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BY

TSIU-KWEN LEE (Taipei) and YIQIANG ZHOU (St. John’s)

Abstract. A ring R is called Armendariz (resp., Armendariz of power series type)
if, whenever (

P
i≥0 aix

i)(
P

j≥0 bjx
j) = 0 in R[x] (resp., in R[[x]]), then aibj = 0 for all

i and j. This paper deals with a unified generalization of the two concepts (see Defi-
nition 2). Some known results on Armendariz rings are extended to this more general
situation and new results are obtained as consequences. For instance, it is proved that a
ring R is Armendariz of power series type iff the same is true of R[[x]]. For an injective
endomorphism σ of a ring R and for n ≥ 2, it is proved that R[x;σ]/(xn) is Armendariz
iff it is Armendariz of power series type iff σ is rigid in the sense of Krempa.

Throughout, unless otherwise stated, all rings are associative with unity
and modules are unitary. The ring of polynomials (resp., power series) in
indeterminate x over a ring R is denoted by R[x] (resp., R[[x]]). For an en-
domorphism σ of a ring R, we denote by R[x;σ] and R[[x;σ]] the (left) skew
polynomial ring and (left) skew power series ring, in which the multiplica-
tion is subject to the condition that xr = σ(r)x for all r ∈ R. Following [15]
(resp., [14]), a ring R is called Armendariz (resp., Armendariz of power se-
ries type) if, whenever (

∑
i≥0 aix

i)(
∑

j≥0 bjx
j) = 0 in R[x] (resp., in R[[x]]),

then aibj = 0 for all i and j. An Armendariz ring of power series type is
also called a power-serieswise Armendariz ring in [11].

The two notions have been widely studied. This paper deals with a uni-
fied generalization of these rings: For an ideal I of a ring R, the notion
of an I-Armendariz ring R is defined such that R is Armendariz iff R
is 0-Armendariz, and R is Armendariz of power series type iff R is R-
Armendariz (see Definition 2). Some known results on Armendariz rings
are extended to this more general situation and new results are obtained as
consequences. For instance, it is proved that a ring R is Armendariz of power
series type iff the same is true of R[[x]]. For an injective endomorphism σ of
a ring R and for n ≥ 2, it is proved that R[x;σ]/(xn) is Armendariz iff it is
Armendariz of power series type iff σ is rigid in the sense of Krempa.
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1. Definitions and examples. The following ring construction is the
general setting in the paper.

Definition 1. Let R be a ring and let I be an ideal of R. We denote
by [R; I][x] the subring R[x] + I[[x]] of R[[x]], where I[[x]] denotes the ideal
of R[[x]] generated by I. Thus,

[R; I][x] =
{∑
i≥0

rix
i ∈ R[[x]] : ∃0 ≤ n ∈ Z such that ri ∈ I, ∀i ≥ n

}
.

Definition 2. Let I be an ideal of a ring R. The ring R is called I-
Armendariz if, whenever(∑

i≥0

aix
i
)(∑

j≥0

bjx
j
)

= 0 in [R; I][x],

then aibj = 0 for all i and j.

For two ideals I1, I2 of a ring R with I1 ⊆ I2, if R is I2-Armendariz
then clearly R is I1-Armendariz. Moreover, a ring R is 0-Armendariz iff R
is Armendariz; and R is R-Armendariz iff R an Armendariz ring of power
series type. Every reduced ring (i.e. a ring containing no nonzero nilpotent
elements) is an Armendariz ring of power series type (see [11]). A discussion
of commutative Armendariz rings of power series type can be found in the
1975 paper [6] by Gilmer, Grams and Parker.

The purpose of Definition 2 is multi-fold: (1) it gives a unified generaliza-
tion of Armendariz rings and Armendariz rings of power series type; (2) as
shown in Example 3 below, there exist rings R that are not Armendariz of
power series type, but I-Armendariz for some nonzero ideals I; (3) as we
will see later, a single proof for Armendariz property works for a large class
of rings. Sometimes, the arguments of the proof are similar to the poly-
nomial ring case, but other times they are significantly different from the
polynomial ring case, in which situation one usually obtains a new result.

We need the notion of a trivial extension in order to give the next ex-
ample. For an (R,R)-bimodule M , the trivial extension of R and M , denoted
R ∝ M , is the subring

{(
a m
0 a

)
: a ∈ R, m ∈ M

}
of the formal upper

triangular ring
(
R M
0 R

)
. For convenience, we let I ∝ N =

{(
a m
0 a

)
: a ∈ I,

m ∈ N
}

, where I is a subset of R and N is a subset of M . Let {ξi :
i = 0, 1, . . .} be a set of generators of the abelian group Z2∞ satisfying
2ξ0 = 0 and 2ξi+1 = ξi for all i ≥ 0.

Example 3. Let R = Z ∝ Z2∞. Then the following hold :

(1) R is not Armendariz of power series type.
(2) Let Is = 0 ∝ Zξs where s ≥ 0 is an integer. Then R is Is-Armen-

dariz. In particular , R is Armendariz.
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Proof. (1) For each i ≥ 0, let

a2i =
(

2 0
0 2

)
, a2i+1 =

(
1 0
0 1

)
, b2i =

(
0 −ξ2i
0 0

)
, b2i+1 =

(
0 ξ2i+1

0 0

)
.

Then (
∑

i≥0 aix
i)(
∑

i≥0 bix
i) = 0 in R[[x]]. But a0b2 6= 0. So R is not Ar-

mendariz of power series type.
(2) Let

∑∞
i=0 aix

i,
∑∞

i=0 bix
i ∈ [R; I][x] be such that

(1.1)
( ∞∑
i=0

aix
i
)( ∞∑

i=0

bix
i
)

= 0,

where I = Is and s ≥ 0. We need to show that aibj = 0 for all i and j.
Suppose that a0, . . . , ai−1 ∈ 0 ∝ Z2∞ but ai /∈ 0 ∝ Z2∞ and also that
b0, . . . , bj−1 ∈ 0 ∝ Z2∞ but bj /∈ 0 ∝ Z2∞ . By (1.1), a0bi+j + · · ·+ai−1bj+1 +
aibj + ai+1bj−1 + · · ·+ ai+jb0 = 0. Thus, aibj = −(a0bi+j + · · ·+ ai−1bj+1 +
ai+1bj−1 + · · · + ai+jb0) ∈ 0 ∝ Z2∞ . This is a contradiction. Therefore,
we can assume, without loss of generality, that ai /∈ 0 ∝ Z2∞ for some
i but bj ∈ 0 ∝ Z2∞ for all j. Notice that there exists an m > 0 such
that ai, bi ∈ I for all i > m. Write ai =

( ni ri
0 ni

)
for i = 0, . . . ,m and

bi =
(

0 ti
0 0

)
for i = 0, 1, . . . . There exist k ≥ 0 and l ≥ 0 such that 2l+1 |ni

for i = 0, . . . , k− 1, 2l+1 -nk, and 2l |ni for i = k, . . . ,m. For t ∈ Z2∞ , we let
o(t) be the order of t in the group Z2∞ . Since ti ∈ Zξs for all i > m, there
exist u ≥ 0 and v ≥ 0 such that o(ti) < 2v for all i < u, o(tu) = 2v and
o(ti) ≤ 2v for all i > u. To prove aibj = 0 for all i and j, it suffices to show
that l ≥ v. Suppose that l < v. Let

a =
(

2v−l−1 0
0 2v−l−1

)
∈ R.

From (1.1), one obtains

0 = a(a0bk+u + · · ·+ ak−1bu+1 + akbu + ak+1bu−1 + · · ·+ ak+ub0)
= (aa0)bk+u + · · ·+ (aak−1)bu+1 + (aak)bu

+ (aak+1)bu−1 + · · ·+ (aak+u)b0
= 0 + · · ·+ 0 + (aak)bu + 0 + · · ·+ 0

=
(

0 2v−l−1nktu

0 0

)
.

This shows that 2v−1tu = 0, a contradiction.

We remark that, if M is an abelian group containing Z2∞ as a subgroup
(e.g., M = Q/Z), then Z ∝ Z2∞ is a subring of Z ∝M , and hence Z ∝M is
not Armendariz of power series type because of Example 3(1). But Z ∝ M
is Armendariz by [13, Corollary 2.7].
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2. Armendariz property. One of the most interesting results on the
Armendariz property of rings is the theorem, proved cleverly by Anderson
and Camillo in [1], which says that a ring R is Armendariz iff R[x] is Armen-
dariz. With a different proof, we obtain a much more general result which
contains the theorem of Anderson and Camillo as a special case and which
immediately implies that a ring R is Armendariz of power series type iff
R[[x]] is Armendariz of power series type.

Lemma 4. Let I be an ideal of a ring R and let k ≥ 1 be an integer.
Then the map φk :

[
[R; I][x]; I[[x]]

]
[y] → [R; I][x],

∑
fi(x)yi 7→

∑
fi(x)xki,

is a ring homomorphism.

Proof. For
∑
fi(x)yi ∈

[
[R; I][x]; I[[x]]

]
[y] we have

∑
fi(x)xki =∑

j≥0 cjx
j , where if j < (n+ 1)k then cj is equal to the well-defined coeffi-

cient of the term xj in
∑n

i=0 fi(x)xik. So
∑
fi(x)xki ∈ R[[x]]. Because there

exists an m > 0 such that fj(x) ∈ I[[x]] for all j > m and fj(x) ∈ [R; I][x]
for all 0 ≤ j ≤ m, there exists an l > 0 such that the coefficient of the term
xi in fj(x) is in I for all 0 ≤ j ≤ m and i ≥ l. Thus, for all i ≥ mk + l,
ci ∈ I. So

∑
fi(x)xki ∈ [R; I][x]. Hence φk is well defined. It is now routine

to verify that φk is a ring homomorphism.

Theorem 5. Let I be an ideal of a ring R. Then R is I-Armendariz if
and only if [R; I][x] is I[[x]]-Armendariz.

Proof. One implication is obvious. For the other implication, suppose
that R is I-Armendariz and let

(2.1)
[∑
i≥0

fi(x)yi
][∑

i≥0

gi(x)yi
]

= 0 in
[
[R; I][x]; I[[x]]

]
[y].

We need to show that fi(x)gj(x) = 0 for all i and j. It is clear that
f0(x)g0(x) = 0. Assume that, for k ≥ 1, f0(x)gj(x) = 0 for j = 0, . . . , k − 1.
We next prove that f0(x)gk(x) = 0. For i ≥ 0, write

fi(x) = a
(i)
0 +a(i)

1 x+· · ·+a(i)
n x

n+· · · , gi(x) = b
(i)
0 +b(i)1 x+· · ·+b(i)n xn+· · · .

If f0(x)gk(x) 6= 0, then we can assume that, for some s ≥ 0, f0(x)b(k)j = 0

for j < s but f0(x)b(k)s 6= 0. We can further assume that, for some t ≥ 0,
a

(0)
i b

(k)
s = 0 for i < t but a(0)

t b
(k)
s 6= 0. Take l > max{s, t}. By Lemma 4,

from (2.1) we obtain

(2.2)
[∑
i≥0

fi(x)xil
][∑

i≥0

gi(x)xil
]

= 0 in [R; I][x].
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Note that∑
i≥0

fi(x)xil = (terms of degree < t) + a
(0)
t xt + (terms of degree > t),

∑
i≥0

gi(x)xil = (terms of degree < kl + s)

+ (b(0)
kl+s + b

(1)
(k−1)l+s + · · ·+ b

(k−1)
l+s + b(k)s )xkl+s

+ (terms of degree > kl + s).

Since R is I-Armendariz, it follows from (2.2) that

a
(0)
t (b(0)

kl+s + b
(1)
(k−1)l+s + · · ·+ b

(k−1)
l+s + b(k)s ) = 0,

and the assumption that f0(x)gj(x) = 0 for j = 0, . . . , k−1 implies a(0)
t (b(0)

kl+s

+ b
(1)
(k−1)l+s + · · ·+ b

(k−1)
l+s ) = 0. Thus, a(0)

t b
(k)
s = 0. This contradiction shows

that f0(x)gk(x) = 0. By induction, f0(x)gj(x) = 0 for j = 0, 1, . . . . Thus,
we have

[f1(x)y + · · ·+ fn(x)yn + · · · ][g0(x) + g1(x)y + · · ·+ gm(x)ym + · · · ] = 0

and so

[f1(x) + · · ·+ fn(x)yn−1 + · · · ][g0(x) + g1(x)y + · · ·+ gm(x)ym + · · · ] = 0.

Arguing as above with f1(x) replacing f0(x), we obtain f1(x)gj(x) = 0 for
j = 0, 1, . . . . Continuing this process, we see that a simple induction shows
that, for each i ≥ 0, fi(x)gj(x) = 0 for j = 0, 1, . . . .

Corollary 6 ([1, Theorem 2]). A ring R is Armendariz iff R[x] is
Armendariz.

Proof. We just apply Theorem 5 to the case where I = 0.

Anderson and Camillo’s proof of Corollary 6 in [1, Theorem 2] uses
the notion of degree of polynomials, which is different from ours. In [11,
Proposition 3.1], the same idea of the proof of [1, Theorem 2] was used to
show that a ring R is Armendariz of power series type iff the same is true
of R[x]. This is a quick consequence of the next result.

Corollary 7. A ring R is an Armendariz ring of power series type iff
so is R[[x]].

Proof. This is a special case of Theorem 5 where I = R.

In [7], Hirano observed that the Armendariz rings are precisely those
rings R for which there is a bijective correspondence between the right anni-
hilators of R and the right annihilators of R[x]. Hirano’s result well explains
the significance of Armendariz rings.



156 T. K. LEE AND Y. ZHOU

For U ⊆ R, the right annihilator of U in R is denoted by rR(U), i.e.,
rR(U) = {a ∈ R : Ua = 0}. Let I be an ideal of the ring R and S =
[R; I][x]. For V ⊆ S, let CV be the set of the coefficients of power series in
V . Further, let A(R) = {rR(U) : U ⊆ R} and A(S) = {rS(V ) : V ⊆ S}. For
J ∈ A(R), K ∈ A(S), let Φ(J) = J [x] + (J ∩ I)[[x]] and Ψ(K) = K ∩ R.
The following statements can be easily verified:

(1) For any U ⊆ R, rS(U) = rR(U)[x] + (rR(U) ∩ I)[[x]] = Φ(rR(U)).
(2) For any V ⊆ S, rS(V ) ∩R = rR(CV ).
(3) Φ : A(R)→ A(S) is one-to-one and Ψ : A(S)→ A(R) is onto.
(4) Ψ ◦ Φ = 1A(R).

The next proposition can be proved arguing as in the proof of [7, Propo-
sition 3.1].

Proposition 8. Let I be an ideal of a ring R. Then R is I-Armendariz
⇔ Φ is a bijection ⇔ Ψ is a bijection.

3. Extensions of rings. In this section, we discuss the Armendariz
property for some extensions of rings. For f ∈ R[[x]] where R is a commu-
tative ring, the content Af of f is the ideal of R generated by the coeffi-
cients of f . Following Tsang [16], we call a commutative ring R Gaussian if
Afg = AfAg for all f, g ∈ R[x]. In [1, Theorem 8], Anderson and Camillo
proved that a commutative ring R is Gaussian iff every homomorphic im-
age of R is Armendariz, and their proof is still valid for the following more
general setting.

Definition 9. Let I be an ideal of a commutative ring R. We say that
R is I-Gaussian if Afg = AfAg for all f, g ∈ [R; I][x].

Proposition 10. Let I be an ideal of a commutative ring R. Then R
is I-Gaussian iff , for each ideal K of R, R/K is (K + I)/K-Armendariz.

Proof. Write R = R/K and, for f =
∑

i≥0 aix
i ∈ R[[x]], define f =∑

i≥0 aix
i ∈ R[[x]].

“⇒”. Let f, g ∈ [R/K; (K + I)/K][x] with fg = 0. Write f =
∑

i≥0 aix
i

and g =
∑

i≥0 bix
i. We can assume that, for some n > 0, ai, bi ∈ I for

all i > n. Let f =
∑

i≥0 aix
i, g =

∑
i≥0 bix

i. Then f, g ∈ [R; I][x], and so
Afg = AfAg by hypothesis. Thus, AfAg = (Af + K)/K · (Ag + K)/K =
(AfAg + K)/K = (Afg + K)/K = Afg = Afg = A0 = 0. Hence R/K is
(K + I)/K-Armendariz.

“⇐”. Let f, g ∈ [R; I][x]. Clearly fg = 0 in [R/Afg; (Afg + I)/Afg][x].
Hence AfAg = 0 by hypothesis. That is, (Af+Afg)/Afg ·(Ag+Afg)/Afg = 0.
So AfAg ⊆ Afg and hence AfAg = Afg, because Afg ⊆ AfAg.



A UNIFIED APPROACH TO THE ARMENDARIZ PROPERTY 157

Letting I = 0 in Proposition 10 yields the next result.

Corollary 11 ([1, Theorem 8]). A commutative ring R is Gaussian if
and only if every homomorphic image of R is Armendariz.

A commutative ring R is called a Gaussian ring of power series type
if Afg = AfAg for all f, g ∈ R[[x]]. The next result is the special case of
Proposition 10 where I = R.

Corollary 12. A commutative ring R is a Gaussian ring of power
series type if and only if every homomorphic ring of R is an Armendariz
ring of power series type.

In [2], Anderson and Kang proved that a quasi-local integral domain R is
Gaussian of power series type if and only if R is a field or a one-dimensional
valuation domain. Notice that an integral domain is Gaussian if and only if
it is a Prüfer domain (see [16]). Thus, if R is a quasi-local Prüfer domain
that is not a valuation domain, then R is a Gaussian ring that is not a
Gaussian ring of power series type.

A commutative ring R is called an arithmetical ring if the ideals of R
form a distributive lattice. This definition dates back to the 1949 paper [5]
of L. Fuchs. It is known that arithmetical rings are Gaussian (see [1]). But
as shown in the next example, an arithmetical ring need not be Armendariz
of power series type. Thus, an arithmetical ring need not be Gaussian of
power series type. Note that the ring R in the next example is not Gaussian
of power series type, but is I-Gaussian for some nonzero ideal I of R.

Example 13. Let R be the ring as in Example 3. Then:

(1) R is not Gaussian of power series type.
(2) R is an arithmetical ring.
(3) Let Is = 0 ∝ Zξs where s ≥ 0 is an integer. Then R is Is-Gaussian.

Proof. (1) Since R is not Armendariz of power series type by Example 3,
R is not Gaussian of power series type.

(2) Notice that I is an ideal of R if and only if either I ∈ {0 ∝ Zξi : i =
0, 1, . . .} or I ∈ {Zn ∝ Z2∞ : 0 ≤ n ∈ Z}. Since Z is arithmetical and the set
of subgroups of Z2∞ is totally ordered, it is easy to see that the set of ideals
of R forms a distributive lattice. So R is arithmetical.

(3) By Proposition 10, it suffices to show that R/K is (K + Is)/K-
Armendariz for each ideal K of R. We proceed with three cases:

Case 1: K = nZ ∝ Z2∞ with 0 ≤ n ∈ Z. Then (K + Is)/K = 0, and
R/K ∼= Z/nZ = Zn is certainly Armendariz (as Zn is arithmetical).

Case 2: K = 0 ∝ Zξi (i < s). Notice that θ : R → R given by
(n, x) 7→ (n, 2i+1x) is an onto ring homomorphism with kernel ker(θ) =
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0 ∝ Zξi = K. So it induces a ring isomorphism θ : R/K ∼= R. Moreover,
θ((K + Is)/K) = 0 ∝ 2i+1Zξs = 0 ∝ Zξs−i−1 = Is−i−1. By Example 3, R is
Is−i−1-Armendariz, so R/K is (K + Is)/K-Armendariz.

Case 3: K = 0 ∝ Zξi (i ≥ s). Then (K + Is)/K = 0, and R/K ∼= R is
Armendariz.

From now on, all rings R are associative but not necessarily commu-
tative. Next, we consider the Armendariz property for trivial extensions.
A necessary and sufficient condition for a trivial extension to be Armen-
dariz is obtained in [13]. For a module MR, let M [x] (resp., M [[x]]) be the
set of all formal polynomials (resp., power series) in indeterminate x with
coefficients from M . For a submodule N of M , define

[M ;N ][x] =
{∑
i≥0

mix
i ∈M [[x]] : ∃0 ≤ n ∈ Z such that mi ∈ N, ∀i ≥ n

}
.

Let I be an ideal of R. It is easy to see that MI ⊆ N iff [M ;N ][x] is a right
[R; I][x]-module under usual addition and multiplication of power series.

A bimodule RMR is called I-Armendariz if, whenever m(x)f(x) = 0
(resp., f(x)m(x) = 0) where m(x) =

∑
i≥0mix

i ∈ [M ; IM + MI][x] and
f(x) =

∑
j≥0 ajx

j ∈ [R; I][x], then miaj = 0 (resp., ajmi = 0) for all i
and j. Notice that a bimodule RMR is 0-Armendariz iff both RM and MR

are Armendariz modules in the sense of Anderson and Camillo [1].

Lemma 14. Let I be an ideal of a ring R, M an (R,R)-bimodule, and
N = IM +MI. Then:

(1) I ∝ N is an ideal of R ∝M and [M ;N ][x] is an ([R; I][x], [R; I][x])-
bimodule.

(2) [R; I][x] ∝ [M ;N ][x] ∼= [R ∝ M ; I ∝ N ][x], and the isomorphism
sends I[[x]] ∝ N [[x]] to (I ∝ N)[[x]].

Proof. (1) This is clear.
(2) The map φ : [R; I][x] ∝ [M ;N ][x]→ [R ∝M ; I ∝ N ][x],(∑

aix
i
∑
mix

i

0
∑
aix

i

)
7→
∑(

ai mi

0 ai

)
xi,

is the required isomorphism.

Remark 15. Suppose that R is I-Armendariz where I is an ideal of R.
If S is a subring of R and K is an ideal of S with K ⊆ I, then S is
K-Armendariz.

Theorem 16. Let I be an ideal of a ring R, M an (R,R)-bimodule, and
N = IM + MI. Then the ring R ∝ M is (I ∝ N)-Armendariz if and only
if the following are satisfied :
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(1) R is I-Armendariz.
(2) M is an I-Armendariz bimodule.
(3) If f(x)g(x) = 0 in [R; I][x], then f(x)[M ;N ][x]∩ [M ;N ][x]g(x) = 0.

Proof. “⇒”. (1) This follows by Remark 15.
(2) Let m(x) =

∑
i≥0mix

i ∈ [M ;N ][x] and f(x) =
∑

i≥0 aix
i ∈ [R; I][x].

Suppose f(x)m(x) = 0. Then a0mi + a1mi−1 + · · ·+ aim0 = 0 for all i ≥ 0.
Hence∑

i≥0

(
ai 0
0 ai

)
xi ·

∑
i≥0

(
0 mi

0 0

)
xi =

∑
i≥0

[ i∑
j=0

(
aj 0
0 aj

)(
0 mi−j

0 0

)]
xi

=
∑
i≥0

(
0
∑i

j=0 ajmi−j

0 0

)
xi = 0.

Since R ∝ M is (I ∝ N)-Armendariz, it follows that
(
ai 0
0 ai

)(
0 mj

0 0

)
= 0 for

all i, j ≥ 0, i.e., aimj = 0 for all i, j ≥ 0. Similarly, m(x)f(x) = 0 implies
that mjai = 0 for all i, j ≥ 0.

(3) Since R ∝M is (I ∝ N)-Armendariz, we see that [R ∝M ; I ∝ N ][x]
is (I ∝ N)[[x]]-Armendariz by Theorem 5. Therefore, [R; I][x] ∝ [M ;N ][x] is
(I[[x]] ∝ N [[x]])-Armendariz by Lemma 14. Now assume f(x)g(x) = 0 and
f(x)m(x) = −m′(x)g(x) 6= 0, where f(x), g(x) ∈ [R; I][x] and m(x),m′(x) ∈
[M ;N ][x]. Then[(

f(x) 0
0 f(x)

)
+
(

0 m′(x)
0 0

)
y

][(
g(x) 0

0 g(x)

)
+
(

0 m(x)
0 0

)
y

]
= 0

in
[
[R; I][x] ∝ [M ;N ][x]; I[[x]] ∝ N [[x]]

]
[y], but

( f(x) 0
0 f(x)

)(
0 m(x)
0 0

)
6= 0.

This is a contradiction.
“⇐”. Suppose that α(x)β(x) = 0, where α(x) =

∑
i≥0

( ai mi
0 ai

)
xi, β(x) =∑

i≥0

(
bi li
0 bi

)
xi ∈ [R ∝M ; I ∝ N ][x]. Let

f(x) =
∑
i≥0

aix
i, g(x) =

∑
i≥0

bix
i, m(x) =

∑
i≥0

mix
i, l(x) =

∑
i≥0

lix
i.

Then f(x), g(x) ∈ [R; I][x] and m(x), l(x) ∈ [M ;N ][x]. By Lemma 14, it
follows from α(x)β(x) = 0 that

0 =
(
f(x) m(x)

0 f(x)

)(
g(x) l(x)

0 g(x)

)
=
(
f(x)g(x) f(x)l(x) +m(x)g(x)

0 f(x)g(x)

)
.

Thus, f(x)g(x) = 0 and f(x)l(x) +m(x)g(x) = 0. Since R is I-Armendariz
by (1), aibj = for all i, j ≥ 0. Moreover, by (3),

f(x)l(x) = −m(x)g(x) ∈ f(x)[M ;N ][x] ∩ [M ;N ][x]g(x) = 0,
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so f(x)l(x) = m(x)g(x) = 0. Then, by (2), ailj = 0 = mibj for all i, j ≥ 0.
Therefore,

( ai mi
0 ai

)( bj lj
0 bj

)
= 0 for all i, j ≥ 0. So R ∝ M is (I ∝ N)-

Armendariz.

Corollary 17 ([13, Theorem 2.2]). Let M be an (R,R)-bimodule. Then
R ∝M is an Armendariz ring if and only if the following are satisfied :

(1) R is an Armendariz ring.
(2) M is a 0-Armendariz bimodule.
(3) If f(x)g(x) = 0 in R[x], then f(x)M [x] ∩M [x]g(x) = 0.

Corollary 18. Let M be an (R,R)-bimodule. Then R ∝M is an Ar-
mendariz ring of power series type if and only if the following are satisfied :

(1) R is an Armendariz ring of power series type.
(2) M is an R-Armendariz bimodule.
(3) If f(x)g(x) = 0 in R[[x]], then f(x)M [[x]] ∩M [[x]]g(x) = 0.

If {Sα}α is a chain of Armendariz subrings of a ring R, then it is clear that⋃
Sα is still Armendariz. But the analog does not hold true for Armendariz

subrings of power series type.

Example 19. Let R be the ring as in Example 3. Then R is not Ar-
mendariz of power series type. But R is the union of a chain of subrings,
each of which is Armendariz of power series type. In fact, let Rn = Z ∝ Zξn
for n = 0, 1, . . . . Then {Rn : n = 0, 1, . . .} is a chain of subrings of R and
R =

⋃
n≥0Rn. It suffices to show that each Rn is Armendariz of power series

type. Since Zξn ∼= Z2n , we only need to show that Z ∝ Z2n is Armendariz of
power series type. However, Z2n is an Armendariz ring of power series type
by [11, Proposition 3.2]. Thus, Z2n is a Z-Armendariz bimodule over Z.
Hence Z ∝ Z2n is Armendariz of power series type by Corollary 18.

The last part of this section is about the Armendariz property of the ring
R[x;σ]/(xn). Following Krempa [12], an endomorphism σ of R is called rigid
if, for any element a ∈ R, aσ(a) = 0 implies a = 0. It is easy to prove that
any ring with a rigid endomorphism is reduced (see [9, Proposition 5]). It is
well known that if a1 · · · an = 0 in a reduced ring R then aα(1) · · · aα(n) = 0
for any permutation α of {1, . . . , n}.

In [1, Theorem 5], Anderson and Camillo proved that, for a ring R and
n ≥ 2, R[x]/(xn) is Armendariz if and only if R is reduced. The following is
a generalization of this result, because the identity map of a ring R is rigid
if and only if the ring R is reduced.

Theorem 20. Let σ be an injective endomorphism of R with σ(1) = 1
and let n ≥ 1 be an integer. Then the following are equivalent :

(1) R[x;σ]/(xn+1) is an Armendariz ring.
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(2) R[x;σ]/(xn+1) is an Armendariz ring of power series type.
(3) σ is rigid.

Proof. (3)⇒(2). Suppose that σ is rigid. Then R is reduced.

Claim 1. For a, b ∈ R, ab = 0 iff aσ(b) = 0; and hence σk is rigid for
each k ≥ 1.

Proof. Because of (3), we have ab = 0 ⇒ ba = 0 ⇒ aσ(b)σ(aσ(b)) =
aσ(ba)σ2(b) = 0⇒ aσ(b) = 0⇒ baσ(ba) = 0⇒ ba = 0⇒ ab = 0.

Claim 2. If (a0 +a1x+ · · ·+anx
n)(b0 + b1x+ · · ·+ bnx

n) ∈ (xn+1), then
aibj = 0 for all 0 ≤ i, j ≤ n with i+ j ≤ n.

Proof. Clearly, a0b0 = 0. Suppose that for some 0 < s ≤ n, aibj = 0 for
all 0 ≤ i, j ≤ n with i+ j < s. By hypothesis, we have

(3.1) a0bs + a1σ(bs−1) + · · ·+ asσ
s(b0) = 0.

Multiplying (3.1) by b0 from the left yields b0asσs(b0) = 0, because b0aj = 0
for j = 0, . . . , s − 1 by induction assumption. Hence (b0as)σs(b0as) = 0, so
b0as = 0 by Claim 1. Again by Claim 1, asσs(b0) = 0. Now (3.1) becomes

(3.2) a0bs + a1σ(bs−1) + · · ·+ as−1σ
s−1(b1) = 0.

Similarly, multiplying (3.2) by b1 from the left yields as−1b1 = 0. By repeat-
ing the same argument, one can prove that aibj = 0 for all 0 ≤ i, j ≤ n with
i+ j = s. So Claim 2 follows by induction.

Claim 3. σ : R[[y]]→ R[[y]],
∑

i≥0 aiy
i 7→

∑
i≥0 σ(ai)yi, is also rigid.

Proof. If (
∑

i≥0 aiy
i)σ(

∑
i≥0 aiy

i) = 0 where
∑

i≥0 aiy
i ∈ R[[y]], then

a0σ(a0) = 0. So a0 = 0 since σ is rigid. Thus, (
∑

i≥1 aiy
i−1)σ(

∑
i≥1 aiy

i−1)
= 0. A simple induction shows that ai = 0 for i = 0, 1, . . . , proving Claim 3.

To prove (2), we now let A(y)B(y) = 0 in (R[x;σ]/(xn+1))[[y]], where

A(y) = (a00 + a01x+ · · ·+ a0nx
n) + (a10 + a11x+ · · ·+ a1nx

n)y + · · · ,
B(y) = (b00 + b01x+ · · ·+ b0nx

n) + (b10 + b11x+ · · ·+ b1nx
n)y + · · · .

We need to show that

(3.3) (ai0 + ai1x+ · · ·+ ainx
n)(bj0 + bj1x+ · · ·+ bjnx

n) ∈ (xn+1)

for all i, j ≥ 0. Note that σ extends to a rigid endomorphism of R[[y]] by
Claim 3, and (R[x;σ]/(xn+1))[[y]] ∼= R[[y]][x;σ]/(xn+1) canonically. Let

C(x) = f0(y) + f1(y)x+ · · ·+ fn(y)xn,
D(x) = g0(y) + g1(y)x+ · · ·+ gn(y)xn,

where

fl(y) =
∑
i≥0

aily
i, gl′(y) =

∑
j≥0

bjl′y
j for all 0 ≤ l, l′ ≤ n.
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Thus, it follows from A(y)B(y) = 0 that C(x)D(x) ∈ (xn+1), i.e.,

(f0(y) + f1(y)x+ · · ·+ fn(y)xn)(g0(y) + g1(y)x+ · · ·+ gn(y)xn) ∈ (xn+1).

So, by Claim 2, we obtain

fl(y)gl′(y) = 0 in R[[y]] for all 0 ≤ l, l′ ≤ n with l + l′ ≤ n.
That is, (

∑
i≥0 aily

i)(
∑

j≥0 bjl′y
j) = 0. Since R is reduced, R is Armendariz

of power series type, and thus ailbjl′ = 0 for all i, j ≥ 0. So (3.3) holds, as
desired.

(2)⇒(1). This is obvious.
(1)⇒(3). Suppose that R[x;σ]/(xn+1) is an Armendariz ring.
(i) For any a ∈ R, σn(a)a = 0 implies a = 0: In fact, if σn(a)a = 0 then

(σn(a) +xny)(a−xny) = 0 in (R[x;σ]/(xn+1))[y]. Hence σn(a)xn ∈ (xn+1).
So σn(a) = 0. Since σ is injective, a = 0.

(ii) R is reduced: If a2 = 0 in R, then σn(σn(a)a)σn(a)a = σ2n(a)σn(a2)a
= 0. By what was proved above, σn(a)a = 0, and hence a = 0.

Now we prove that σ is rigid. Let aσ(a) = 0 in R. Then (σ(a) −
σ(a)xy)(a + σ(a)xy) = 0 in (R[x;σ]/(xn+1))[y]. Thus σ(a)2x ∈ (xn+1) by
our assumption. Hence σ(a)2 = 0, so a = 0.

It is easy to exhibit reduced rings R with σ(a)a = 0 but σ(a) 6= 0: Let
R = Z2 × Z2 and σ : R → R, (r, s) 7→ (s, r). Then R is reduced and σ is
an automorphism of R with σ(1) = 1. Let a = (1, 0). Then σ(a)a = 0 but
σ(a) = (0, 1). So R[x;σ]/(x2) is not Armendariz.

If R[x;σ]/(x2) is Armendariz, then σ(a)a = 0 implies σ(a) = 0: In this
case, (σ(a)+xy)(a−xy) = 0 in (R[x;σ]/(x2))[y]. Hence σ(a)x = 0, implying
σ(a) = 0. But σ need not be rigid even if R[x;σ]/(x2) is Armendariz of power
series type.

Example 21. Let D be a (not necessarily commutative) domain and let
R = D[t] be the polynomial ring. Define σ : R→ R by f(t) 7→ f(0). Then σ
is an endomorphism of R and the following hold :

(1) σ is not injective (so not rigid).
(2) R[x;σ]/(x2) is Armendariz of power series type.

Proof. (1) Clearly, σ is an endomorphism of R and it is not injective.
(2) Let S = R[x;σ]/(x2). Then S can be identified with the ring S =

{f + gx : f, g ∈ R}, with multiplication defined by x2 = 0 and xf = σ(f)x
for all f ∈ R. Suppose that

(3.4) (α0 + α1y + α2y
2 + · · · )(β0 + β1y + β2y

2 + · · · ) = 0 in S[[y]].

We need to show that αiβj = 0 for all i and j. Without loss of generality, we
may assume that α0 6= 0 and β0 6= 0. Write αi = fi + f ′ix and βi = gi + g′ix,
where fi, f ′i , gi, g

′
i ∈ R for i ≥ 0.
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Claim 1. fi = 0 for all i ≥ 0.

Proof. By (3.4), α0β0 = 0. It follows that f0g0 = 0 and f0g
′
0+f ′0σ(g0) = 0

in R. Since g0 +g′0x 6= 0 and R is a domain, it must be that f0 = 0. Suppose
that f0 = · · · = fk−1 = 0 and fk 6= 0, where k ≥ 1. We show that this leads
to a contradiction. Again by (3.4), α0βk +α1βk−1 + · · ·+αkβ0 = 0 in S, i.e.,

(3.5) fkg0 + [f ′0σ(gk) + f ′1σ(gk−1) + · · ·+ f ′kσ(g0) + fkg
′
0]x = 0 in S.

So fkg0 = 0 in R, and hence g0 = 0. Assume that g0 = · · · = gl−1 = 0, where
l ≥ 1. By (3.4), α0βk+l + α1βk+l−1 + · · ·+ αk+lβ0 = 0 in S, that is,

fkgl + [f ′0σ(gk+l) + · · ·+ f ′kσ(g′l)
+ fkg

′
l + kk+1g

′
l−1 + · · ·+ fk+lg

′
0]x = 0 in S.

Thus fkgl = 0, so gl = 0. A simple induction shows that gi = 0 for i =
0, 1, . . . . It then follows from (3.5) that fkg′0 = 0 in R. So g′0 = 0 and hence
β0 = 0. This contradiction shows that Claim 1 holds.

Claim 2. σ(gi) = 0 for all i ≥ 0.

Proof. Since α0 6= 0, we have f ′0 6= 0. Because of Claim 1, α0β0 = 0
gives f ′0σ(g0) = 0, so σ(g0) = 0. Assume that σ(g0) = · · · = σ(gk−1) = 0,
where k ≥ 1. As before, α0βk + α1βk−1 + · · · + αkβ0 = 0 in S. This gives
f ′0σ(gk) = 0, so σ(gk) = 0. Hence σ(gi) = 0 for all i ≥ 0 by induction.

Thus, by Claims 1 and 2, αiβj = (fi+f ′ix)(gj +g′jx) = (f ′ix)(gj +g′jx) =
f ′iσ(gj)x = 0 for all i and j. So S is Armendariz of power series type.

4. An extension of Theorem 5. When considering the Armendariz
property of a skew polynomial ring R[x;σ], the authors of [8] were naturally
led to the notion of a σ-skew Armendariz ring. In [8, Theorem 6], they
proved that, for an endomorphism σ of R with σk = 1R for some k ≥ 1,
R is σ-skew Armendariz if and only if R[x] is σ-skew Armendariz. (There
is a gap in the proof of [8, Theorem 6], as noted in [4, Remark, p. 1139].)
This result is a consequence of a much more general result proved in this
section.

Definition 22. Let I be an ideal of a ring R and let σ be an en-
domorphism of R with σ(I) ⊆ I. We denote by [R; I][x;σ] the subring
R[x;σ] + I[[x;σ]] of R[[x;σ]], where I[[x;σ]] is the ideal of R[[x;σ]] gener-
ated by I.

Definition 23. Let I be an ideal of R and let σ be an endomorphism
of R with σ(I) ⊆ I. The ring R is called (σ, I)-Armendariz if, whenever
(
∑

i≥0 aix
i)(
∑

j≥0 bjx
j) = 0 in [R; I][x;σ], then aiσi(bj) = 0 for all i and j.
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Lemma 24. Let I be an ideal of a ring R and let σ be an endomorphism
of R with σ(I) ⊆ I. Then the mapping [R; I][x;σ] → [R; I][x;σ],

∑
aix

i 7→∑
σ(ai)xi, is a ring homomorphism, still denoted by σ, and σ(I[[x;σ]]) ⊆

I[[x;σ]].

Proof. The verification is straightforward.

Lemma 25. Let I be an ideal of a ring R and let σ be an endomorphism
of R with σ(I) ⊆ I, and let k ≥ 1 be an integer. Define

φk :
[
[R; I][x;σ]; I[[x;σ]]

]
[y;σ]→ [R; I][x;σ],

∑
fiy

i 7→
∑

fix
ki.

Then:

(1) φk is a well-defined mapping.
(2) φk is a ring homomorphism iff σk = σ.

Proof. (1) Because of Lemma 24, (1) can be proved arguing as in the
proof of Lemma 4.

(2) “⇒”. Suppose that φk is a ring homomorphism. Then, for all r ∈ R,
0 = φk(yr) − φk(y)φk(r) = φk(σ(r)y) − xkr = σ(r)xk − σk(r)xk = (σ(r) −
σk(r))xk. This shows that σ(r) = σk(r) for all r ∈ R. That is, σk = σ.

“⇐”. The mapping φk clearly preserves addition. Direct calculation
shows that the condition σk = σ implies that φk preserves multiplication.

Theorem 5 is a special case of the next theorem where σ = 1R. The
hypothesis that σ is periodic occurs here because of Lemma 25(2).

Theorem 26. Let I be an ideal of a ring R and let σ be an endomor-
phism of R with σ(I) ⊆ I. Suppose that σ is periodic (i.e., there exists n0 > 1
such that σn0 = σ). Then R is (σ, I)-Armendariz if and only if [R; I][x;σ]
is (σ, I[[x;σ]])-Armendariz.

Proof. One implication is clear. So, suppose that R is (σ, I)-Armendariz.
Let

(4.1)
(∑
i≥0

fiy
i
)(∑

i≥0

giy
i
)

= 0 in
[
[R; I][x;σ]; I[[x;σ]]

]
[y;σ].

We need to show that fiσi(gj) = 0 for all i and j. It is clear that f0g0 = 0.
Assume that, for k ≥ 1, f0gj = 0 for j = 0, . . . , k − 1. We next prove that
f0gk = 0. For i ≥ 0, write

fi = a
(i)
0 + a

(i)
1 x+ · · ·+ a(i)

n x
n + · · · ,

gi = b
(i)
0 + b

(i)
1 x+ · · ·+ b(i)n x

n + · · · .

If f0gk 6= 0, then we can assume that, for some s ≥ 0, f0b
(k)
j = 0 for j < s

but f0b
(k)
s 6= 0. We can further assume that, for some t ≥ 0, a(0)

i σi(b(k)s ) = 0
for i < t but a(0)

t σt(b(k)s ) 6= 0. Let n1 > max{s, t}. Since n0 > 1, there exists
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k0 ≥ 1 such that k0(n0− 1) ≥ n1− n0. Let l = (k0 + 1)n0− k0. Then l ≥ n1

and σl = σ. (Indeed, σ(i+1)n0−i = σ for all i ≥ 0.) By Lemma 25,

φl :
[
[R; I][x;σ]; I[[x;σ]]

]
[y;σ]→ [R; I][x;σ],

∑
fiy

i 7→
∑

fix
li,

is a ring homomorphism. Thus, it follows from (4.1) that(∑
i≥0

fix
il
)(∑

i≥0

gix
il
)

= 0 in [R; I][x;σ].

Now arguing exactly as in the proof of Theorem 5, we deduce that, for each
i ≥ 0, fiσi(gj) = 0 for j = 0, 1, . . . .

The authors of [8] call a ring R σ-skew Armendariz if R is (σ, 0)-Armen-
dariz. We call R σ-skew Armendariz of power series type if R is (σ,R)-
Armendariz.

Corollary 27. Let σ be a periodic endomorphism of R. Then R is
σ-skew Armendariz iff R[x;σ] is σ-skew Armendariz.

Proof. We just apply Theorem 26 to the case where I = 0.

Corollary 28. Let σ be a periodic endomorphism of R. Then R is
σ-skew Armendariz of power series type iff R[[x;σ]] is σ-skew Armendariz
of power series type.

Proof. This is the special case of Theorem 26 where I = R.

It is known that reduced rings are Armendariz of power series type,
and Armendariz rings of power series type are Armendariz, but neither of
the implications is reversible. It can also be shown that R being σ-rigid
implies R is σ-skew Armendariz of power series type, and R being σ-skew
Armendariz of power series type implies R is σ-skew Armendariz. Below, we
present a ring R with an endomorphism 1R 6= σ = σ3 such that R is σ-skew
Armendariz but not σ-skew Armendariz of power series type, and a ring R
with an endomorphism 1R 6= σ = σ2 such that R is σ-skew Armendariz of
power series type but not σ-rigid.

Example 29. Let S = R ∝ R where R is a (not necessarily commuta-
tive) domain. Define σ : S → S,

(
a b
0 a

)
7→
(
a 0
0 a

)
. Then:

(1) σ is an endomorphism of S, it is neither injective nor surjective, and
σ2 = σ.

(2) σ is not rigid.
(3) S is σ-skew Armendariz of power series type.

Proof. (1) and (2) are clear.
(3) Let (

∑
i≥0 αix

i)(
∑

j≥0 βjx
j) = 0 in S[[x;σ]], where αi =

( ai ri
0 ai

)
and βj =

( bj sj

0 bj

)
. We prove that α0βj = 0 for all j. Then it follows by
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induction that αiσi(βj) = 0 for all i and j. We can assume that α0βj = 0
for j = 0, 1, . . . , k − 1. We next show that α0βk = 0.

Suppose that a0 6= 0. Since R is a domain, α0βj = 0 implies that βj = 0
(for j = 0, . . . , k − 1). Thus, it follows from (

∑
i≥0 αix

i)(
∑

j≥0 βjx
j) = 0

that α0βk = 0.
Suppose that a0 = 0 but r0 6= 0. Again since R is a domain, α0βj = 0

implies that bj = 0 (for j = 0, . . . , k−1). Thus, from (
∑

i≥0 αix
i)(
∑

j≥0 βjx
j)

= 0, one obtains α0βk + α1σ(βk−1) + · · · + αkσ
k(β0) = 0. That is, α0βk +

α10 + · · ·+ αk0 = 0. So α0βk = 0.
Hence in any case, α0βk = 0. By induction, α0βj = 0 for all j.

Example 30. Let R = Z ∝ Z2∞. Define σ : R → R,
(
n a
0 n

)
7→
(
n −a
0 n

)
.

Then:

(1) σ is an automorphism of R, σ 6= 1R and σ2 = 1R (so σ3 = σ).
(2) R is not σ-skew Armendariz of power series type.
(3) R is σ-skew Armendariz.

Proof. (1) is clear.
(2) Let {ξi : i = 0, 1, . . .} be a set of generators of the abelian group Z2∞

such that 2ξ0 = 0, and 2ξi+1 = ξi for all i ≥ 0. For each i ≥ 0, let

a2i =
(

2 0
0 2

)
, a2i+1 =

(
1 0
0 1

)
, bi =

(
0 ξi

0 0

)
.

Then (
∑

i≥0 aix
i)(
∑

i≥0 bix
i) = 0 in R[[x;σ]]. But a0b2 6= 0. So R is not

σ-skew Armendariz of power series type.
(3) This can be proved arguing as in the proof of Example 3(2).

Proposition 31. Let I be an ideal of a ring R and let σ be an endo-
morphism of R with σ(I) ⊆ I. Suppose that σk = 1R for some k ≥ 1. Then
R is (σ, I)-Armendariz if and only if [R; I][x] is (σ, I[[x]])-Armendariz.

Proof. If k = 1, this is Theorem 5. So assume that k > 1, and write

[R; I][xk] = {f(xk) : f(x) ∈ [R; I][x]},
[R; I][xk;σ] = {f(xk) : f(x) ∈ [R; I][x;σ]},

I[[xk]] = {f(xk) : f(x) ∈ I[[x]]},
I[[xk;σ]] = {f(xk) : f(x) ∈ I[[x;σ]]}.

Then [R; I][xk] is a subring of [R; I][x] and I[[xk]] is an ideal of [R; I][xk], and
[R; I][xk;σ] is a subring of [R; I][x;σ] and I[[xk;σ]] is an ideal of [R; I][xk;σ].
The following two claims can be easily verified.

Claim 1. The mapping
[
[R; I][x]; I[[x]]

]
[y;σ]→

[
[R; I][xk]; I[[xk]]

]
[y;σ],∑

i≥0 fi(x)yi 7→
∑

i≥0 fi(x
k)yi, is a ring homomorphism.
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Claim 2. θ : [R, I][xk] ∼= [R, I][xk;σ] and θ(I[[xk]]) = I[[xk;σ]],
where θ(

∑
i≥0 aix

ik) =
∑

i≥0 aix
ik; and θ :

[
[R, I][xk], I[[xk]]

]
[y;σ] ∼=[

[R, I][xk;σ], I[[xk;σ]]
]
[y;σ], where θ(

∑
i≥0 fiy

i) =
∑

i≥0 θ(fi)y
i.

Now let(∑
i≥0

fi(x)yi
)(∑

i≥0

gi(x)yi
)

= 0 in
[
[R; I][x], I[[x]]

]
[y;σ].

We need to show that fi(x)σi(gj(x)) = 0 for all i and j. By Claim 1,(∑
i≥0

fi(xk)yi
)(∑

i≥0

gi(xk)yi
)

= 0 in
[
[R; I][xk], I[[xk]]

]
[y;σ].

This shows, by Claim 2, that(∑
i≥0

fi(xk)yi
)(∑

i≥0

gi(xk)yi
)

= 0 in
[
[R; I][xk;σ], I[[xk;σ]]

]
[y;σ].

Thus, (
∑

i≥0 fi(x
k)yi)(

∑
i≥0 gi(x

k)yi) = 0 in
[
[R; I][x;σ], I[[x;σ]]

]
[y;σ].

But by Theorem 26, [R; I][x;σ] is (σ, I[[x;σ]])-Armendariz, and hence
fi(xk)σi(gj(xk)) = 0 in [R; I][x;σ] for all i and j. Hence fi(xk)σi(gj(xk)) = 0
in [R; I][xk;σ] for all i and j. Thus, by Claim 2, fi(xk)σi(gj(xk)) = 0 in
[R; I][xk] for all i and j. This clearly shows that fi(x)σi(gj(x)) = 0 in
[R; I][x].

Corollary 32 ([4, Proposition 7], [8, Theorem 6]). Let σ be an endo-
morphism of R. Suppose that σk = 1R for some k ≥ 1. Then R is σ-skew
Armendariz if and only if R[x] is σ-skew Armendariz.

Corollary 33. Let σ be an endomorphism of R. Suppose that σk = 1R
for some k ≥ 1. Then R is σ-skew Armendariz of power series type if and
only if R[[x]] is σ-skew Armendariz of power series type.
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