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Abstract. Although there is an extensive literature on various means of two positive
operators and their applications, these means do not typically readily extend to means of
three and more operators. It has been an open problem to define and prove the existence
of these higher order means in a general setting. In this paper we lay the foundations
for such a theory by showing how higher order means can be inductively defined and
established in general metric spaces, in particular, in convex metric spaces. We consider
uniqueness properties and preservation properties of these extensions, properties which
provide validation to our approach. As our targeted application, we consider the positive
operators on a Hilbert space under the Thompson metric and apply our methods to derive
higher order extensions of a variety of standard operator means such as the geometric
mean, the Gauss mean, and the logarithmic mean. That the operator logarithmic mean
admits extensions of all higher orders provides a positive solution to a problem of Petz
and Temesi [SIAM J. Matrix Anal. Appl. 27 (2005)].

1. Introduction. Formally, a mean of order n, or n-mean for short, on
a set X is a function µ : Xn → X satisfying µ(x, . . . , x) = x for all x ∈ X.
It is frequently assumed in the definition that a mean is invariant under any
permutation of variables; we call these symmetric means. Typically, a mean
represents some type of averaging operator. The subject of means dates back
into antiquity. The Greeks, motivated by their interest in proportions, de-
fined up to eleven different means, the arithmetic, geometric, and harmonic
being the best known.

In the twentieth century interest emerged in the theory of topological
means, that is, symmetric means on topological spaces for which the mean
operation is continuous. This work was pioneered by G. Aumann [2], who
showed among other things that no sphere admits such a mean [3]. The prob-
lem of characterizing those spaces, particularly metric continua, that admit
the structure of a topological mean has attracted considerable attention up
to the present day. Although it has not been completely solved, numerous
partial results exist, e.g., the result of Eckmann, Ganea, and Hilton [14] that
a compact, connected polyhedron admitting the structure of a topological
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mean is contractible. B. Eckmann [13] had earlier introduced the important
approach of using tools from algebraic topology to attack the problem. We
do not pursue this particular topic further, since our interests lie elsewhere,
but refer the reader to J. Charatonik’s overview [11] of both older and re-
cent work, where one finds a much fuller list of references related to these
matters.

Operator means are of more recent vintage, but have a substantial lit-
erature that has grown out of foundational papers on the subject such as
that of Kubo and Ando [18]. The theory has found a variety of applications,
including the establishment of important inequalities, some of which find ap-
plication in quantum-mechanical calculations. Such applications form part
of the motivation for extending these operator means to higher orders than
two, but finding a general method for doing this has been elusive, and the
question of how to do this has remained an open problem. Recently, how-
ever, Ando, Li, and Mathias [1] proposed an attractive method for the case
of the geometric mean on the positive (semi)definite Hermitian matrices.

Our purpose in this paper is to develop a method of extending means
to higher orders that appears to offer a viable general approach. For the
definition and method of extending, we favor a general version of the recent
approach of Horwitz [16] for the case of means on the positive reals and of
Ando, Li, and Mathias [1] for the case of the geometric mean on the posi-
tive (semi)definite Hermitian matrices. This approach has also been adopted
and generalized beyond the case of the matrix geometric mean by Petz and
Temesi in [24], [23], although in the general setting they only obtain exis-
tence of the higher order means for ordered tuples. Bhatia and Holbrook [6]
have proposed an alternative generalization for the geometric mean via a ge-
ometric approach linked to work of É. Cartan (see [7] for a general discussion
of the problem and their approach).

In this paper we show that the basic approach of Horwitz, of Ando,
Li and Mathias, and of Petz and Temesi can be generalized to means on
metric spaces and develop the theory of extensions in this context. The
resulting theory is attractive for the generality of its results and for the
resulting uniqueness and preservation properties of the extensions. The main
theorems give rather general conditions that guarantee that extensions of all
orders exist. Our main applications involve higher order means of positive
operators on a Hilbert space. We are particularly interested in those cases
in which one starts with a mean of two variables and inductively extends it
to all dimensions greater than two.

In Section 2 we present our approach to extending means via limits of the
“barycentric operator.” (This method is called “symmetrization” in [24].)
The extended means are invariant with respect to this operator and are



EXTENDING MEANS TO HIGHER ORDERS 193

typically characterized by this invariance. Section 3 contains a major result
of the paper: means that are nonexpansive and coordinatewise contractive
admit extensions to all higher orders.

In Section 4 a special case of the nonexpansive, coordinatewise contrac-
tive means is considered, namely convex means for which the mean is a
metrically convex function assigning to any two points a metric midpoint.
As explained in Section 5, Hadamard spaces (for which the metric satisfies
the semiparallelogram law) form an important class of examples of metric
spaces with associated convex mean. Our results yield higher order means
that compute the “barycenter” for any finite set of points. These barycen-
ters provide yet another intesting notion of a mean in Hadamard spaces, in
addition to the previously defined “circumcenter” and the generalization of
the geometric mean given by Bhatia and Holbrook [6].

In Section 6 we develop machinery for showing that certain types of it-
erated means are nonexpansive and coordinatewise contractive. Since many
important means (e.g., the arithmetic-geometric mean) arise in this fash-
ion, this is a useful and important result and adds great generality to our
approach.

Section 7 presents categorical aspects of means and their extensions. In
Section 8 a reverse construction is considered: given a mean, when is it an
extension of a lower order mean? Certain uniqueness results flow out of these
considerations. Connections between means, their extensions, and order are
developed in Section 9. In particular, it is shown that the important property
of order preservation carries over to the extended means.

The paper closes in Sections 10 and 11 with the study of means on the
space of positive operators on a Hilbert space. It is shown, by applying our
earlier results to the space of positive operators endowed with the Thompson
metric, that certain iterated means are nonexpansive and coordinatewise
contractive, hence extend to higher orders. This is true, for example, of the
arithmetic-geometric and logarithmic means, as we show in Section 11, and
hence they have higher order extensions. This conclusion for the logarithmic
mean provides a positive solution of a problem of Petz and Temesi in [24].

2. Mean extensions. An n-mean on a set X is an n-ary operation
(function) µ : Xn → X that satisfies a generalized idempotency law:
µ(x, . . . , x) = x for all x ∈ X. A mean is just an n-mean for some n ≥ 2.
The mean is symmetric if it is invariant under permutations:

µ(xπ(1), . . . , xπ(n)) = µ(x1, . . . , xn) for any permutation π on {1, . . . , n}.
(Note that for 2-means this means that the binary operation given by the
mean is commutative.) A topological n-mean is a continuous n-mean µ on a
Hausdorff topological space.
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A principal goal of our work is to “extend” a (symmetric) n-mean on X
to a (symmetric) (n+1)-mean. As mentioned in the introduction we pattern
our approach after [16] and [1], an approach that has some relation to the
process of compounding three means in three variables to obtain another
such mean (see [8]).

Definition 2.1. Given a set X and a k-mean µ : Xk → X, the barycen-
tric operator β = βµ : Xk+1 → Xk+1 is defined by

β(x) := (µ(π 6=1x), . . . , µ(π 6=k+1x)),

where x = (x1, . . . , xk+1) ∈Xk+1 and π 6=jx := (x1, . . . , xj−1, xj+1, . . . , xk+1)
∈ Xk. For a topological k-mean, we say that the barycentric map β is power
convergent if for each x ∈ Xk+1, we have limn β

n(x) = (x∗, . . . , x∗) for some
x∗ ∈ X.

As a motivating geometric example for the terminology consider the
3-mean in R3 that assigns to any three points the centroid of the trian-
gle for which they are the vertices, i.e., the point where the three me-
dians meet. If we take now the four vertices of a 3-simplex or tetrahe-
dron in R3, the barycentric operator applied to the 4-tuple consisting of
the four vertices replaces each vertex with the centroid (barycenter) of
the face opposite it, the face with vertices the remaining three vertices.
Thus one may envision the tetrahedron with vertices the four centroids of
the four faces as the result. Repeating this process, one obtains a shrink-
ing family of tetrahedra whose intersection is the barycenter of the origi-
nal tetrahedron, represented by the 4-tuple with all entries equal to that
point.

Remark 2.2. There is an alternative way that the barycentric map of
a k-mean may be defined, namely instead of defining the ith coordinate of
β(x) by deleting the ith coordinate of x ∈ Xk+1 and applying µ, we delete
the coordinate i∗ := k + 2− i and then apply µ. This means that we begin
(from left to right) by first deleting coordinate k + 1, k, down to 1, instead
of beginning by deleting coordinate 1 and continuing up to k+1. We denote
this alternative barycentric map by β∗. One may define β∗(x) alternatively
by reversing the (k + 1)-tuple β(x). Note that, as long as the mean µ is
symmetric, both methods power converge to the same limit, provided one
of them power converges. This equality of limits does not hold in general for
nonsymmetric means however. The theories for β and β∗ run parallel, so we
restrict our attention to β with a few brief remarks concerning β∗.

We define our first notion of an extension in terms of the barycentric
operator.
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Definition 2.3. A mean ν : Xk+1 → X is a β-invariant extension of
µ : Xk → X if ν ◦ βµ = ν, that is,

(2.1) ν(x) = ν(µ(π6=1x), . . . , µ(π6=k+1x))

for all x = (x1, . . . , xk+1) ∈ Xk+1.

The notion of a β-invariant extension was introduced by Horwitz [16],
who called it type I invariance.

Proposition 2.4. Assume that µ : Xk → X is a topological k-mean and
that the corresponding barycentric operator β is power convergent. Define
µ̃ : Xk+1 → X by µ̃(x) = x∗ where limn β

n(x) = (x∗, . . . , x∗).

(i) µ̃ : Xk+1 → X is a (k + 1)-mean on X that is a β-invariant exten-
sion of µ.

(ii) Any continuous mean on Xk+1 that is a β-invariant extension of µ
must equal µ̃.

(iii) If µ is symmetric, so is µ̃.

Proof. (i) For x ∈ X, x = (x, . . . , x) ∈ Xk+1, we have β(x) = x by the
idempotency of µ. Thus x = limn β

n(x) and hence µ̃(x) = x, i.e., µ̃ is a
mean. Further, we have

µ̃(β(x)) = π1(lim
n
βn(β(x))) = π1(lim

n
βn+1(x)) = µ̃(x),

where π1 is projection onto the first coordinate. Thus µ̃ ◦ β = µ̃, i.e., µ̃
defines a β-invariant extension of µ.

(ii) Suppose that ν is a continuous (k+1)-mean of X that is a β-invariant
extension of µ. Since ν = ν ◦β = ν ◦βn (by repeated application of the first
equality), for x ∈ Xk+1,

ν(x) = ν(β(x)) = ν(βn(x)) = ν(x∗, . . . , x∗) = x∗ = µ̃(x),

where (x∗, . . . , x∗) = limn→∞ β
n(x).

(iii) If µ is symmetric, then β commutes with any permutation applied to
the entries of x ∈ Xk+1, hence also βn, and thus one obtains the same limit
with constant entry µ̃(x) in either case. Hence µ̃ : Xk+1 → X is symmetric.

Remark 2.5. If β∗ is power convergent, then a β∗-invariant extension
is defined in the manner of the previous proposition and the analogous
proposition holds for β∗. However, β-invariant extensions need not be β∗-
invariant and vice versa. But both notions collapse to the same one for
symmetric means.

We seek a notion of mean extension that both allows one to deduce read-
ily that a large number of properties transfer from a mean to its extension,
and also is applicable to a wide variety of means. The preceding proposition
provides the ingredients for this definition.
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Definition 2.6. A (k + 1)-mean ν is a β-extension of a topological k-
mean µ (or β-extends µ) if for each x ∈ Xk+1, limn β

n(x) = (ν(x), . . . , ν(x)).
In this case we say that β power converges to ν, written βnµ → ν.

We restate parts of Proposition 2.4 in terms of this definition.

Corollary 2.7. If βµ power converges, where µ is a topological mean,
then it converges to a (k+1)-mean µ̃, which (by definition) is a β-extension
of µ. Furthermore, µ̃, if continuous, is the unique β-invariant extension
of µ.

Remark 2.8. A. Horwitz [16] and later D. Petz and R. Temesi [24]
consider means on the positive reals and show that any continuous sym-
metric 2-mean that is strict (min(a, b) < µ(a, b) < max(a, b) for a 6= b) and
order-preserving in each variable has a power convergent barycentric map,
and hence has a unique β-extension to a 3-mean. Petz and Temesi point out
that the argument for power convergence extends to higher order variables,
and thus one can inductively define β-extensions for all n > 2 [24, Section 5].
For the arithmetic, geometric, and harmonic means the extensions yield the
usual corresponding means of n-variables. To check this, one only has to
note that they are continuous and are β-invariant extensions, then apply
the previous corollary.

3. Power convergence. In this section we consider properties pre-
served by β-extensions and develop sufficient conditions for a topological
mean to (recursively) admit a β-extension.

Given X equipped with a k-mean µ, a subset C is convex if µ(x1, . . . , xk)
∈ C whenever x1, . . . , xk ∈ C.

Lemma 3.1. If a topological mean admits a β-extension, then any closed
set that is convex with respect to the mean is convex with respect to the
extension.

Proof. Let µ : Xk → X be the given mean, and let x1, . . . , xk+1 ∈ A,
a closed µ-convex set. Set x := (x1, . . . , xk+1). Then by convexity each
coordinate of β(x) is in A and by induction each coordinate of βn(x) is
in A. Since A is closed, it follows that the coordinate limits, which are all
µ̃(x1, . . . , xk+1), belong to A, where µ̃ is the β-extension.

Recall that the convex hull of a set A is the smallest convex subset con-
taining A, and can be obtained by intersecting all convex sets containing A.
In a similar fashion in the case of a topological mean µ the closed convex
hull can be obtained by intersecting all closed convex sets containing A or,
as follows from the continuity of µ, by closing up the convex hull.
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Definition 3.2. A topological mean is locally convex if there exists at
each point a basis of (not necessarily open) neighborhoods that are convex.
A metric topological mean is uniformly locally convex if for each ε > 0,
there exists δ > 0 such that the diameter of the convex hull of A is less
than ε whenever the diameter of A is less than δ. A metric topological mean
is closed ball convex if all closed balls Bε(x) := {y ∈ X : d(x, y) ≤ ε} are
convex for all x ∈ X.

Remark 3.3. Since in a topological mean the closure of a set A is convex
whenever A is, and the closure has the same diameter, the convex sets in
the definition of locally convex and uniformly locally convex may be taken
to be closed if the space is regular, which is the case in the metric setting.

Lemma 3.4. Given a topological mean on a metric space, closed ball con-
vexity implies uniform local convexity , which in turn implies local convexity.

Proof. Let ε > 0. Choose δ = ε/4. Then any set A of diameter less
than δ is contained in a closed ball of radius less than 2δ around any point
of A, which in turn has diameter less than 4δ = ε. If X is closed ball
convex, then this closed ball is convex and hence contains the closed convex
hull of A. The proof that uniformly locally convex implies locally convex is
straightforward.

The next lemma is an immediate consequence of Lemma 3.1.

Lemma 3.5. Let X be equipped with a topological mean with a β-exten-
sion. If X is locally convex resp. metric and uniformly locally convex resp.
metric and closed ball convex with respect to the given mean, then it is with
respect to the extension.

Lemma 3.6. If ν is a β-extension of the topological mean µ and if X is
locally convex and regular , then ν is continuous.

Proof. Let µ : Xk → X and let ν : Xk+1 → X be the β-extension.
Let x = (x1, . . . , xk+1) ∈ Xk+1, let x∗ = ν(x), and let U be an open set
containing x∗. Pick a closed convex neighborhood V of x∗ such that V ⊆ U .
Since by hypothesis the sequence βn(x) converges to the (k+ 1)-string with
entries x∗, we have βn(x) ∈ V k+1 for some n large enough. By continu-
ity of µ and hence of βn, there exists W open in Xk+1 containing x such
that βn(W ) ⊆ V k+1. For any y ∈ W , we have βn(y) ∈ V k+1, and hence
βm(y) ∈ V k+1 for all m > n since V is convex. Since V is closed it follows
that ν(y) ∈ V . Thus ν is continuous.

Definition 3.7. Let µ : Xk → X be a k-mean on a metric space X.
For x = (x1, . . . , xk+1) ∈ Xk+1, set |x| = {x1, . . . , xk+1}, the underlying set
of the (k + 1)-tuple, and define the diameter ∆(x) of x by

∆(x) = diam |x| = sup{d(xi, xj) : 1 ≤ i, j ≤ k + 1}.
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The mean µ is weakly β-contractive if for each x ∈ Xk+1 we have
limn∆(βn(x)) = 0. For 0 < % < 1, we say that µ is coordinatewise %-
contractive if for any x,y ∈ Xk that differ only in one coordinate, say
xj 6= yj ,

d(µ(x), µ(y)) ≤ %d(xj , yj)

Lemma 3.8. If µ : Xk → X is a coordinatewise %-contractive mean for
0 < % < 1, then it is weakly β-contractive.

Proof. Assume that µ : Xk → X is a coordinatewise %-contractive k-
mean. We equip Xk+1 with the sup metric

d
(
(x1, . . . , xk+1), (y1, . . . , yk+1)) := max{d(xj , yj) : 1 ≤ j ≤ k + 1}.

We show by induction on n that for any x ∈ Xk+1 and any two adjacent
coordinates (βn(x))i and (βn(x))i+1,

d((βn(x))i, (βn(x))i+1) ≤ %nd(xi, xi+1).

For n = 1, we note by the coordinatewise %-contractive property that

d((β(x))i, (β(x))i+1) = d(µ(π6=i(x)), µ(π6=i+1(x)) ≤ %d(xi, xi+1),

since π 6=i(x) and π 6=i+1(x) differ only in the ith coordinate, where they have
the entries xi+1 and xi resp. Assume the validity of the inductive hypothesis
for n. Since βn+1(x) = β(βn(x)), we deduce from the case n = 1 that

d((βn+1(x))i, (βn+1(x))i+1) ≤ % · d((βn(x))i, (βn(x))i+1).

By the inductive hypothesis, the latter is no more than % · %nd(xi, xi+1) =
%n+1d(xi, xi+1). This completes the induction. We then conclude from the
triangle inequality that since any two entries of βn(x) are at most k steps
apart, we have d(βn(x)i, βn(x)j)≤ k%n∆(x), and thus ∆(βn(x))≤ k%n∆(x).
Therefore limn∆(βn(x)) = 0.

Note that if βµ is power convergent, then µ must be weakly β-contractive.
The next proposition provides a converse.

Proposition 3.9. Let X be a complete metric space endowed with a
weakly β-contractive k-mean µ. If X is uniformly locally convex , then β is
power convergent , so that a β-extension of µ exists.

Proof. For x ∈ X, set Cn(x) equal to the closed convex hull of |βn(x)|.
By hypothesis ∆(βn(x)) = diam |βn(x)| → 0 and then by uniform local con-
vexity diamCn(x)→ 0. Note that since Cn(x) is convex, it contains |βm(x)|
for allm > n, and hence contains Cm(x). Thus the collection {Cn(x)} is a de-
creasing sequence of closed convex sets whose diameters converge to 0. Since
X is a complete metric space the intersection consists of a single point {x∗},
and it is now easy to show that βn(x) converges to the (k + 1)-tuple with
all entries x∗.
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We next single out another property that will be useful for inductively
β-extending a mean and give some useful equivalences.

Lemma 3.10. Let X be a metric space endowed with a k-mean µ. Endow
Xk and Xk+1 with the sup metric that takes the supremum of the distances
between each of the corresponding coordinates. Then the following three con-
ditions are equivalent :

(1) For all x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ Xk,

d(µ(x), µ(y)) ≤ max{d(xj , yj) : 1 ≤ j ≤ k}.
(2) The mean µ : Xk → X is Lipschitz with Lipschitz constant 1 (hence,

in particular , is continuous).
(3) The map β : Xk+1 → Xk+1 is Lipschitz with Lipschitz constant 1.

These conditions imply

(4) X is closed ball convex.

Proof. (1)⇔(2): The right-hand side of (1) is the definition of the sup
metric, so the two statements are equivalent.

(2)⇒(3): In each coordinate the map β is a projection followed by µ,
a composition of maps with Lipschitz constant 1, and thus has Lipschitz
constant 1. Since this holds in each coordinate, it holds in the sup metric.

(3)⇒(2): Fixing some z ∈ X, we see for x ∈ Xk that µ(x) = π1(β(z,x)),
and the right-hand side is a composition of maps of Lipschitz constant 1.

(2)⇒(4): For ε > 0 and x ∈ X, y1, . . . , yk ∈ Xk, for y := (y1, . . . , yk) we
have

d(x, µ(y)) ≤ d(µ(x, . . . , x), µ(y)) ≤ d((x, . . . , x),y) = max
i
d(x, yi) ≤ ε

provided d(x, yi) ≤ ε for all i. Thus X is closed ball convex.

Definition 3.11. A k-mean µ on a metric space X is called nonexpan-
sive if it satisfies, for all x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ Xk,

(3.2) d(µ(x), µ(y)) ≤ max{d(xj , yj) : 1 ≤ j ≤ k},
or equivalently condition (2) or (3) of the preceding lemma.

Lemma 3.12. If µ is a nonexpansive k-mean on a metric space X and
if µ has a β-extension µ̃, then µ̃ is nonexpansive.

Proof. Let π1 : Xk+1 → X denote projection onto the first coordinate.
For x ∈ Xk+1,

µ̃(x) = π1(lim
n
βn(x)) = lim

n
(π1 ◦ βn)(x).

Since µ̃ is the pointwise limit of Lipschitz maps π1◦βn of Lipschitz constant 1
(by Lemma 3.10), it is itself Lipschitz of constant 1.



200 J. LAWSON AND Y. LIM

The next proposition is the principal tool that allows us to extend means
inductively to higher order.

Proposition 3.13. Let X be a complete metric space equipped with a
nonexpansive, coordinatewise %-contractive (0<%< 1) k-mean µ : Xk → X,
k ≥ 2. Then the barycentric operator β is power convergent , and hence
there exists a (unique) continuous (k + 1)-mean µ̃ : Xk+1 → X that β-
extends µ. Furthermore, µ̃ : Xk+1 → X is nonexpansive and coordinatewise
%-contractive.

Proof. By Lemma 3.8, µ is weakly contractive. Since µ is nonexpansive,
by Lemma 3.10, X is closed ball convex, hence uniformly locally convex
(Lemma 3.4), and thus β is power convergent and has a β-extension to a
(k + 1)-mean µ̃ by Proposition 3.9. By Lemma 3.12 the mean µ̃ is nonex-
pansive and hence continuous (Lemma 3.10(2)).

To finish we show that µ̃ is coordinatewise %-contractive. Let x,y ∈ Xk+1

differ only in the jth coordinate: xj 6= yj . Then by coordinatewise %-
contractivity

d((β(x))i, (β(y))i) = d(µ(π 6=i(x)), µ(π6=i(y))) ≤ %d(xj , yj),

since π 6=i(x) and π6=i(y) differ in at most one coordinate, and are then xj
and yj in that coordinate. Since the inequality holds for each i, we have
d(β(x), β(y)) ≤ %d(xj , yj). Since β is nonexpansive by Lemma 3.10, we
conclude that d(βn(x), βn(y)) ≤ %d(xj , yj) for all n. Taking the limit as
n→∞, we obtain d(µ̃(x), µ̃(y)) ≤ %d(xj , yj).

The next theorem is the culmination of this section. It follows from a
straightforward induction using the preceding proposition.

Theorem 3.14. Let X be a complete metric space equipped with a non-
expansive, coordinatewise %-contractive (0 < % < 1) k-mean µ : Xk → X,
k ≥ 2. Then there exists a unique family of continuous means µn : Xn → X,
one for every n > k, such that each is a β-extension of the previous one.
Furthermore, each µn is nonexpansive and coordinatewise %-contractive.

Example 3.15. Consider on R the mean µ(x, y) = sx+ (1− s)y, where
0 < s < 1. Set % = max{s, 1 − s}. Then it is an elementary calculation
to verify that µ is coordinatewise %-contractive and nonexpansive. Hence µ
inductively β-extends to an n-mean for all n > 2. For example, if m(x, y) =
2
3x + 1

3y, then one varifies that m(x, y, z) = 2
5x + 7

20y + 1
4z is a β-invariant

extension of m, and hence must be its three-variable β-extension. If one
uses the alternative barycentric operator β∗, then one obtains the extension
m3(x, y, z) = 4

7x+ 2
7y + 1

7z.
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4. Convex means. In general, a metric space may have none, one,
or many midpoints between two given points in the space. (Recall that
m is a midpoint of a and b if d(m, a) = d(m, b) = 1

2d(a, b).) We wish to
consider the setting where possibly many midpoints may exist, but there
is a distinguished midpoint, and these distinguished midpoints appear in a
“convex” manner.

Definition 4.1. A symmetric mean µ : X ×X → X, written µ(x, y) =
x#y, on a complete metric space X is called a convex mean if it satisfies
the basic convexity condition

d(x#z, y#z) ≤ 1
2
d(x, y) for all x, y, z ∈ X.(4.3)

Lemma 4.2. For a convex mean, x#y is a metric midpoint for all x, y.

Proof. By the basic convexity condition, d(x#y, y = y#y) ≤ 1
2d(x, y)

and similarly d(x#y, x) ≤ 1
2d(x, y). Thus

d(x, y) ≤ d(x, x#y) + d(x#y, y) ≤ 1
2
d(x, y) +

1
2
d(x, y) = d(x, y).

It follows that each inequality is an equality, so d(x, x#y) + d(x#y, y) =
d(x, y). Hence adding together the two inequalities in the first line of the
proof gives an equality, so each inequality is an equality.

Note that in the case when there is only one metric midpoint between
two points x, y, it must be the case that x#y is that midpoint.

The next proposition gives a useful equivalence for convexity.

Proposition 4.3. Let (X, d) be a complete metric space equipped with
a symmetric mean µ. Then µ is a convex mean if and only if

d(x#y, u#v) ≤ 1
2
d(x, u) +

1
2
d(y, v) for all x, y, u, v ∈ X.

Proof. For a convex mean, d(x#y, u#y) ≤ 1
2d(x, u) and d(u#y, u#v)

≤ 1
2d(y, v). The condition of the theorem now follows by adding these in-

equaties and an application of the triangle inequality.
The reverse implication follows by applying the inequality of the theorem

to d(x#z, y#z).

Proposition 4.4. A convex mean inductively β-extends to a symmetric,
nonexpansive, coordinatewise 1

2 -contractive n-mean for every n > 2.

Proof. Note that the definition of a convex mean is that of a symmetric
coordinatewise 1

2 -contractive 2-mean. Proposition 4.3 further implies that it
is nonexpansive, since

d(x#y, u#v) ≤ 1
2
d(x, u) +

1
2
d(y, v) ≤ max{d(x, u), d(y, v)}.
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Thus by Theorem 3.14 we obtain inductively a β-extension for every n that
is nonexpansive and coordinatewise 1

2 -contractive. By Proposition 2.4 each
extension is symmetric.

Example 4.5. Let X be a Banach space (or a closed convex subset
thereof) and define the symmetric 2-mean µ(x, y) = 1

2(x + y). This is the
midpoint with respect to the norm metric, and is easily seen to be a convex
mean. Setting µk(x1, . . . , xk) = 1

k

∑k
i=1 xi, one verifies directly that µk+1 is

the β-extension of µk, so µ inductively β-extends to the standard arithmetic
mean µn for all n.

5. Hadamard spaces. A metric space X is said to satisfy the semi-
parallelogram law if for any two points x1, x2,∈ X, there exists z ∈ X that
satisfies, for all x ∈ X,

d(x1, x2)2 + 4d(x, z)2 ≤ 2d(x, x1)2 + 2d(x, x2)2.

It follows readily that z is the unique midpoint between x1 and x2. An
Hadamard space (occasionally called a Bruhat–Tits space) is a complete
metric space that satisfies the semiparallelogram law.

Using a metric notion for an upper bound of curvature (geodesic tri-
angles in the metric space satisfy certain inequalities when compared with
test triangles), one calls a metric space a CAT(κ)-space if it is a geodesic
space (each pair of points can be connected by a metric geodesic) satisfying
the curvature bound condition for the real number κ (see [4, Chapter I] or
[9, Section II.1]). The CAT(0)-spaces are the non-positively curved spaces.
A metric space has an alternative characterization as an Hadamard space:
it is a simply connected, complete, geodesic CAT(0)-space (see [4, Proposi-
tion 5.1, Chapter I] or [9, Exercise 1.9, Section II.1]).

What is important for our current purposes is the following remark:

Remark 5.1. Let X be an Hadamard metric space and define a 2-mean
by µ(x, y) being the unique midpoint between x and y. This defines a convex
mean in the sense of the preceding section; see [4, Proposition 5.4, Chap-
ter I] or [9, Proposition 2.2, Section II.2]. Hence by the preceding section
this mean may be β-extended to an n-mean for every n > 2. This result
provides a new and interesting operation for Hadamard spaces, namely as-
signing a “barycenter” to any finite set, extending the operation of taking
the midpoint for any two-element set.

A wide variety of Hadamard spaces and constructions for new Hadamard
spaces from old appear in [4] and [9]. Some examples include Hadamard
manifolds (simply connected complete Riemannian manifolds with nonpos-
itive sectional curvature), particularly simply connected symmetric spaces
of noncompact type, finite-dimensional hyperbolic geometries over the reals,
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complexes, and quaternions, symmetric cones, Tits buildings, and various
examples obtained by coning and gluing.

Of particular interest to us is the example of the manifold of positive-
definite matrices endowed with the usual Riemannian metric called the trace
metric. This metric yields an Hadamard manifold and the midpoint mean
operation in this case is precisely the geometric mean of the two positive
definite matrices; see [19] and the references there. Using the fact that the
length metric satisfies the semiparallelogram law, hence is a convex metric
with the midpoint operation being a convex mean, we obtain the following
alternative derivation of the principal result of [1]:

Corollary 5.2. Let X denote the set of positive definite real or com-
plex matrices equipped with the Riemannian trace metric. Then the midpoint
operation for the corresponding length metric, which is precisely the geomet-
ric mean, defines a convex 2-mean, which (by Proposition 4.4) β-extends to
an n-mean for each n > 2.

6. Iterated means. A standard construction technique for means is
iteration, the arithmetic-geometric mean being the best known example. In
this section we develop machinery for showing that certain iterated means
are coordinatewise %-contractive and nonexpansive, hence admit β-exten-
sions of all orders. We apply this machinery to operator means in a later
section.

Definition 6.1. Let λ, ν be 2-means on a complete metric space X.
Starting with λ1 = λ and ν1 = ν, we give two different induction schemes
for obtaining sequences of means {λn} and {νn}:

(i) λn+1(x, y) = λ(λn(x, y), νn(x, y)), νn+1(x, y) = ν(λn(x, y), νn(x, y));
(ii) νn+1(x, y) = ν(λn(x, y), νn(x, y)), λn+1(x, y) = λ(λn(x, y), νn+1(x, y)).

If there exists a 2-mean µ such that limn λn(x, y) = µ(x, y) = limn νn(x, y)
for all x, y ∈ X, then µ is called the iterated composition in case (i) and the
skewed iterated composition in case (ii) of λ and ν, and denoted µ = λ ∗ ν
resp. µ = λ ∗s ν.

We begin with a useful lemma that ensures convergence.

Lemma 6.2. Let {xn}, {yn} be sequences in a complete metric space X
satisfying one of the following two conditions:

(i) for each k ≥ 1, xk+1 is a midpoint of xk and yk and d(xk+1, yk+1) ≤
d(xk+1, yk), or

(ii) for each k ≥ 1, xk+1 is a midpoint of xk and yk+1 and d(xk, yk+1) ≤
d(xk, yk).

Then both sequences are Cauchy and converge to the same point.
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Proof. Assume (i). For any n ≥ 1, we have by hypothesis

d(xn+1, yn+1) ≤ d(xn+1, yn) =
1
2
d(xn, yn),

where the last equality follows from that the fact that xn+1 is a midpoint
of xn, yn. Similarly,

d(xn+1, xn) =
1
2
d(xn, yn).

It follows by induction resp. induction and the triangle inequality that

d(xn, yn) ≤ 1
2n−1

d(x1, y1)

resp.

d(xn+k, xn) ≤
(k−1∑
i=0

1
2n+i

)
d(x1, y1) <

1
2n−1

d(x1, y1).

Thus the sequence {xn} is Cauchy, and hence converges, and the sequence
{yn} must also approach the same limit.

Part (ii) follows by applying part (i) to the sequences {xn} and {zn},
where zn = yn+1.

Proposition 6.3. Let λ be a convex mean and ν be a nonexpansive
mean on a complete metric space X. Then both the iterated composition
µ = λ ∗ ν and the skewed iterated composition µ = λ ∗s ν exist and are
nonexpansive.

Proof. For x, y ∈ X, we set xn = λn(x, y) and yn = νn(x, y) (see Defini-
tion 6.1). Then xn+1 = λ(xn, yn) and yn+1 = ν(xn, yn). We observe that

d(xn+1, yn+1) = d(ν(xn+1, xn+1), ν(xn, yn))≤max{d(xn+1, xn), d(xn+1, yn)},
where the last inequality follows from the fact that ν is nonexpansive. Since
λ is a convex mean, xn+1 = λ(xn, yn) is a midpoint for xn and yn, hence
d(xn+1, xn) = d(xn+1, yn), and thus d(xn+1, yn+1) ≤ d(xn+1, yn), i.e., con-
dition (i) of Lemma 6.2 is satisfied. It thus follows that limn xn = limn yn
exists, and we define this limit to be µ(x, y). If x = y, then it is immediate
that x = xn = yn for all n, so µ is a mean. Thus the iterated composition
µ = λ ∗ ν exists.

For the case of the skewed iterated mean, we set x1 = λ(x, y), y1 =
ν(x, y) and

yn+1 = ν(xn, yn), xn+1 = λ(xn, yn+1).

Then

d(xk, yk+1) = d(ν(xk, xk), ν(xk, yk))≤max{d(xk, xk), d(xk, yk)} = d(xk, yk),

where the inequality follows from the nonexpansive property. Thus condi-
tion (ii) of Lemma 6.2 is satisfied. That the skewed iterated composition
µ = λ ∗s ν exists now follows as in the preceding paragraph.
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It follows from Proposition 4.3 that λ is Lipschitz with Lipschitz con-
stant 1 and the same holds for ν since it is nonexpansive. In both cases the
higher numbered means λn and νn are built up from these by products and
compositions, so are also 1-Lipschitz (recall that product metrics are always
the sup metric). Since µ is the pointwise limit of the sequence {λn} (and
{νn}), it is also 1-Lipschitz, i.e., nonexpansive.

Proposition 6.4. Suppose in a complete metric space X that λ is a
convex mean and ν is coordinatewise %′-contractive, 0 < %′ < 1, and non-
expansive. Then both the iterated composition λ ∗ ν and the skewed iterated
composition λ∗s ν exist , are coordinatewise %-contractive, % = max{1/2, %′},
and nonexpansive, and hence β-extend to all orders greater than two.

Proof. By Proposition 6.3 the iterated composition and skewed iterated
composition both exist and are nonexpansive.

We establish that µ= λ∗ν is coordinatewise %-contractive. Let a, b, c∈X.
To calculate µ(a, b) and µ(a, c) we define inductively

b−1 = λ(a, b), b+1 = ν(a, b), b−k+1 = λ(b−k , b
+
k ), b+k+1 = ν(b−k , b

+
k ),

c−1 = λ(a, c), c+1 = ν(a, c), c−k+1 = λ(c−k , c
+
k ), c+k+1 = ν(c−k , c

+
k ).

Note that b−k = λk(a, b), b+k = νk(a, b), c−k = λk(a, c), c+k = νk(a, c). We have
d(b−1 , c

−
1 ) = d(λ(a, b), λ(a, c)) ≤ 1

2d(b, c) by convexity of λ, and similarly
d(b+1 , c

+
1 ) ≤ %d(b, c) by coordinatewise %-contractivity of ν.

We claim that by induction

d(b−n , c
−
n ) ≤ %d(b, c) and d(b+n , c

+
n ) ≤ %d(b, c).

By the preceding paragraph this holds for n = 1. Assume that it is true for
n = k. Then

d(b−k+1, c
−
k+1) = d(λ(b−k , b

+
k ), λ(c−k , c

+
k ))

≤ d(λ(b−k , b
+
k ), λ(c−k , b

+
k )) + d(λ(c−k , b

+
k ), λ(c−k , c

+
k ))

≤ 1
2
d(b−k , c

−
k ) +

1
2
d(b+k , c

+
k ) ≤ 1

2
(%d(b, c)+%d(b, c)) = %d(b, c).

Using the nonexpansivity of νk+1, we obtain

d(b+k+1, c
+
k+1) = d(ν(b−k , b

+
k ), ν(c−k , c

+
k )) ≤ max{d(b−k , c

−
k ), d(b+k , c

+
k )}

≤ max{%d(b, c), %d(b, c)} = %d(b, c).

This completes the induction. Note that in the alternative notation we have
shown that d(λn(a, b), λn(a, c)) ≤ %d(b, c) and d(νn(a, b), νn(a, c)) ≤ %d(b, c)
for all n ∈ N.

Since µ = λ∗ν, limn b
−
n = limn λn(a, b) = µ(a, b), limn c

−
n = limn λn(a, c)

= µ(a, c). By continuity of d(·, ·) and by the preceding paragraph, it follows
that d(µ(a, b), µ(a, c))) ≤ %d(b, c).
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The proof that the skewed iterated composition µ = λ ∗s ν is coordi-
natewise %-contractive is similar, but contains a twist or two. To calculate
µ(a, b) and µ(a, c) for a, b, c ∈ X, we define inductively

b+1 = ν(a, b), b−1 = λ(a, b), b+k+1 = ν(b−k , b
+
k ), b−k+1 = λ(b−k , b

+
k+1),

c+1 = ν(a, c), c−1 = λ(a, c), c+k+1 = ν(c−k , c
+
k ), c−k+1 = λ(c−k , c

+
k+1).

We have d(b−1 , c
−
1 ) = d(λ(a, b), λ(a, c)) ≤ 1

2d(b, c) by convexity of λ, and
similarly d(b+1 , c

+
1 ) ≤ %d(b, c) by coordinatewise %-contractivity of ν.

We claim that by induction

d(b−n , c
−
n ) ≤ %d(b, c) and d(b+n , c

+
n ) ≤ %d(b, c).

By the preceding paragraph this holds for n = 1. Assume that it is true for
n = k. Using the nonexpansivity of ν, we obtain

d(b+k+1, c
+
k+1) = d(ν(b−k , b

+
k ), ν(c−k , c

+
k )) ≤ max{d(b−k , c

−
k ), d(b+k , c

+
k )}

≤ max{%d(b, c), %d(b, c)} = %d(b, c).

It then follows that

d(b−k+1, c
−
k+1) = d(λ(b−k , b

+
k+1), λ(c−k , c

+
k+1))

≤ d(λ(b−k , b
+
k+1), λ(c−k , b

+
k+1)) + d(λ(c−k , b

+
k+1), λ(c−k , c

+
k+1))

≤ 1
2
d(b−k , c

−
k ) +

1
2
d(b+k+1, c

+
k+1)

≤ 1
2

(%d(b, c) + %d(b, c)) = %d(b, c).

This completes the induction.
By hypothesis limn b

−
n = limn λn(a, b) = µ(a, b), limn c

−
n = limn λn(a, c)

= µ(a, c). By continuity of d(·, ·) and the preceding paragraph, it follows
that d(µ(a, b), µ(a, c))) ≤ %d(b, c).

The last assertion of the proposition now follows from Theorem 3.14.

7. Categorical constructions. In this section we consider the behav-
ior of mean extensions with respect to standard constructions such as con-
tinuous images, products, and subspaces.

Definition 7.1. A function g : (X,µ)→ (Y, ν), where µ, ν are k-means
on X and Y respectively, is called a k-mean homomorphism, or homomor-
phism for short, if g ◦ µ = ν ◦ gk, that is, the following diagram commutes:

X
g−−−−→ Y

µ

x xν
Xk gk−−−−→ Y k

where gk : Xk → Y k, gk(x1, . . . , xk) := (g(x1), . . . , g(xk)).
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Proposition 7.2. Let (X,µ) and (Y, ν) be topological k-means, and let
g : X → Y be a continuous k-mean homomorphism.

(i) If each of µ and ν β-extends to (k + 1)-means µ̃ and ν̃ resp., then
g : X → Y is a (k + 1)-mean homomorphism.

(ii) If g is surjective and µ β-extends to a (k + 1)-mean µ̃, then ν β-
extends to a (k + 1)-mean ν̃, and g is then a (k + 1)-mean homo-
morphism.

Proof. (i) It follows directly from the fact that g is k-mean homomor-
phism that βY gk+1 = gk+1βX : Xk+1 → Y k+1 (indeed, commutation of gk
with β is an equivalence). By induction

βnY gk+1 = gk+1β
n
X : Xk+1 → Y k+1

for all n > 0. Taking the limit of both sides as n→∞ and projecting onto
the first coordinate yields (i).

(ii) For y ∈ Y k+1, there exists x ∈ Xk+1 such that gk+1(x) = y. Again
we have

βnY (y) = βnY gk+1(x) = gk+1β
n
X(x)

for n > 0. By hypothesis the right-hand side converges to a diagonal element
with entries g(µ̃(x)) as n → ∞, so that the left-hand side also converges
to a diagonal element. Thus ν β-extends to ν̃. The last assertion follows
from (i).

Example 7.3. Let

µf (x, y) = f−1

(
f(x) + f(y)

2

)
be a quasi-arithmetic mean defined on R+ by a continuous strictly mono-
tonic function f (see [24]). By the preceding proposition applied to g = f−1

and by Example 4.5,

µk(x1, . . . , xk) = f−1

(
1
k

k∑
i=1

f(xi)
)
.

Note that the arithmetic, geometric, and harmonic means belong to this
class by taking the identity map, the logarithmic map, and the inversion
map (on the positive reals) respectively. More generally, one can take on
the positive reals the generalized or power mean m(x, y) = ((xα + yα)2)1/α

for α 6= 0 with f(x) = xα.
An analogous construction and characterization of the higher order

means remains valid for the power means on the space of positive definite
matrices. Note that the case α = 1 gives the arithmetic mean and the case
α = −1 gives the harmonic mean.
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Definition 7.4. Let µ and ν be k-means on X and Y, respectively.
Define µ× ν : (X × Y )k → X × Y by

(µ× ν)(x1, y1, x2, y2, . . . , xk, yk) = (µ(x1, x2, . . . , xk), ν(y1, y2, . . . , yk)).

Then µ × ν is a k-mean on X × Y, called the product mean of µ and ν.
Indeed, if z = (x, y, x, y, . . . , x, y) ∈ (X × Y )k for fixed (x, y) ∈ X × Y, then
(µ× ν)(z) = (µ(x, x, . . . , x), ν(y, y, . . . , y)) = (x, y).

Theorem 7.5. Let (X, d1) and (Y, d2) be complete metric spaces equip-
ped with nonexpansive, coordinatewise %-contractive resp. %′-contractive
(0 < %, %′ < 1) k-means µ : Xk → X resp. ν : Y k → Y . Then the mean
µ × ν is a nonexpansive, coordinatewise max{%, %′}-contractive k-mean on
X × Y. Furthermore, for n ≥ k, its n-mean β-extension (µ× ν)n coincides
with the product mean µn × νn of the individual β-extension n-means:

(µ× ν)n = µn × νn.
Proof. For z = (x1, y1, . . . , xk, yk)∈ (X×Y )k, we define zx = (x1, . . . , xk)

∈ Xk, zy = (y1, . . . , yk) ∈ Y k. Then (µ× ν)(z) = (µ(zx), ν(zy)).
Let z=(x11, y11, x12, y12, . . . , x1k, y1k), w=(x21, y21, x22, y22, . . . , x2k, y2k)

∈ (X × Y )k. Then by nonexpansive property of µ and ν,

d((µ× ν)(z), (µ× ν)(w)) = d((µ(zx), ν(zy)), (µ(wx), ν(wy)))
= max{d1(µ(zx), µ(wx)), d2(ν(zy), ν(wy))}
≤ max{max{d1(x1j , x2j)},max{d2(y1j , y2j)} :

1 ≤ j ≤ k}
= max{d1(x1j , x2j), d2(y1j , y2j) : 1 ≤ j ≤ k}
= max{d((x1j , y1j), (x2j , y2j)) : 1 ≤ j ≤ k},

which implies that µ×ν is a nonexpansive k-mean on X×Y equipped with
the supmetric.

If z and w differ only in one coordinate of (X × Y )k, say (x1j , y1j) 6=
(x2j , y2j), but (x1i, y1i) = (x2i, y2i), 1 ≤ i 6= j ≤ k, then the inequality in
the preceding argument turns into

d((µ× ν)(z), (µ× ν)(w)) = d((µ(zx), ν(zy)), (µ(wx), ν(wy)))
= max{d1(µ(zx), µ(wx)), d2(ν(zy), ν(wy))}
≤ max{%d1(x1j , x2j), %′d2(y1j , y2j)}
≤ max{%, %′}max{d1(x1j , x2j), d2(y1j , y2j)}
≤ max{%, %′}d((x1j , y1j), (x2j , y2j)).

Therefore µ×ν is a coordinatewise max{%, %′}-contractive k-mean on X×Y.
Next, we will prove (µ× ν)n(z) = (µn(zx), ν(zy)), z ∈ (X × Y )n, n ≥ k,

by induction. The case n = k follows by the definition of µ×ν. Suppose that
the assertion holds true for n− 1. Let γ : (X × Y )n → X × Y be defined by
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γ(z) = (µn(zx), νn(zy)). Then γ is continuous and hence it suffices to show
γ ◦ βn = γ by the uniqueness of mean extension (Proposition 2.4), where
βn is the barycentric operator on (X ×Y )n obtained from the (n− 1)-mean
(µ× ν)n−1.

For z = (z1, . . . , zn) ∈ (X × Y )n, zi = (xi, yi) ∈ X × Y, we have from
induction

(µ× ν)n−1(π6=iz) = (µn−1(π6=izx), νn−1(π 6=izy)), 1 ≤ i ≤ n,
and then from

βn(z) = ((µ× ν)n−1(π 6=1z), (µ× ν)n−1(π 6=2z), . . . , (µ× ν)n−1(π 6=nz))

we get

βn(z)x = (µn−1(π6=1zx), µn−1(π 6=2zx), . . . , µn−1(π6=nzx)) = βµ(zx),

βn(z)y = (νn−1(π 6=1zy), νn−1(π 6=2zy), . . . , νn−1(π 6=nzy)) = βν(zy),

where βµ, βν denote the barycentric operators of the n-means µn, νn; more-
over, µn ◦ βµ = µn and νn ◦ βν = νn. Now,

(γ ◦ βn)(z) = γ(βn(z)) = (µn(βn(z)x), νn(βn(z)y))

= (µn(βµ(zx)), νn(βν(zy))) = (µn(zx), νn(zy)) = γ(z),

which completes the proof.

Remark 7.6. The product mean satisfies the associative law

µ× (ν × ω) = (µ× ν)× ω
for any k-means µ, ν, and ω on X,Y, Z. If these are nonexpansive and coor-
dinatewise contractive, then their n-mean extension satisfies

(µ× ν × ω)n = µn × νn × ωn.
The next result of the section is quite straightforward and hence the

proof is omitted.

Proposition 7.7. If Z is a nonempty closed k-submean of a topological
k-mean (X,µ) that β-extends, then Z also β-extends and µ̃|Zk+1 = µ̃|Zk .

Corollary 7.8. Suppose that a k-mean (X,µ) restricts to a nonexpan-
sive, coordinatewise %n-contractive mean on An, where 0 < %n < 1 for each
n and An is an increasing sequence of closed convex sets with X =

⋃
nAn.

Then µ inductively β-extends to a j-mean for each j > k in such a way that
the restriction to An is the appropriate β-extension of the restriction of µ
to An.

Proof. Given any j-tuple in Xj for j > k, there exists some Am that
contains all entries of the tuple. Applying Theorem 3.14 to the restriction of
µ to Am, we conclude that µ|Am β-extends for every index greater than k.
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Thus in particular the appropriate extension exists to evaluate the given
j-tuple. It is clear that if a larger Am+n is chosen, one obtains the same
calculation. Thus the β-extension is independent of the containing Am, and
hence we obtain a β-extension of µ on all of X.

8. Stability and reductions

Definition 8.1. A k-mean µ on a set X is called β-stable if the graph
of µ is invariant under β, that is,

∀x ∈ Xk+1, πk+1(x) = µ(π 6=k+1(x))⇒ πk+1(β(x)) = µ(π6=k+1(β(x))).

A (k + 1)-mean ν on X is called a stable extension of µ if

ν(x1, . . . , xk, µ(x1, . . . , xk)) = µ(x1, . . . , xk) for all x1, . . . , xk ∈ X.
Reciprocally, µ is called a stable reduction of ν.

In [16] Horwitz says that ν is type 2 invariant with respect to µ if ν
is a stable extension of µ. He only considers the case of a 2-mean µ and a
3-mean ν.

Proposition 8.2. If a topological k-mean µ is β-stable and admits a
β-extension µ̃, then µ̃ is a stable extension of µ.

Proof. Note that β does not change the last coordinate of any (k + 1)-
tuple x = (x1, . . . , xk, µ(x1, . . . , xk)) in the graph of µ. Hence if µ is β-stable,
it follows that βn(x) has the same last coordinate for all n. Since β power
converges to µ̃, it follows that the diagonal limiting value has entries the
last coordinate of x, namely µ(x1, . . . , xk). Thus µ̃(x) = µ(x1, . . . , xk), so µ̃
is a stable extension of µ.

Proposition 8.3. If X is a complete metric space equipped with a co-
ordinatewise %-contractive (symmetric) (k+1)-mean ν, k ≥ 2, then ν admits
exactly one stable reduction (which is also symmetric).

Proof. Suppose that X is a complete metric space equipped with a co-
ordinatewise %-contractive (k + 1)-mean ν. The map g : X → X defined
by g(x) = ν(x1, . . . , xk, x) is by hypothesis %-contractive, and hence has a
unique fixed point. Define µ(x1, . . . , xk) to be this fixed point. It follows
immediately that µ is a stable reduction of ν, and uniqueness of the fixed
point guarantees that it is the unique reduction. Note that the fact that ν is
a mean and the definition of µ imply that µ is also a mean. The symmetry
of µ follows directly from that of ν.

The following corollary is an immediate consequence of Propositions 3.13,
8.2, and 8.3.

Corollary 8.4. Let X be a complete metric space equipped with a non-
expansive, coordinatewise %-contractive k-mean µ. If µ is β-stable, then the
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unique β-extension µ̃ is a stable extension of µ, and µ is the unique stable
reduction of µ̃.

Definition 8.5. A 2-mean µ on a set X satisfies the limited medial
property if µ(a, b) = µ(x, y) =: m implies that µ(µ(a, x), µ(b, y)) = m. For
m ∈ X,

Xm := {(x, y) ∈ X2 : µ(x, y) = m}.

Remark 8.6. (1) If a 2-mean µ(x, y) = x#y satisfies the limited medial
property, then it is β-stable since

β(x, y, x#y) = (y#(x#y), x#(x#y), x#y).

The latter is in the graph of µ, since by limited mediality x#y =
(x#y)#(x#y) implies (x#(x#y))#(y#(x#y)) = x#y.

(2) It was shown in [1] that the matrix geometric mean for positive
definite matrices satisfies the limited medial property. This was extended to
very general notions of geometric mean in [22], in particular for the geometric
mean of positive operators on a Hilbert space or, more generally, for the
positive elements of a C∗-algebra. Hence by part (1) and the earlier results
each k-extension of the geometric mean yields both the higher order ones
by stable extension and the lower order ones by stable reduction.

Lemma 8.7. The mean µ satisfies the limited medial property if and only
if (µ× µ)(Xm ×Xm) ⊂ Xm for each m ∈ X.

Proof. Let (a, b), (x, y) ∈ Xm, that is, µ(a, b) = µ(x, y) = m. Then
(µ(a, x), µ(b, y))∈Xm (limited medial property) if and only if

µ(µ(a, x), µ(b, y)) = (µ× µ)((a, b), (x, y)) = m.

Proposition 8.8. Let X be complete metric space equipped with nonex-
pansive, coordinatewise %-contractive 2-mean µ(x, y) = x#y satisfying the
limited medial property. If xi#yi = m for all 1 ≤ i ≤ n, then µn(x)#µn(y)
= m, where x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Xn.

Proof. By the previous lemma (µ × µ)(Xm ×Xm) ⊂ Xm, and Xm is a
nonempty closed subset of X2. Let ω := (µ × µ)|X2

m
. By Theorem 7.5, the

n-mean extension ωn : Xn
m → Xm of ω is given by

ωn = (µn × µn)|Xn
m
.

Suppose that xi#yi = m, i = 1, . . . , n. Then z := (x1, y1, . . . , xn, yn) ∈ Xn
m

and so ωn(z) = (µn(x), µn(y)) ∈ Xm, which implies that µn(x)#µn(y)
= m.

Remark 8.9. Under the assumption of the preceding proposition, if
a#b = x#y = m then Xm ⊆ {(z, w) ∈ X×X : µ3(a, b, z)#µ3(x, y, w) = m}.
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9. Ordered convex metric spaces. Throughout this section we as-
sume that X is a complete metric space equipped with a nonexpansive,
coordinatewise %-contractive k-mean µ : Xk → X, k ≥ 2, and µn (n > k)
denotes the nonexpansive, coordinatewise %-contractive n-mean obtained
inductively. We further assume that X is equipped with a closed partial
order ≤. We let ≤k be the product order on Xk defined by

(x1, . . . , xk) ≤k (y1, . . . , yk) if and only if xi ≤ yi, 1 ≤ i ≤ k.

Recall that for a map g : X → Y, we let gk : Xk → Y k, (x1, . . . , xk) 7→
(g(x1), . . . , g(xk)).

Definition 9.1. A k-mean ν on X is said to be monotone for the partial
order ≤ if ν(x) ≤ ν(y) for any x,y ∈ Xk with x ≤ y.

Theorem 9.2.

(1) If a nonexpansive, coordinatewise %-contractive k-mean µ is mono-
tone for the closed partial order ≤, then µn is also monotone for any
n ≥ k:

x ≤n y⇒ µn(x) ≤ µn(y).

(2) Let (X, δ) be another complete metric space equipped with a nonex-
pansive, coordinatewise %-contractive k-mean ν : Xk → X. Suppose
that ≤ is closed in the product topology (X, d)× (X, δ) and either µ
or ν is monotone with respect to ≤. Then µ ≤ ν implies µn ≤ νn for
any n ≥ k.

Proof. (1) We induct on m beginning at k. Suppose that µm is monotone.
Let x,y ∈ Xm+1 with x ≤m+1 y. Then π 6=ix ≤m π6=iy for all 1 ≤ i ≤ m+1.
By the induction hypothesis, µm(π6=ix) ≤ µm(π 6=iy) for each i, and hence
βm+1(x) ≤m+1 βm+1(y). By repeated application, we have βnm+1(x) ≤m+1

βnm+1(y), n = 1, 2, . . . . By the closedness of the order, limn→∞ β
n
n+1(x) ≤n+1

limn→∞ β
n
n+1(y). In particular, µn+1(x) ≤ µn+1(y).

(2) Assume that µm(x) ≤ νm(x) for all x ∈ Xm for some m ≥ k. Let
x ∈ Xm+1. Then µm(π 6=jx) ≤ νm(π6=jx) for 1 ≤ j ≤ m+ 1 and hence

β(x) ≤m+1 α(x)(9.1)

where β and α are the barycentric operators with respect to the means µ
and ν, respectively. We will show by induction that βn(x) ≤m+1 α

n(x) for
all n. Suppose that this holds true for n. Then π 6=jβn(x) ≤ π 6=jαn(x) for all
1 ≤ j ≤ m+ 1. If ν is monotone, then νm is monotone by (1) and

νm(π 6=jβn(x)) ≤ νm(π6=jαn(x)), 1 ≤ j ≤ m+ 1.(9.2)
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Therefore,

βn+1(x) = β(βn(x))
(9.1)

≤m+1 α(βn(x))
= (νm(π 6=1β

n(x)), . . . , νm(π6=m+1β
n(x)))

(9.2)

≤m+1 (νm(π 6=1α
n(x)), . . . , νm(π6=k+1α

n(x)))

= α(αn(x)) = αn+1(x).

In the case where µ is monotone, (9.2) changes to

µm(π6=jβn(x)) ≤ µm(π6=jαn(x)), 1 ≤ j ≤ k + 1,(9.3)

and βn+1(x) ≤m+1 α
n+1(x) from

βn+1(x) = β(βn(x)) = (µm(π6=1β
n(x)), . . . , µm(π6=m+1β

n(x)))
(9.3)

≤m+1 (µm(π6=1α
n(x)), . . . , µm(π6=m+1α

n(x)))
induction
≤m+1 (νm(π 6=1α

n(x)), . . . , νm(π6=m+1α
n(x)))

= α(αn(x)) = αn+1(x).

Since the order is closed in the product topology, the inequality holds for
limits:

lim
n→∞

βn(x) ≤m+1 lim
n→∞

αn(x).

In particular, µm+1(x) ≤ νm+1(x).

Theorem 9.3. Let X and Y be complete metric spaces equipped with
nonexpansive, coordinatewise % (resp. %′)-contractive k-means µ and ν, re-
spectively. Let ≤ be a closed partial order on Y. Suppose that the mean ν
is monotone for the partial order ≤ on Y. If g : X → Y is continuous and
satisfies g ◦ µ ≤ ν ◦ gk (resp. g ◦ µ ≥ ν ◦ gk), then for any n ≥ k,

g ◦ µn ≤ νn ◦ gn (resp. g ◦ µn ≥ νn ◦ gn).

Proof. Suppose that g ◦ µ ≤ ν ◦ gk; the other case is similar. Suppose
that g ◦ µm ≤ νm ◦ gm holds true for some m ≥ k. Let α be the barycentric
operator with respect to the mean ν on Y. Then g(µm(π 6=jx)) ≤ νmgm(π6=jx)
for x ∈ Xm+1 and 1 ≤ j ≤ m+ 1, and thus

gm+1(β(x)) = (g(µm(π6=1x)), . . . , g(µm(π6=m+1x)))
≤m+1 (νm(gm(π6=1x)), . . . , νm(gm(π6=m+1x)))
= (νm(π 6=1gm+1(x)), . . . , νm(π6=m+1gm+1(x))) = α(gm+1(x))

and therefore gm+1 ◦ β ≤m+1 α ◦ gm+1. Since ν is monotone, α is monotone
for ≤m (Theorem 9.2), and therefore

gm+1(β2(x)) = (gm+1β)(β(x)) ≤m+1 α(gm+1(β(x))) ≤ α2(gm+1(x))
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and inductively gm+1(βn(x)) ≤m+1 α
n(gm+1(x))) for all n. Since the order

is closed,
gm+1( lim

n→∞
βn(x)) ≤m+1 lim

n→∞
αn(gm+1(x)).

In particular, g(µm+1(x)) ≤ νm+1(gm+1(x)). Induction on m yields the the-
orem.

Corollary 9.4. Let µ, ν and ω be nonexpansive, coordinatewise con-
tractive k-means on complete metric spaces X,Y, Z respectively. Let ≤ be a
closed partial order on Z and let g : X × Y → Z be a continuous function.
If g ◦ (µ× ν) ≤ ω ◦ gk, then g ◦ (µ× ν)n ≤ ωn ◦ gn for any n ≥ k:

g(µn(x1, . . . , xn), νn(y1, . . . , yn)) ≤ ωn(g(x1, y1), . . . , g(xn, yn)).

Proof. By Theorem 7.5, the product mean µ × ν is a nonexpansive,
coordinatewise contractive k-mean on X×Y. By Theorem 9.3 the inequality
g ◦ (µ×ν) ≤ ω ◦gk can be extended to n-means: g ◦ (µ×ν)n ≤ ωn ◦gn. From

(µ× ν)n(x1, y1, x2, y2, . . . , xn, yn) = (µn(x1, x2, . . . , xn), νn(y1, y2, . . . , yn))
gn(x1, y1, x2, y2, . . . , xn, yn) = (g(x1, y1), g(x2, y2), . . . , g(xn, yn)),

the assertion follows.

10. Means on Hilbert space operators. In this and the next section
we apply and extend our preceding results to the special setting of positive
definite operators on a Hilbert space, in particular to positive definite Her-
mitian matrices (in the case where the Hilbert space is finite-dimensional).

For a Hilbert space E, let B(E) denote the set of bounded linear oper-
ators, S(E) ⊆ B(E) the symmetric operators, and Ω ⊆ S(E) the positive
definite operators on E. We define a closed positive order on S(E) by A ≤ B
if B − A is positive semidefinite. Note that the identity operator I (and
indeed any positive definite operator) is an order unit for S(E) (that is,
S(E) =

⋃∞
n=1[−nI, nI], where in general [A,B] denotes the order interval

{X ∈ S(E) : A ≤ X ≤ B}). There is a corresponding order unit norm given
by

‖A‖ = inf{t ≥ 0 : A ∈ [−tI, tI]}.
This norm generates the same topology on S(E) as does the operator norm.

We primarily employ the Thompson (or part) metric on Ω given by

d(A,B) = max{logM(A/B), logM(B/A)} where
M(A/B) = inf{λ > 0 : A ≤ λB}.

A. C. Thompson [25] has shown that Ω is a complete metric space with re-
spect to this metric and the corresponding metric topology on Ω agrees with
the relative norm topology. We list some additional elementary properties
of the Thompson metric.
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Lemma 10.1. The Thompson metric on the set Ω of positive definite
Hilbert space operators satisfies:

(i) d(A+B,A+ C) ≤ d(B,C).
(ii) A1 ≤ A2 implies d(A1 +B,A1 + C) ≥ d(A2 +B,A2 + C).

(iii) For r > 0, d(rA, rB) = d(A,B).
(iv) d(A+B,C +D) ≤ max{d(A,C), d(B,D)}.
(v) d(A−1, B−1) = d(A,B).

Proof. (i) There exists r ≥ 1 such that log r = d(B,C). Then B ≤ rC,
and thus A + B ≤ A + rC ≤ rA + rC = r(A + C), and similarly C ≤ rB
implies A+ C ≤ r(A+B). Hence d(A+B,A+ C) ≤ log r = d(B,C).

(ii) The proof of (i) remains valid for A ≥ 0, and then (ii) follows by
rewriting A2 as A1 + (A2 −A1).

(iii) For r > 0, d(rA, rB) = d(A,B) since scalar multiplication by r is
an order isomorphism.

(iv) Suppose that d(A,C) ≤ d(B,D) = log r. Then B ≤ rD, D ≤ rB,
A ≤ rC, C ≤ rA, and thus A + B ≤ rC + rD = r(C + D), C + D ≤
rA+ rB = r(A+B). Hence d(A+B,C +D) ≤ log r = d(B,D).

(v) This follows from the order reversing property of operator inversion.

The results of Section 6 require forming iterated means from means that
are on the one hand convex, and on the other coordinatewise %-contractive
and nonexpansive. The convex mean we employ is the geometric mean on
Ω defined by A#B = A1/2(A−1/2BA−1/2)1/2A1/2 (see [19] for a variety of
other characterizations). It is known (see, for example, [12], [21]) that:

Lemma 10.2. The geometric mean A#B is a convex mean on Ω with
respect to the Thompson metric.

We close this section by establishing that the arithmetic mean and the
harmonic mean are nonexpansive and coordinatewise %-contractive with re-
spect to the Thompson metric when we restrict to order intervals. This takes
some computation.

Lemma 10.3. For each n ∈ N, there exists %n, 0 < %n < 1, such that the
arithmetic mean A(X,Y ) = (X + Y )/2 and the harmonic mean H(X,Y ) =
2(X−1 +Y −1)−1 are coordinatewise %n-contractive and nonexpansive on the
order interval [(1/n)I, nI] ⊆ Ω, where I is the identity operator.

Proof. By Lemma 10.1(iv), the arithmetic mean is nonexpansive. We
seek % = %n such that for any A,B,C ∈ [(1/n)I, nI], d(A + B,A + C) ≤
%d(B,C) (note that we can drop the factor of 1/2 by Lemma 10.1(iii)). This
is equivalent to

max{logM((A+B)/(A+ C)), logM((A+ C)/(A+B))}
≤ %max{logM(B/C), logM(C/B)}.
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Note that if B 6= C (the desired inequality is trivially true if B = C), then
either B � C or C � B, and then there exists r > 1 such that C ≤ rB,
r = M(C/B), and log r = d(B,C) (or vice versa with the roles of B and C
interchanged).

Suppose now that we can find %, 0 < % < 1, such that for all
A,B,C ∈ [(1/n)I, nI], we have A+ C ≤ r%(A+B), where r = M(C/B) =
max{M(B/C),M(C/B)}. Then

d(A+B,A+ C) ≤ log r% = % log r = %d(B,C),

which is the coordinatewise %-contractive property. We conclude that to
establish the coordinatewise %-contractive property, it suffices to show the
existence of some %, 0 < % < 1, such that for all A,B,C ∈ [(1/n)I, nI], if
C ≤ rB for 1 < r ≤ n2, then A+C ≤ r%(A+B). (Note that we can restrict
to r ≤ n2 since C ≤ nI = n2(1/n)I ≤ n2B.) We establish that this is indeed
the case by means of the following two claims.

Claim 1. For given 0 < % < 1 and r > 1, assume that C + (1/n)I ≤
r%(B + (1/n)I) whenever C ≤ rB. Then A + C ≤ r%(A + B) for all A ≥
(1/n)I.

Indeed,

A+ C =
(
A− 1

n
I

)
+

1
n
I + C ≤

(
A− 1

n
I

)
+ r%

(
1
n
I +B

)
≤ r%

(
A− 1

n
I

)
+ r%

(
1
n
I +B

)
= r%(A+B).

Claim 2. There exists %, 0 < % < 1, such that for all 1 < r ≤ n2,
C + (1/n)I ≤ r%(B + (1/n)I) whenever C ≤ rB, B,C ∈ [(1/n)I, nI].

Indeed, for any 0 < % < 1,

C +
1
n
I ≤ rB +

1
n
I = r%B + (r − r%)B +

1
n
I.

For the last two terms we have

(r − r%)B +
1
n
I ≤ (r − r%)(nI) +

1
n
I = ((r − r%)n2 + 1)

1
n
I.

To complete the proof of Claim 2, we need to choose % < 1, but large
enough so that (r − r%)n2 + 1 ≤ r% for 1 ≤ r ≤ n2. The function f(x) =
x% − n2(x− x%)− 1 has derivative

f ′(x) = %x%−1 − n2(1− %x%−1) = (1 + n2)%x%−1 − n2.

Since the limit of the right-hand expression is 1 as % → 1−, we conclude
that the derivative is positive for all x ∈ [1, n2] for large enough % below 1.
Thus f is increasing on [1, n2] for % near, but below, 1, and hence

(r − r%)n2 + 1 ≤ r% for any 1 ≤ r ≤ n2, |1− %| < ε

for some ε > 0.



EXTENDING MEANS TO HIGHER ORDERS 217

The case of the harmonic mean follows from the fact that the inversion
is an isometry (Lemma 10.1(v)) and by applying the preceding result on the
arithmetic mean.

11. Extending means on Hilbert space operators. We summarize
fundamental results of Kubo and Ando [18] (see also [5], [24]) concerning
operator means and their relationship to means on the positive reals. We
consider continuous means on the positive reals, µ : R+ × R+ → R+, satis-
fying

(i) if x ≤ x′ and y ≤ y′, then µ(x, y) ≤ µ(x′, y′) (monotonicity),
(ii) µ(tx, ty) = tµ(x, y) for t, x, y > 0 (homogeneity).

A homogeneous two-variable function µ can be reduced to a one-variable
function f(x) = µ(1, x). This reduction defines a one-to-one correspondence
between the continuous means satisfying (i) and (ii) and the continuous
functions f : R+ → R+ satisfying

(O) f(1) = 1,
(I) f is nondecreasing.

We consider continuous operator means µ on Ω, the set of positive op-
erators on a Hilbert space, satisfying

(a) if A ≤ A′, B ≤ B′, then µ(A,B) ≤ µ(A′, B′) (monotonicity),
(b) Cµ(A,B)C∗ = µ(CAC∗, CBC∗) for all C invertible (the transformer

equality),

where, as usual, A ≤ B means that B −A is positive semidefinite.
The key result of the theory is that the continuous operator means on

Ω satisfying (a) and (b) are in one-to-one correspondence with the operator
monotone functions f : R+ → R+ satisfying (O)–(I), where the correspon-
dence µ↔ f is given by

µ(A,B) = A1/2f(A−1/2BA−1/2)A1/2.

Recall that f : R+ → R+ is operator monotone if its extension to Ω via
the functional calculus is monotone. It is this extension that appears in the
displayed equality. The scalar function f is called the representing function
of µ.

Basic examples of the preceding theory include: (i) the arithmetic mean
on R+ with representing function f(x) = 1

2(1 + x) and operator mean
1
2(A + B), (ii) the geometric mean

√
ab on R+ with representing function

f(x) =
√
x and operator geometric meanA#B =A1/2(A−1/2BA−1/2)1/2A1/2,

and (iii) the harmonic mean 2/(a−1+b−1) with representing function f(x) =
2x/(1 + x) and operator harmonic mean 2(A−1 +B−1)−1.
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We recall from Section 6 and from [18] the notion of the iterated com-
position σ ∗ τ of two operator means σ and τ on Ω. Starting with σ1 = σ
and τ1 = τ , we define inductively the sequences of means {σn} and {τn} by

σn+1(A,B) = σ(σn(A,B), τn(A,B)), τn+1(A,B) = τ(σn(A, b), τn(A,B)).

By Theorem 6.2 of [18], if σ and τ are continuous, monotonic means sat-
isfying the transformer equality and if at least one is neither the left- nor
the right-trivial mean, then {σn} and {τn} converge to the same limiting
mean σ∞, which means that for all A,B ∈ Ω, limn σn(A,B) = σ∞(A,B) =
limn τn(A,B), where the limit is taken in the weak operator topology.

Theorem 11.1. Let Ω denote the set of positive operators on a Hilbert
space, let λ(A,B) = A#B denote the geometric mean of A,B, and let ν be
a continuous, monotonic mean on Ω satisfying the transformer equality that
is also coordinatewise %n-contractive for 0 < %n < 1 and nonexpansive on the
order interval [(1/n)I, nI] for each n with respect to the Thompson metric.
Then the iterated composition µ = λ ∗ ν (resp. skewed iterated composition
µ = λ ∗s ν) exists, is a coordinatewise %n-contractive, nonexpansive mean
when restricted to [(1/n)I, nI] for each n, and hence inductively β-converges
to a β-extension for each n > 2.

Proof. We consider some fixed order interval Γn = [(1/n)I, nI] and
A,B ∈ [(1/n)I, nI]; note that [(1/n)I, nI] is closed and convex with re-
spect to any monotonic mean, in particular with respect to λ and ν. By
Proposition 6.4 there exists an iterated composition µn = λ|Γn ∗ ν|Γn that is
nonexpansive and coordinatewise %n-contractive. Clearly, if m < n, then µn
is an extension of µm. Thus there exists a unique mean µ that extends all
of them. Since any A,B belong to the domain of some µn, µ is the iterated
composition λ ∗ ν.

Since µn is nonexpansive and coordinatewise %n-contractive on Γn, it
inductively admits a β-extension for each n > 2. It then follows from Corol-
lary 7.8 that a β-extension of µ exists inductively for each n > 2.

The case of the skewed iterated composition is analogous.

The iterated composition of the operator arithmetic mean and operator
geometric mean yields the arithmetic-geometric operator mean [15]. Simi-
larly we have the harmonic-geometric operator mean.

Definition 11.2. For two positive definite operators A,B ∈ Ω on the
Hilbert space E, we define the arithmetic-geometric mean or Gauss mean
AGM(A,B) to be the iterated composition of the geometric and arithmetic
means, that is, the limit limn λn(A,B) = limn νn(A,B), where we define
λ1(A,B) = A#B, the geometric mean, ν1(A,B) = (A+B)/2, the arithmetic
mean, and inductively λn+1(A,B) = λn(A,B)#νn(A,B) and νn+1(A,B) =
1
2(λn(A,B) + νn(A,B)).
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It is standard that the preceding iteration defining the arithmetic-ge-
ometric mean of two positive operators converges in the weak operator
topology and agrees with the one arising from the representing function
of arithmetic-geometric mean on the positive real numbers [18, Section 6].

Corollary 11.3. On any order interval [(1/n)I, nI] the arithmetic-
geometric mean (resp. the harmonic-geometric mean) is nonexpansive and
coordinatewise %n-contractive for some %n, 0 < %n < 1. Hence on Ω the
arithmetic-geometric mean (resp. the harmonic-geometric mean) inductively
β-extends to an n-mean for each n > 2.

Proof. Fix some positive integer m. By Lemma 10.3 the arithmetic mean
is nonexpansive and coordinatewise %m-contractive on [(1/m)I,mI] for some
0 < %m < 1. We have already remarked that the geometric mean is a convex
mean with respect to the Thompson metric. The result now follows from
Theorem 11.1.

We briefly recall the operator logarithmic mean as discussed in [24].
The logarithmic mean is defined on R+ by L(a, b) = (b− a)/(log b− log a).
Its representing function is f(x) = L(1, x) = (x − 1)/log x, which is an
operator monotone function. Hence there exists a corresponding operator
logarithmic mean. B. C. Carlson [10] has shown that the logarithmic mean
on R+ is the skewed iterated composition of the geometric and arithmetic
means. It then follows from the theory of operator means as developed in
Section 6 of [18], particularly Lemma 6.1 and Theorem 6.2 there, that the
operator logarithmic mean is the corresponding skewed iterated composition
of the operator geometric and arithmetic means on Ω, the set of positive
operators on a Hilbert space, where the limits are taken in the weak operator
topology. However, the same arguments applied in the previous corollary to
the arithmetic-geometric mean viewed as the iterated composition of the
geometric and arithmetic means apply equally well to the logarithmic mean
viewed as the skewed iterated composition of the geometric and arithmetic
means. We thus analogously obtain the following

Corollary 11.4. On any order interval [(1/n)I, nI] the logarithmic
mean is nonexpansive and coordinatewise %n-contractive for some %n, 0 <
%n < 1. Hence on Ω the logarithmic mean inductively β-extends to an n-
mean for each n > 2.

The preceding corollary provides a positive solution to a problem raised
by Petz and Temesi ([24], [23]) as to whether the logarithmic mean β-
converges and hence admits higher-dimensional extensions.

It is easy to obtain the order relation L(A,B) ≤ AGM(A,B) between the
logarithmic mean and the arithmetic-geometric mean, which are monotone
(Definition 9.1). Applying Theorem 9.2 we have the following
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Corollary 11.5. The order relation

Ln(A1, . . . , An) ≤ AGMn(A1, . . . , An)

holds for the extended logarithmic and arithmetic-geometric n-means for
each n > 2.

Remark 11.6. In a similar way one can show that 2-means µ and ν
that satisfy the inequality µ ≤ ν and that can both be derived by some
iteration or skew iteration of the arithmetic and geometric resp. harmonic
and geometric means satisfy µn ≤ νn for all n > 2. In this way, for example,
one derives the principal results of [17] as a corollary to our preceding results.

We remark in closing that a number of ideas in this paper can be carried
over to the study of means on the set of positive elements of a C∗-algebra,
particularly by viewing the C∗-algebra as a closed subalgebra of the algebra
of bounded operators on a Hilbert space. For example, one could define the
logarithmic mean to be the skewed iterated composition of the geometric
and arithmetic means and show that it inductively β-extends to all higher
dimensions.
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häuser, Basel, 1995.
[5] R. Bhatia, Matrix Analysis, Springer, New York, 1996.
[6] R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means,

Linear Algebra Appl. 413 (2006), 594–618.
[7] —, —, Noncommutative geometric means, Math. Intelligencer 28 (2006), no. 1,

32–39.
[8] J. Borwein and P. Borwein, Pi and the AGM , Wiley, New York, 1987.
[9] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer,

Berlin, 1999.
[10] B. Carson, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615–618.
[11] J. Charatonik, Means on arc-like continua, http://web.mst.edu/˜continua/4−Bubu.

pdf.
[12] G. Corach, H. Porta, and L. Recht, Convexity of the geodesic distance on spaces of

positive operators, Illinois J. Math 38 (1994), 87–94.
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