′α and t′β with t′′∗ = c(t′′α) + d(t′β). Then t′′β =
v(t′′∗) = vc(t′′α) + φ(t′β), so z is the image of vc(t′′α). Thus it is in the image
of the map Coker a→ Cokerφ.)

The lemma shows that there is a map

f : V → C(T, α, β)′′γ , f(a, b, c, d, u, v) = ((au, vd), bu, vc).
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Lemma 6.9. The map f is onto and every fibre has dimension 〈T ′′∗ , T ′′∗ 〉+
〈T ′∗, T ′∗〉.

Proof. Suppose that ((θ, φ), f, g) ∈ C(T, α, β)′′γ , and let h be the induced
map on cokernels. The lemma shows that the kernel of the morphism T ′′α →
Imh is isomorphic to T ′∗, and the kernel of the morphism T ′′β → Cokerh
is isomorphic to T ′′∗ . Thus we can find monomorphisms a, v giving exact
sequences

0→ T ′∗
a−→ T ′′α → Imh→ 0, 0→ T ′′∗

v−→ T ′′β → Cokerh→ 0.

In fact the set of possible a, v is a variety of dimension 〈T ′′∗ , T ′′∗ 〉 + 〈T ′∗, T ′∗〉.
Then there are unique morphisms b, d, u making the diagram

0 −−−−→ T ′α
θ−−−−→ T ′′α

pθ−−−−→ Coker θ −−−−→ 0

u

y ∥∥∥ y
0 −−−−→ T ′∗

a−−−−→ T ′′α −−−−→ Imh −−−−→ 0

b

y g

y y
0 −−−−→ T ′β

φ−−−−→ T ′′β
pφ−−−−→ Cokerφ −−−−→ 0

d

y ∥∥∥ y
0 −−−−→ T ′′∗

v−−−−→ T ′′β −−−−→ Cokerh −−−−→ 0

commute. Clearly, u and d are monomorphisms since θ = au and φ = vd.
Now f = bu, and the morphism from T ′′α to Cokerh is zero, so there is a
unique induced morphism c ∈ Hom(T ′′α , T

′′
∗ ) with g = vc. We have vdb =

φb = ga = vca, and since v is a monomorphism this implies that db = ca.
Finally, consider the morphism (c d) : T ′′α ⊕ T ′β → T ′′∗ . We show it is an
epimorphism by diagram chasing. Take t′′∗ ∈ T ′′∗ . It gets sent by v to t′′β ∈ T ′′β .
This gets sent by pφ to an element z ∈ Cokerφ whose image in Cokerh is
zero. Thus z comes from an element of Imh, so from an element t′′α ∈ T ′′α .
Now g(t′′α) − t′′β is sent to 0 in Cokerφ, so g(t′′α) − t′′β = φ(t′β) for some t′β.
Then v(t′′∗) = t′′β = g(t′′α) − φ(t′β) = vc(t′′α) − vd(t′β). Thus since v is mono,
t′′∗ = c(t′′α)− d(t′β).

Lemma 6.10. Let X be the set of (c, d) with (c d) : T ′′α ⊕ T ′β → T ′′∗ an
epimorphism and Hom(T, (c d)) surjective. If Y is the set of (a, b, (c, d))
such that ca = db and (c, d) ∈ X, then the projection Y → X is a subbundle
of the trivial vector bundle

Hom(T ′∗, T
′′
α)×Hom(T ′∗, T

′
β)×X → X

of rank 〈T ′∗, T ′∗〉. Moreover , V is a nonempty open subset of Y ×Hom(T ′α, T
′
∗)

×Hom(T ′′∗ , T
′′
β ).
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Proof. The projection in question is the kernel of the homomorphism of
trivial bundles

Hom(T ′∗, T
′′
α)×Hom(T ′∗, T

′
β)×X → Hom(T ′∗, T

′′
∗ )×X,

(a, b, (c, d)) 7→ (ca− db, (c, d)).

Since (c d) is an epimorphism and Hom(T, (c d)) is surjective, one deduces
that Ker(c d) ∈ add(T ). Thus, since it has dimension

[T ′′α ] + [T ′β]− [T ′′∗ ] = [T ′∗],

we have Ker(c d) ∼= T ′∗. Now the fibre of Y over (c d) is identified with the
space Hom(T ′∗,Ker(c d)) ∼= End(T ′∗), so it has constant dimension 〈T ′∗, T ′∗〉.

We can now prove an analogue of Schofield’s formula [19, Theorem 5.2]
in our setting.

Theorem 6.11. If γ is the general rank for α, β, then

ext(α, β) = −〈α− γ, β − γ〉.
Proof. V is nonempty since f is onto. We compute its dimension in two

ways.
By the lemma above, V is an open subset of a known irreducible variety.

Thus V is irreducible of dimension

〈T ′′α ⊕ T ′β, T ′′∗ 〉+ 〈T ′∗, T ′∗〉+ 〈T ′α, T ′∗〉+ 〈T ′′∗ , T ′′β 〉.
With α = T ′′α − T ′α, β = T ′′β − T ′β and γ = T ′′α − T ′∗ = T ′′∗ − T ′β this becomes

〈T ′′α+T ′′β−β, T ′′β +γ−β〉+〈T ′′α−γ, T ′′α−γ〉+〈T ′′α−α, T ′′α−γ〉+〈T ′′β +γ−β, T ′′β 〉.
On the other hand, Fac(T, α, β)′ is open in Fac(T, α, β), so it is irreducible

of dimension d = 〈T ′α, T ′′α〉 + 〈T ′β, T ′′β 〉. Now C(T, α, β)′ is a vector bundle
over Fac(T, α, β)′ of rank r = hom(α, β) + 〈T ′′α , T ′β〉, so it is irreducible of
dimension d+ r. Since C(T, α, β)′′γ is an open subset of C(T, α, β)′, it too is
irreducible of dimension d + r. Then the morphism f : V → C(T, α, β)′′γ is
onto and has fibres of dimension k = 〈T ′′∗ , T ′′∗ 〉+〈T ′∗, T ′∗〉, so V has dimension
d+ r + k.

Equating these two expressions gives the required result.

Proof of Theorem 1.3. If δ ↪→ α and η ↪→ β then there are X and Y
of dimension types α and β respectively, with dim Ext1(X,Y ) = ext(α, β)
and such that X and Y have subobjects D and H of dimensions δ and η
respectively. Since C is hereditary, the maps Ext1(X,Y )→ Ext1(D,Y ) and
Ext1(D,Y )→ Ext1(D,Y/H) are onto, so

ext(α, β) = dim Ext1(X,Y ) ≥ dim Ext1(D,Y/H)
= dim Hom(D,Y/H)− 〈δ, β − η〉 ≥ −〈δ, β − η〉.

The result now follows from Theorem 6.11 and Lemma 6.4.
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Proof of Corollary 1.4. (4)⇒(3). If there is an expression α = β+γ with
β ↪→ α and γ ↪→ α, apply (4) to both β and γ to get a contradiction.

(3)⇒(2). Choose T such that Fac(T, α) is nonempty. Suppose that for
all θ ∈ Fac(T, α), the object Coker θ has nontrivial endomorphism algebra.
Then since K is algebraically closed, it has an endomorphism of rank δ 6=
α, 0.

Let W be the subset of C(T, α, α)′ consisting of quadruples of the form
(θ, θ, f, g). Let f : W → Fac(T, α) be the projection.

By assumption,
⋃
δ 6=α,0(W∩C(T, α, α)′δ) dominates Fac(T, α). Thus some

W∩C(T, α, α)′δ dominates Fac(T, α). Now every θ in the image has the prop-
erty that Coker θ has an endomorphism of rank δ. Thus it has subobjects of
dimensions δ and α− δ. This contradicts (3).

(2)⇒(1) is clear.
(1)⇒(3). If there were such an expression, then (using characteristic 0)

we get ext(β, γ) = ext(γ, β) = 0, contradicting that the canonical decompo-
sition of α is α itself.

(2)⇒(4). Suppose that β ↪→ α. By irreducibility we can find an object X
of dimension α with trivial endomorphism algebra, which has a subobject Y
of dimension β. Now Hom(X/Y, Y ) = 0 since X has trivial endomorphism
algebra. Also, there is a nonsplit extension 0 → Y → X → X/Y → 0,
so that Ext1(X/Y, Y ) 6= 0. Thus 〈α − β, β〉 < 0. On the other hand, since
the characteristic is 0 and β ↪→ α we have ext(β, α − β) = 0, and hence
〈β, α− β〉 ≥ 0.

7. Weighted projective lines. We use the notation and terminology
of Geigle and Lenzing [10] throughout this section. Let X be the weighted
projective line associated to a weight sequence p = (p0, . . . , pn) and dis-
tinct points λ = (λ0, . . . , λn) in P1(K). Let C = coh(X) be the category of
coherent sheaves on X. It is shown in [10] that C has property (H).

Recall that there is a rank one additive abelian group L(p) with gener-
ators ~x0, ~x1, . . . , ~xn and relations p0~x0 = p1~x1 = · · · = pn~xn = ~c, say, and
that the line bundles on X are classified as O(~x ) with ~x ∈ L(p). Moreover,
there is a partial order on L(p) given by ~x ≤ ~y if and only if

~y − ~x =
n∑
i=0

ki~xi

for some ki ≥ 0, and

Hom(O(~x ),O(~y )) 6= 0 ⇔ ~x ≤ ~y.
For each ordinary point of P1(K) there is a unique simple torsion sheaf

S with support at this point, and there is an exact sequence

0→ O(0)→ O(~c )→ S → 0,
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while for each exceptional point λi there are simple sheaves Sij (0 ≤ j < pi)
concentrated at the point, and exact sequences

0→ O((j − 1)~xi)→ O(j~xi)→ Sij → 0.

(We number the simple sheaves following Schiffmann [18, §2.4] rather than
[10].)

It is shown in [10, Proposition 4.1] that

T0 =
⊕

0≤~x≤~c
O(~x ) = O(0)⊕

( n⊕
i=0

pi−1⊕
j=1

O(j~xi)
)
⊕O(~c )

is a tilting sheaf.
Clearly, the shifts Tm = T0(m~c ) (m ∈ Z) are tilting sheaves. Now

Ext1(Tm−1, Tm) ∼= Hom(Tm, Tm−1(~ω ))∗ ∼= Hom(T0, T0(~ω − ~c ))∗

by Serre duality. If this were nonzero, then by the above, one would have
~x ≤ ~ω − ~c + ~y for some 0 ≤ ~x, ~y ≤ ~c, and hence 0 ≤ ~ω, which is not true.
Thus Ext1(Tm−1, Tm) = 0, so

· · · ⊃ Fac(T−1) ⊃ Fac(T0) ⊃ Fac(T1) ⊃ · · · .
Also, for any sheaf X one has Ext1(Tm, X) ∼= Ext1(T0, X(−m)), and this
vanishes for m � 0, so that X ∈ Fac(Tm). Thus C has property (T). It
remains to prove that C has property (R).

Lemma 7.1. There is a group homomorphism ∂ : K0(C) → L(p) such
that ∂([O(~x) ]) = ~x for all ~x ∈ L(p), ∂([Sij ]) = ~xi for all i, j, and ∂([S]) = ~c
if S is a simple torsion sheaf concentrated at a nonexceptional point.

We call ∂ the weighted degree.

Proof. The dimension types of the indecomposable summands of T0

freely generate K0(C), so we can define ∂ to be the unique homomorphism
with ∂([O(~x )]) = ~x for 0 ≤ ~x ≤ ~c. The exact sequences above show that
∂ has the right effect on the dimension types of the simple torsion sheaves.
Now for any ~x there is an exact sequence

0→ O(~x )→ O(~x+ ~xi)→ Si1(~x )→ 0

and Si1(~x ) ∼= Sij for some j. Thus ∂([O(~x+~xi )]) = ∂([O(~x )])+~xi. It follows
that ∂([O(~x )]) = ~x for all ~x.

Note that the weighted degree does not respect the partial orderings on
K0(C) and L(p).

Clearly, the weighted degree of any torsion sheaf is ≥ 0.

Lemma 7.2. If T ′ ∈ add(Tm) and Y is torsion of weighted degree ≤ k~c,
then the kernel of any morphism θ : T ′ → Y is in Fac(Tm−k).
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Proof. We prove this by induction on the rank of T ′. If T ′ is a line
bundle, say O(~x ), then the image of θ is torsion of weighted degree ~z ≤ k~c,
say, and Ker θ ∼= O(~x − ~z ) ∈ Fac(Tm−k), as required. Otherwise choose a
proper direct summand T ′′ of T ′. Then there is an exact sequence

0→ Ker(θ|T ′′)→ Ker θ → Kerφ→ 0

where φ is the induced morphism T ′/T ′′ → Y/θ(T ′′). By induction Ker(θ|T ′′)
and Kerφ are in Fac(Tm−k), and hence so is Ker θ.

Lemma 7.3. Let m ∈ Z and q ≥ 0. If Y is a line bundle direct summand
of Tm+q, then any morphism θ : T ′ → Y with T ′ ∈ add(Tm) has kernel in
Fac(Tm−q−1).

Proof. If θ = 0 this is clear, so suppose θ 6= 0. Then the restriction of θ
to some line bundle direct summand T ′0 is nonzero. Let T ′1 be the comple-
mentary summand. Let T ′0 ∼= O(~x ) and Y ∼= O(~y ). The exact sequence

0→ T ′0 → Y → Y/θ(T ′0)→ 0

shows that Y/θ(T ′0) is torsion of weighted degree

~y − ~x ≤ (m+ q + 1)~c−m~c = (q + 1)~c.

Now there is an exact sequence

0→ Ker(θ|T ′
0
)→ Ker θ → Kerφ→ 0,

where φ is the morphism T ′1 → Y/θ(T ′0) induced by θ. However, Ker(θ|T ′
0
)

= 0, so Ker θ ∼= Kerφ ∈ Fac(Tm−q−1) by the previous lemma.

Theorem 7.4. For any sheaves X and Y there is a tilting sheaf Ts such
that Ker θ ∈ Fac(Ts) for all θ ∈ Hom(X,Y ).

Proof. Let us say that a sheaf Y is good if for any m there is a tilting
sheaf Ts such that for any morphism θ : X → Y with X ∈ Fac(Tm), one has
Ker θ ∈ Fac(T ). Clearly, it suffices to prove that every sheaf is good.

If θ ∈ Hom(X,Y ) and X ∈ Fac(Tm) then there is an epimorphism ψ :
T ′ → X with T ′ ∈ add(Tm), and this induces an epimorphism Ker(θψ) →
Ker θ. Thus the last two lemmas show that torsion sheaves and line bundles
are good.

Clearly, any subsheaf of a good sheaf is good. Since any vector bundle
embeds in a direct sum of line bundles, and any coherent sheaf is a direct
sum of a vector bundle and a torsion sheaf, it suffices to show that if Y ′ and
Y ′′ are good, then so is Y ′ ⊕ Y ′′.

Given m, since Y ′ is good, there is a tilting sheaf Tr such that the kernel
of any morphism from a sheaf in Fac(Tm) to Y ′ is in Fac(Tr). Since Y ′′ is
good, there is a tilting sheaf Ts such that kernel of any morphism from a
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sheaf in Fac(Tr) to Y ′ is in Fac(Ts). Now if X ∈ Fac(Tm) and

θ =

(
θ′

θ′′

)
: X → Y ′ ⊕ Y ′′

then Ker θ′ ∈ Fac(Tr), and then since there is an exact sequence

0→ Ker θ → Ker θ′
φ−→ Y ′′,

where φ is the restriction of θ′′, we have Ker θ ∈ Fac(Ts).

Theorem 7.5. The category C = coh(X) satisfies condition (R).

Proof. Given X,Y , let T be a tilting sheaf with Y ∈ Fac(T ) and Ker θ ∈
Fac(T ) for all θ ∈ Hom(X,Y ). Let Ti be the nonisomorphic indecomposable
summands of T .

Let θ ∈ Hom(X,Y ). The natural map Hom(Ti, Im θ) → Hom(Ti, Y ) is
injective, and since Ker θ ∈ Fac(T ) the map Hom(Ti, X) → Hom(Ti, Im θ)
is surjective. It follows that

rank Hom(Ti, θ) = dim Hom(Ti, Im θ) = 〈Ti, Im θ〉.

Since the elements [Ti] generate K0(C) as a group, and the Euler form is
nondegenerate, the numbers 〈Ti, Im θ〉 determine the rank of θ. Since there
are only finitely many possible ranks of Hom(Ti, θ), there are only finitely
many possible ranks of morphisms θ.

Now the map

Hom(X,Y )→ HomK(Hom(Ti, X),Hom(Ti, Y ))

sending θ to Hom(Ti, θ) is linear, so it is a morphism of varieties, and hence
the set of θ for which Hom(Ti, θ) has any given rank is locally closed. It
follows that Hom(X,Y )γ is locally closed in Hom(X,Y ).

The set of monomorphisms is given by the θ with Hom(Ti, θ) having rank
Hom(Ti, X), and clearly this is an open condition. The set of epimorphisms
is given by the θ with Hom(Ti, θ) having rank r = 〈Ti, Y 〉, and since we have
assumed that Y ∈ Fac(T ), we have r = dim Hom(Ti, Y ), so the set of such
θ is also open.

8. An algorithm for weighted projective lines. We maintain the
notation of the last section, so that X is a weighted projective line and
C = coh(X) is the category of coherent sheaves on X. Following Schiffmann
[18], it is useful to identify K0(C) with the root lattice of a loop algebra of
a Kac–Moody Lie algebra, and take as Z-basis the elements α∗ = [O(0)],
αij = [Sij ] for 0 ≤ i ≤ n and 1 ≤ j ≤ pi − 1, and δ = [O(~c )] − [O(0)]. We
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write α ∈ K0(C) as

(8) α = m∗α∗ +
n∑
i=0

pi−1∑
j=1

mijαij + dδ

with m∗,mij , d ∈ Z. If β is given by the corresponding formula with coeffi-
cients m′∗,m

′
ij , d

′, then the Euler form is given by

〈α, β〉 = m∗m
′
∗ +m∗d

′ − dm′∗ +
n∑
i=0

pi−1∑
j=1

mij(m′ij −m′i,j−1)

with the convention that m′i0 = m′∗ (see [18, Lemma 6.1]).
We write K0(C)tors for the set of dimension types of torsion sheaves.

Lemma 8.1. The set K0(C)tors consists of the α with m∗ = 0 and

(9) d ≥
n∑
i=0

max{0,−mij | 1 ≤ j ≤ pi − 1}.

Proof. The set K0(C)tors consists of the nonnegative linear combinations
of δ, αij and [Si0] = δ −

∑pi−1
j=1 αij , say

(10) kδ +
n∑
i=0

pi−1∑
j=1

kijαij +
n∑
i=0

ki

(
δ −

pi−1∑
j=1

αij

)
= dδ +

n∑
i=0

pi−1∑
j=1

mijαij ,

where d = k +
∑

i ki and mij = kij − ki. Clearly, ki = kij −mij ≥ −mij ,
so ki ≥ max{0,−mij}, and the inequality for d follows. Conversely, if the
inequality for d holds, then α arises on taking ki = max{0,−mij}, k =
d−

∑
i ki and kij = mij + ki.

Lemma 8.2. The set K0(C)+ consists of the α with m∗ > 0 or with
m∗ = 0 and d satisfying (9).

Proof. If α = [X] then m∗ is the rank of X, so it is nonnegative. If
m∗ > 0, then for N � 0 there is a torsion sheaf of dimension type α −
m∗α∗ + Nm∗δ, and its direct sum with m∗ copies of O(−N~c ) then has
dimension type α.

The vector bundles in C can be identified with vector bundles E on P1(K)
with a quasi-parabolic structure of type p, that is, a flag of subspaces

Eλi ⊇ Ei1 ⊇ Ei2 ⊇ · · · ⊇ Ei,pi−1

of the fibre at each exceptional point λi (see [16, §4.2]). This identification
is not unique, but it can be done in such a way that if ~x ∈ L(p) is written
in the form ~x = l~c +

∑n
i=0 li~xi with 0 ≤ li < pi, then O(~x ) corresponds to

the bundle E = O(l) on P1(K) with Eij one-dimensional for j ≤ li and zero
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for j > li. It follows that the dimension type can be written as

(rankE)α∗ +
n∑
i=0

pi−1∑
j=1

(dimEij)αij + (degE)δ.

Thus the possible dimension types of vector bundles in C are the α with

m∗ ≥ mi1 ≥ mi2 ≥ · · · ≥ mi,pi−1 ≥ 0

for all i, and d = 0 if m∗ = 0. We denote the set of these α by K0(C)vb. If
α belongs to this set then the general sheaf of dimension type α is a vector
bundle, for if X is a vector bundle of dimension α, then there is some h� 0
with Hom(Th, X) = 0, and then Hom(Th, Y ) = 0 for the general sheaf Y of
dimension type α, so that Y is a vector bundle.

Theorem 8.3. If α ∈ K0(C)+, then the general sheaf of dimension type
α is the direct sum of a vector bundle of dimension type β and a torsion
sheaf of dimension type γ = α− β, where

β = m∗α∗ +
n∑
i=0

pi−1∑
j=1

m′ijαij +
(
d−

n∑
i=0

ki

)
δ,

ki = max{0,−mij | 1 ≤ j ≤ pi − 1},
m′ij = min{m∗,mi1 + ki,mi2 + ki, . . . ,mij + ki}

We call α = β + γ the torsion decomposition of α.

Proof. Clearly, β ∈ K0(C)vb, and setting kij = mij + ki −m′ij ≥ 0, we
have

γ =
n∑
i=0

ki

(
δ −

pi−1∑
j=1

αij

)
+

n∑
i=0

pi−1∑
j=1

kijαij ∈ K0(C)tors.

Now

〈γ, β〉 = −
( n∑
i=0

ki

)
m∗ +

n∑
i=0

pi−1∑
j=1

(kij − ki)(m′ij −m′i,j−1)

=
n∑
i=0

pi−1∑
j=1

kij(m′ij −m′i,j−1)−
n∑
i=0

kim
′
i,pi−1.

We show that all terms in this expression are zero. The definition of m′ij
immediately gives m′ij = min{m′i,j−1,mij + ki}. Now if kij > 0, then m′ij <
mij + ki, so m′ij = m′i,j−1, and hence the terms in the first sum are zero.
If ki > 0, then there is some mij < 0 with ki = −mij . Then mij + ki = 0,
which implies that m′i,pi−1 = 0, and so the terms in the second sum are zero.

Thus 〈γ, β〉 = 0. Since there is a torsion sheaf of dimension γ and a
vector bundle of dimension β, we have ext(β, γ) = 0 and hom(γ, β) = 0.
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Thus also ext(γ, β) = 0. The assertion now follows from Theorem 4.4 and
the remark following it.

Lemma 8.4. If α ∈ K0(C)vb, then the general sheaf of dimension type α
is a vector bundle whose underlying vector bundle on P1(K) is isomorphic
to

O(t)⊕a ⊕O(t+ 1)⊕b,

where a, b ≥ 0 satisfy a+ b = m∗ and ta+ (t+ 1)b = d.

Observe that t = Floor(d/m∗), a = (t+ 1)m∗ − d and b = d− tm∗.
Proof. Let Y (respectively Z) be the line bundle with underlying vec-

tor bundle O(t − 1) (respectively O(t + 1)) and all subspaces in the quasi-
parabolic structure 1-dimensional (respectively zero). There is a vector
bundle X of dimension type α whose underlying vector bundle is isomorphic
to O(t)⊕a ⊕O(t+ 1)⊕b. Then we must have Hom(X,Y ) = Hom(Z,X) = 0,
and so by semicontinuity Hom(X ′, Y ) = Hom(Z,X ′) = 0 for the general
representation X ′ of dimension type α. Now any homomorphism of the un-
derlying vector bundles on P1(K) necessarily respects these quasi-parabolic
structures, so there are no homomorphisms from the underlying vector
bundle of X ′ to O(t − 1) or from O(t + 1). The result thus follows from
the Grothendieck–Birkhoff theorem.

Proof of Theorem 1.5. By Theorem 1.3, we have

(11) ext(α, β) = min{−〈α− η, β − η〉 | α− η ↪→ α, η ↪→ β},
which is useful provided that we can determine all η with α − η ↪→ α
and η ↪→ β. Now by Theorem 1.2, we have α − η ↪→ α if and only if
ext(α−η, η) = 0, and η ↪→ β if and only if ext(η, β−η) = 0. This would give
a recursive algorithm, except that in this simple form it does not terminate.

If α and β are torsion dimension types, however, then it does. We use
the degree in the sense of [10, Proposition 2.8],

degα = k +
n∑
i=0

(
ki +

pi−1∑
j=1

kij

) p
pi
,

where p = lcm{p0, p1, . . . , pn} and α is written in the form (10). Observe
that degα is a positive integer if α is nonzero. There are only finitely many
possible η in (11) as they must have deg η ≤ min{degα,deg β}, and the
recursion terminates by consideration of deg(α+ β).

In general, we use Theorem 8.3 to reduce to the case when α and β are
in K0(C)tors ∪K0(C)vb, and consider the rank of α+ β.

If α is a vector bundle dimension type and β is torsion, then ext(α, β)=0.
If α is torsion and β is a vector bundle, then hom(α, β) = 0, and so we have
ext(α, β) = −〈α, β〉.
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Thus suppose that α and β are vector bundle dimension types, with α
given by (8) and β by the corresponding formula with coefficients m′∗,m

′
ij , d

′.
Suppose that η is a dimension type with α − η ↪→ α and η ↪→ β. Let η

be given by (8) with coefficients m′′∗,m
′′
ij , d

′′. Clearly,

(12) m′′∗ ≤ min{m∗,m′∗}.
Since η ↪→ β, it must be a vector bundle dimension type, so

(13) m′′∗ ≥ m′′i1 ≥ m′′i2 ≥ · · · ≥ m′′i,pi−1 ≥ 0

for all i, m′′∗ ≤ m′∗ and d′′ = 0 if m′′∗ = 0.
The general sheaf X of dimension α is a vector bundle, has a subbundle

Y of dimension type α − η, and has underlying vector bundle given by
Lemma 8.4. Then the underlying bundle of Y is a direct sum of line bundles
of the form O(s) with s ≤ t+ 1, so that

(14) d− d′′ ≤ m′′∗(t+ 1),

where t = Floor(d/m∗). Dually, the general sheaf of dimension β is a vector
bundle, has a subbundle of dimension type η, and has underlying vector
bundle given by Lemma 8.4. The same argument now shows that

(15) d′′ ≤ m′′∗(t′ + 1),

where t′ = Floor(d′/m′∗).
Clearly, there are only finitely many possible η satisfying (12)–(15). For

any such η, assuming that η, α−η ∈ K0(C)+, one can determine whether or
not α− η ↪→ α and η ↪→ β by checking if ext(α− η, η) = 0 and ext(η, β− η)
= 0. These are known by the recursion on the rank of α+ β.
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