
COLLOQU IUM MATHEMAT ICUM
VOL. 113 2008 NO. 2

REFLEXIVE SUBSPACES OF SOME ORLICZ SPACES

BY

EMMANUELLE LAVERGNE (Lens)

Abstract. We show that when the conjugate of an Orlicz function φ satisfies the
growth condition ∆0, then the reflexive subspaces of Lφ are closed in the L1-norm. For
that purpose, we use (and give a new proof of) a result of J. Alexopoulos saying that
weakly compact subsets of such Lφ have equi-absolutely continuous norm.

Introduction. Bretagnolle and Dacunha-Castelle showed in [3] that an
Orlicz space Lφ embeds into L1 (meaning that there exists an isomorphism
of this space onto a subspace of L1) if and only if φ is 2-concave (recall that a
function f is r-concave if f(x1/r) is concave). If φ is an Orlicz function whose
conjugate φ∗ satisfies the condition ∆0 (see below for the definition), then φ
is equivalent, for every r > 1, to an r-concave Orlicz function (Proposition 4)
and hence Lφ embeds into L1. In this paper, we show that for such Orlicz
functions φ, the reflexive subspaces of Lφ are actually closed in the L1-norm
(and so the Lφ-topology is the same as the L1-topology). In order to prove
this, we shall use a result of J. Alexopoulos (Theorem 1), saying that, when
φ∗ ∈ ∆0, the weakly compact subsets of Lφ have equi-absolutely continuous
norm, and we shall begin by giving a new proof of this result, using a recent
characterization, due to P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-
Piazza (see [6, Theorem 4]), of the weakly compact operators defined on a
subspace of the Morse–Transue space Mψ, when ψ ∈ ∆0.

1. Notation. We shall consider Orlicz spaces defined on a probability
space (Ω,P) (see [7], [13]). By an Orlicz function, we shall understand a non-
decreasing convex function φ : [0,+∞] → [0,+∞] such that φ(0) = 0 and
φ(∞) = ∞. To avoid pathologies, we shall assume that φ has the following
additional properties: φ is continuous at 0, strictly convex, and moreover,

lim
x→+∞

φ(x)
x

= +∞.

This is essentially to exclude the case of φ(x) = ax, and so of L1.
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Let φ be an Orlicz function. If φ′ is the left derivative of φ, then, for
every x > 0,

φ(x) =
x�

0

φ′(t) dt.

The Orlicz space Lφ(Ω) is the space of all equivalence classes of measurable
functions f : Ω → C for which there is a constant C > 0 such that

�

Ω

φ

(
|f(t)|
C

)
dP(t) < +∞.

Then for all f ∈ Lφ(Ω), we define the Luxemburg norm of f as the infimum
of all possible constants C such that the above integral is ≤ 1. With this
norm, Lφ(Ω) is a Banach space.

The Morse–Transue space Mφ(Ω) is the subspace of Lφ(Ω) generated by
L∞(Ω), or equivalently, the subspace of all functions f for which the above
integral is finite for all C > 0.

To every Orlicz function φ is associated the conjugate Orlicz function φ∗
defined by

φ∗ : [0,+∞)→ [0,+∞), x 7→ sup{xy − φ(y); y ≥ 0}.
(Observe that φ∗(x) <∞ since φ(x)/x tends to ∞.)

The function φ∗ is itself strictly convex. It should also be noticed that
for all Orlicz functions φ, we have

(φ∗)∗ = φ.

Moreover, if φ1 and φ2 are two Orlicz functions such that φ1(x) ≤ φ2(x)
whenever x ≥ x0, then there exists y0 such that φ∗2(y) ≤ φ∗1(y) for all y ≥ y0.

We shall also use some growth conditions for Orlicz functions. We shall
say that φ satisfies the ∆2 condition (and write φ ∈ ∆2) if there exists a
constant K > 1 such that for all x large enough,

φ(2x) ≤ Kφ(x).

We shall say (see [6] and [7]) that ψ satisfies the ∆0 condition (and write
ψ ∈ ∆0) if there exists a constant β > 1 such that

lim
x→+∞

ψ(βx)
ψ(x)

= +∞.

It should be noticed that if φ is an Orlicz function such that ψ = φ∗ ∈ ∆0,
then φ ∈ ∆2. Indeed, φ ∈ ∆2 if and only if there exists β > 1 such that for
all x large enough (see [13, II.2.3]),

ψ(βx)
ψ(x)

≥ 2β.
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Let φ be an Orlicz function and let ψ be its complementary Orlicz func-
tion. We shall assume that φ ∈ ∆2. Then, isomorphically,

Lφ = (Mψ)∗, Lψ = (Lφ)∗,

and so
(Mψ)∗∗ = Lψ.

Moreover, Mψ = Lψ if and only if ψ ∈ ∆2.

2. Equi-absolutely continuous norms of relatively weakly com-
pact subsets of an Orlicz space. We first recall that if φ is an Orlicz
function, then we say that K ⊆ Lφ has equi-absolutely continuous norm if
for all ε > 0, there exists δ > 0 such that

P(E) < δ ⇒ sup{‖χEf‖Lφ ; f ∈ K} < ε.

Every such K is relatively weakly compact, and, under the assumption
φ∗ ∈ ∆0, J. Alexopoulos ([2]) proved the converse:

Theorem 1. Let φ be an Orlicz function such that ψ = φ∗ ∈ ∆0. Then
every relatively weakly compact subset of Lφ has equi-absolutely continuous
norm.

We are going to give a new proof of this result, using a criterion of weak
compactness proved by P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-
Piazza (see [6, Theorem 4]).

Theorem 2. Let ψ be an Orlicz function such that ψ ∈ ∆0, X be a
subspace of Mψ, and Y be a Banach space. Then for every bounded linear
operator T : X → Y , T is weakly compact if and only if for some (and then
all) p ∈ [1,+∞[,

∀ε > 0, ∃Cε > 0, ∀f ∈ X, ‖T (f)‖ ≤ Cε‖f‖p + ε‖f‖ψ.

Proof of Theorem 1. We first prove that if X is a reflexive subspace
of Lφ, then the closed unit ball BX of X has equi-absolutely continuous
norm. BX is also weakly compact, because X is reflexive. Moreover, as Lφ =
(Mψ)∗, BX is weak∗ compact, and so X is weak∗ closed in Lφ (by Banach–
Dieudonné’s theorem). So there exists Z ⊆Mψ such that X = Z⊥. Then X
is isometrically isomorphic to (Mψ/Z)∗. Let us denote by

Π : Mψ →Mψ/Z

the canonical projection. As (Mψ/Z)∗ is isometrically isomorphic to X,
Mψ/Z is reflexive, and so Π is weakly compact. We can now use Theorem 2.
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Let α > 0, g ∈ BX and A be a measurable subset of Ω. We have

‖gχA‖φ ≤ 2 sup{|〈gχA, f〉|; f ∈Mψ, ‖f‖ψ ≤ 1}
= 2 sup{|〈g, fχA〉|; f ∈Mψ, ‖f‖ψ ≤ 1}
= 2 sup{|〈g,Π(fχA)〉|; f ∈Mψ, ‖f‖ψ ≤ 1}
≤ 2‖g‖φ sup{‖Π(fχA)‖; f ∈Mψ, ‖f‖ψ ≤ 1}
≤ 2 sup{Cα‖fχA‖1 + α‖fχA‖ψ; f ∈Mψ, ‖f‖ψ ≤ 1}·

Using Hölder’s inequality for Orlicz spaces, we get

‖fχA‖1 =
�

Ω

|f |χA dP ≤ ‖f‖ψ‖χA‖φ ≤ ‖χA‖φ.

On the other hand, for every positive constant C,
�

Ω

φ

(
χA
C

)
dP =

�

A

φ

(
1
C

)
dP = m(A)φ

(
1
C

)
,

and so

‖χA‖φ =
1

φ−1(1/m(A))
.

We also have
‖fχA‖ψ ≤ ‖f‖ψ ≤ 1.

Let ε > 0. Let us choose α such that 4α < ε, and δ > 0 such that

m(A) < δ ⇒ 1
φ−1(1/m(A))

≤ α

Cα
·

Thus we get
‖gχA‖φ ≤ 4α < ε

whenever m(A) < δ; so BX has equi-absolutely continuous norm.

We now assume that K is a relatively weakly compact subset of Lφ. We
use the following theorem (see [4, Theorem 11.17]):

Theorem 3 (Davis, Figiel, Johnson, Pełczyński). Let K be a weakly
compact subset of a Banach space X. Then there exist a reflexive space Y
and a bounded linear one-to-one operator U from Y into X such that K ⊆
U(BY ).

Let α > 0, g ∈ BX and A be a measurable subset of Ω. By the theorem
above, there exists h ∈ BY such that g = U(h). Denote by U∗ : Lψ → Y ∗

the dual operator, and T its restriction to Mψ. As Y ∗ is reflexive, we can



REFLEXIVE SUBSPACES OF ORLICZ SPACES 337

use Theorem 2 to obtain

‖gχA‖φ ≤ 2 sup{|〈gχA, f〉|; f ∈Mψ, ‖f‖ψ ≤ 1}
= 2 sup{|〈g, fχA〉|; f ∈Mψ, ‖f‖ψ ≤ 1}
= 2 sup{|〈U(h), fχA〉|; f ∈Mψ, ‖f‖ψ ≤ 1}
= 2 sup{|〈h, U∗(fχA)〉|; f ∈Mψ, ‖f‖ψ ≤ 1}
≤ 2 sup{‖T (fχA)‖; f ∈Mψ, ‖f‖ψ ≤ 1}
≤ 2 sup{Cα‖fχA‖1 + α‖fχA‖ψ; f ∈Mψ, ‖f‖ψ ≤ 1}
≤ 4α

as above.

3. Reflexive subspaces of Lφ when φ∗ ∈ ∆0. We begin by the fol-
lowing consequence of the embedding theorem of Bretagnolle and Dacunha-
Castelle quoted in the introduction.

Proposition 4. Let φ be an Orlicz function φ∗ ∈ ∆0. Then Lφ embeds
into L1.

Proof. Let us observe that condition ∆0 for ψ = φ∗ implies that the
lower Matuszewska–Orlicz index at infinity of ψ is α∞ψ = +∞ (see [11]). In
fact, if β > 1 and x0 > 1 are such that

ψ(βx) ≥ Cψ(x) for every x ≥ x0,

we can deduce that setting q = ln(C)/ln(β) we have

ψ(tx) ≥ C−1tqψ(x) for every x ≥ x0 and t ≥ 1,

and consequently α∞ψ ≥ q. Since C is arbitrary, α∞ψ = +∞.
By the duality of Matuszewska–Orlicz indices, the upper Matuszewska–

Orlicz index of φ is β∞φ = 1. As a consequence, φ is equivalent to an r-concave
Orlicz function, for every r > 1. But a result of Bretagnolle and Dacunha-
Castelle tells us that any 2-concave Orlicz function space is isomorphic to a
subspace of L1.

Our main result is:

Theorem 5. Let φ be an Orlicz function with φ∗ ∈ ∆0. Then the re-
flexive subspaces of Lφ are closed in the L1-norm. In particular , the L1- and
Lφ-norms are equivalent on reflexive subspaces of Lφ.

Together with Rosenthal’s theorem (see [14, p. 268] or [8, p. 446]) this
yields

Corollary 6. Let φ be an Orlicz function such that φ∗ ∈ ∆0 and let X
be a reflexive subspace of Lφ. Then there exist some p > 1 and a probability
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density u > 0 such that the map

j : X → j(X) ⊆ Lp(u.P), f 7→ f/u,

is an isomorphism.

Proof of Theorem 5. First notice that Lφ(Ω,P) ⊆ L1(Ω,P). Indeed, φ is
convex and φ′ is non-decreasing, so

φ(x) =
x�

0

φ′(t) dt ≥
x�

1

φ′(t) dt ≥ (x− 1)φ′(1) ≥ xφ′(1).

Hence for every constant C > 0 and all f ∈ Lφ(Ω,P), we have

φ

(
|f(x)|
C

)
≥ φ′(1)

C
|f(x)| > 0,

and so �

Ω

φ

(
|f |
C

)
dP ≥ φ′(1)

C
‖f‖L1 ·

Choosing C = ‖f‖φ, we get

‖f‖Lφ ≥ φ′(1)‖f‖L1 .

In particular, convergence in Lφ-norm implies convergence in L1-norm.
Let now X be a reflexive subspace of Lφ(Ω) and (fn)n∈N be a sequence

in X which converges in measure to a function f . We are going to prove that
(fn)n∈N converges to f for the Luxemburg norm of Lφ(Ω). The unit closed
ball BX of X is weakly compact because X is reflexive. Hence BX has an
equi-absolutely continuous norm: for every ε > 0, there is some δ > 0 such
that

P(A) ≤ δ ⇒ ‖gχA‖φ ≤ ε, ∀g ∈ BX .

By homogeneity,

P(A) ≤ δ ⇒ ‖gχA‖φ ≤ ε‖g‖φ, ∀g ∈ X.

Fix ε > 0 and let δ > 0 be associated to ε as above. Since (fn)n∈N converges
to f in measure, there is an n0 ≥ 0 such that P(|fn − f | ≥ ε) ≤ δ for every
n ≥ n0. Then for n ≥ n0,

‖fn − f‖φ ≤ ‖(fn − f)χ{|fn−f |≥ε}‖φ + ‖(fn − f)χ{|fn−f |≤ε}‖φ
≤ ε‖fn − f‖φ + ε/φ−1(1) ·

Indeed, if gn = (fn − f)χ{|fn−f |≤ε}, then for every C > 0,
�

Ω

φ(|gn|/C) dP ≤ φ(ε/C),
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and so if C ≥ ε/φ−1(1), then
�

Ω

φ(|gn|/C) dP ≤ 1,

and hence ‖gn‖φ ≤ ε/φ−1(1)·
For 0 < ε < 1, we have obtained, for n ≥ n0,

‖fn − f‖φ ≤
1

φ−1(1)
ε

1− ε
·

So
lim

n→+∞
‖fn − f‖φ = 0.

Hence, on X, the convergences in Lφ-norm, in L1-norm and in measure are
equivalent.

Remark. Without the additional assumption on the Orlicz function φ,
Proposition 3 is no longer true, and φ ∈ ∆2 does not suffice; indeed, one has
the following example.

Example. There exists an Orlicz function φ such that Lφ(0, 1) is reflex-
ive (so φ ∈ ∆2 and ψ = φ∗ ∈ ∆2), but not isomorphic to any subspace of
any Lp space, 1 ≤ p <∞.

This space was contructed by F. Hernández and V. Peirats in [5]. It is
based on the construction by J. Lindenstrauss and L. Tzafriri ([9, Theo-
rem 3]) of a reflexive Orlicz sequence space which contains no complemented
subspace isomorphic to any `p, 1 ≤ p ≤ ∞ ([10, Theorem 3]). More pre-
cisely, for every 2 ≤ α ≤ β < +∞, they constructed an Orlicz function on
[0, 1] such that `φ contains a subspace isomorphic to `q for any q such that
α ≤ q ≤ β ([11, Theorem 1], or [12, Theorem 4.a.9]), but no complemented
subspace isomorphic to any `p. It is proved in [5] that the minimal (see [9,
Definition 2]) Orlicz function φ constructed by Lindenstrauss and Tzafriri on
[0, 1] has an extension φ to a minimal Orlicz function defined on [0,+∞[, and
that the Orlicz function space Lφ(0, 1) contains a (complemented) subspace
isomorphic to `φ, but no complemented subspace isomorphic to `p for p 6= 2.

This Orlicz space Lφ(0, 1) is reflexive (because 1 < α∞φ = α and β∞φ =
β < +∞: see [5]) and cannot be isomorphic to a subspace of any Lp space.
Indeed, if β > α, then `φ, and hence Lφ(0, 1), contains a subspace isomorphic
to `q for any q ∈ [α, β], and in particular with q > 2; hence Lφ(0, 1) cannot
be isomorphic to a subspace of Lp for 1 ≤ p ≤ 2, since these latter spaces
have cotype 2, whereas the cotype of Lp is p. On the other hand, Lφ(0, 1)
cannot be isomorphic to a subspace of any Lp space for p > 2 since, by the
Kadec–Pełczyński theorem (see [1, Theorem 6.4.8]), every non-Hilbertian
reflexive subspace (which is the case of Lφ(0, 1)) of such an Lp space must
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contain a complemented subspace isomorphic to `p, and Lφ(0, 1) contains no
such subspace.
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