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MODULES WITH SEMIREGULAR ENDOMORPHISM RINGS
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KUNIO YAMAGATA (Tokyo)

Dedicated to Kanzo Masaike on the occasion of his sixty-fifth birthday

Abstract. We characterize the semiregularity of the endomorphism ring of a module
with respect to the ideal of endomorphisms with large kernel, and show some new classes
of modules with semiregular endomorphism rings.

Introduction. In this paper, a ring is an associative ring with an iden-
tity, and a module a unital right module. Let R be a ring and M an R-
module. For the endomorphism ring Λ = EndR(M), we denote by RadM (Λ)
or Rad(Λ) the Jacobson radical of Λ, and by LarM (Λ) or Lar(Λ) the ideal
of Λ consisting of all endomorphisms of M with large kernel (see Section 2
for details).

A ring R is said to be semiregular with respect to an ideal I if the factor
ring R/I is (von-Neumann) regular and any idempotent in R/I lifts to an
idempotent in R. A ring semiregular with respect to the Jacobson radical is
simply called semiregular [1]. It is well known that the endomorphism ring
of an injective module is semiregular with respect to the Jacobson radical.
This classical theorem is due to the work by R. E. Jonson, Y. Utumi, and
J. Lambek (see [3, §4.4]). It has been slightly generalized to quasi-injective
modules or continuous modules by Faith–Utumi [2] and Utumi [5]. Moreover,
Utumi proved that the Jacobson radical of the endomorphism ring Λ of an
injective module M coincides with LarM (Λ). Thus it has not been clear how
the ideal LarM (Λ) relates to the semiregularity for injective modules.

This motivates the research in this paper. Our aim is to give a character-
ization for a module M having semiregular endomorphism ring with respect
to the ideal LarM (End(M)), and as an application, we prove that a module
M decomposable into a direct sum of indecomposable injective submodules
has semiregular endomorphism ring with respect to LarM (End(M)).
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The main results of this paper were announced at the 4th China-Japan-
Korea Symposium on Ring Theory held in Tokyo in September 2007.

1. Preliminary results. Let R be a ring and M an R-module. A sub-
module N of M is said to be large in M , denoted by N EM , if N ∩K 6= 0
for all non-zero submodules K of M . A submodule K of M is said to be a
semicomplement of a submodule N in M if K∩N = 0 and K+N EM , and
a complement of N in M if it is maximal in the set of all semicomplements
of N in M . A submodule N of M is called a (semi)complement provided it
is a (semi)complement of a submodule of M .

Let Λ = EndR(M) be the endomorphism ring of M . We denote by Λ
the factor ring of Λ by LarM (Λ). For an element u ∈ Λ, M 〈u〉 denotes the
submodule of M of elements invariant under u, that is, M 〈u〉 = Ker(1− u).

Lemma 1.1. For an idempotent ū of Λ and I = Ker(u2−u), the follow-
ing conditions hold :

(i) (1− u)I ∩ uI = 0.
(ii) uI ∩Keru = 0.

Proof. (i) For x ∈ (1− u)I ∩ uI, let x = (1− u)a = ub for some a, b ∈ I.
Then ux = u(1−u)a = (u−u2)a = 0, and (1−u)x = (1−u)ub = (u−u2)b
= 0. Hence x = ux+ (1− u)x = 0.

(ii) For x ∈ uI ∩Keru, let x = ua for some a ∈ I. Then x = ua = u2a =
ux, and hence x = 0.

Lemma 1.2. For u ∈ Λ, u ∈ Λ is an idempotent if and only if M 〈u〉 ⊕
KeruEM .

Proof. Assume that u2 = u, and let N = Ker(u2−u). Then N EM and
uN ⊆ Ker(1 − u) obviously, and Ker(1 − u) ⊆ uKer(1 − u) ⊆ uN , which
implies that uN = uKer(1− u). It follows that N + Keru = Ker (1− u) +
Keru, so N = Ker(1 − u) + Keru, because Keru ⊆ N . Thus we have
M 〈u〉 ⊕KeruEM .

Conversely, assume that L = M 〈u〉 ⊕ Keru E M . For any x ∈ L, let
x = a+ b for some a ∈ Ker(1− u) and b ∈ Keru. Then

u2x = u2a+ u2b = u2a = ua = ua+ ub = u(a+ b) = ux,

which implies that L ⊆ Ker(u2−u). Hence Ker(u2−u)EM , that is, u2 = u,
because LEM .

2. Lifting idempotents and regular rings. In this section we prove
some properties of lifting idempotents and regularity.As before,Λ=EndR(M)
denotes the endomorphism ring of an R-module M , and Λ = Λ/Lar(Λ).



SEMIREGULAR ENDOMORPHISM RINGS 243

Proposition 2.1. For an idempotent u in Λ, the following conditions
are equivalent :

(i) u lifts to an idempotent in Λ.
(ii) There is a semicomplement N of Keru in M such that uN is large

in a direct summand of M .

Proof. We may assume that u 6= 0, because the conditions hold trivially
for u = 0.

(i)⇒(ii). Let e be an idempotent of Λ with e = u. We have to find a
submodule N of M such that N + Keru is a direct sum and large in M and
uN E eM . Now, there are large submodules L1, L2 of M such that

(u2 − u)L1 = 0, (e− u)L2 = 0,

where we can take L1 including Keru. Let X be a complement of Keru in
M and let

N = L1 ∩ L2 ∩X.
Then X 6= 0 and N 6= 0, because u 6= 0 and L1 ∩L2 EM . Since L2 EM , we
have

N = L2 ∩ (L1 ∩X) E L1 ∩X,
and since Keru ⊆ L1, the modular law yields

(L1 ∩X)⊕Keru = L1 ∩ (X ⊕Keru) EM,

because L1 EM and X ⊕KeruEM . Thus we have N ⊕KeruEM .
Next we claim that uN E eM . Clearly, uN ⊆ eM and u(L1 ∩ L2) =

e(L1∩L2), because ux = ex for all x ∈ L2. On the other hand, e(L1∩L2)E
eM , because L1 ∩ L2 EM . Thus it suffices to show that uN E u(L1 ∩ L2).
Take any non-zero element ux of u(L1 ∩ L2) with x ∈ L1 ∩ L2. Then, since
N ⊕KeruEM , there is an element r of R such that 0 6= uxr ∈ N ⊕Keru.
Let uxr = a + b for some a ∈ N and b ∈ Keru. Then uxr = u2xr, because
xr ∈ L1, and hence

0 6= uxr = u2xr = ua+ ub = ua ∈ uN,
which shows that uN is large in u(L1 ∩ L2).

(ii)⇒(i). Let L = Ker(u2−u). Since u2 = u, we have Keru ⊆ LEM . Let
K = L∩(N⊕Keru), which is large in M . First, we show that uKEeM . For
this, it is enough to prove that uK EuN , because uK ⊆ uN and uN E eM ,
by assumption. Take any non-zero element ux of uN with x ∈ N . Since
K EM , there is an r ∈ R with 0 6= xr ∈ K. Hence 0 6= uxr ∈ uK, because
0 6= xr ∈ N and N ∩Keru = 0, which implies the claim, and it follows that

(1− e)K ⊕ uK E (1− e)M ⊕ eM = M.

Now, following the idea in the proof of [3, §4.4, Proposition 1], let

f = e+ eu(1− e),
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which is clearly idempotent in Λ. We claim that u = f . Since uN ⊆ eM ,
we have ux = eux for any x ∈ N , and hence for any x ∈ N + Keru. Thus
eu = u in Λ, so that to prove our claim it suffices to show that f = eu. For
this, by the fact observed above that (1 − e)K ⊕ uK E M , it is enough to
prove the following equalities:

(f − eu)((1− e)K) = 0, (f − eu)(uK) = 0.

The first equality follows from the following one, for any x ∈ K:

f(1− e)x = (e+ eu(1− e))(1− e)x = eu(1− e)x.
For the second equality, note that fux = eux for any x ∈ K, which follows
from that fact that ux = eux, because ux ∈ uK ⊆ eM . Hence we have
fux = eux = eu2x for all x ∈ K, which proves the second equality, and
completes the proof.

It should be noted that the restriction of an element u of Λ to a semi-
complement N of Keru in M is a monomorphism and induces an isomor-
phism u|N : N ∼→ uN . Hence the inverse (u|N )−1 is defined.

Proposition 2.2. The factor ring Λ is regular if and only if , for any
u ∈ Λ, there is a semicomplement N of Keru in M such that the inverse
(u|N )−1 : uN → N extends to an endomorphism of M , or equivalently , there
is an element v of Λ with vux = x for all x ∈ N .

Proof. Assume that Λ is regular. We will show that, for any u ∈ Λ and
a semicomplement N of Keru in M , the inverse u|−1

N : uN ∼→ N extends to
an endomorphism of M . We may assume u 6= 0. Since Λ is regular, there
is a v ∈ Λ with uvu = u, and hence w2 = w for w = vu. For a large
submodule L of M annihilated by uvu − u, we have (w2 − w)L = 0, so
that wL ∩ Kerw = 0 by Lemma 1.1(ii). Now we claim that N = wL is
a complement of Keru in M . First, notice that N ∩ Keru = 0, because
Keru ⊆ Kerw and N ⊆ M 〈w〉. Since uN = uwL = uvuL = uL, we have
N+Keru = L+Keru. Thus N+Keru is large in M , because L+KeruEM .
Next, we claim that v is an extension of the inverse of u|N : N ∼→ uN , that
is, vu is the identity on N . In fact, for any x ∈ N with x = wy for some
y ∈ L, we have x = w2y = vuwy = vux for all x ∈ N .

Conversely, for any x ∈ N and y ∈ Keru, there is a v ∈ Λ with vux = x,
and hence uvu(x + y) = uvux = ux = u(x + y). It therefore follows that
(uvu− u)(N + Keru) = 0, which implies that uvu = u in Λ.

It is well known that LarM (Λ) = RadM (Λ) for an injective module M .
One inclusion between these ideals of Λ comes from a property of endomor-
phisms of M—see the proposition below, where it should be noted that an
endomorphism u of M is monomorphic if M 〈u〉 EM .
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Proposition 2.3. Let M be an R-module and Λ = EndR(M). Then
LarM (Λ) ⊆ RadM (Λ) if and only if any endomorphism u of M with M 〈u〉E
M is bijective.

Proof. Suppose that Lar(Λ) ⊆ Rad(Λ), and take a monomorphism u ∈ Λ
with M 〈u〉 E M . Then 1 − u ∈ Lar(Λ) and hence 1 − u ∈ Rad(Λ), which
implies that u is an isomorphism.

Conversely, take any v ∈ Lar(Λ). Since Ker vEM and Ker v ∩Ker (1− v)
= 0, we have Ker(1−v) = 0, that is, 1−v is a monomorphism. Let u = 1−v.
Then Ker(1−u)EM , that is, M 〈u〉EM . Therefore, by assumption, 1− v is
invertible in Λ for all v ∈ Lar(Λ) and hence Lar(Λ) ⊆ Rad(Λ) (see [3, §3.2,
Proposition 5]).

Corollary 2.4. LarM (Λ) ⊆ RadM (Λ) for any artinian module M .

Proof. Let u : M → M be a monomorphism with M 〈u〉 EM . We show
that u is an epimorphism. Since M is artinian, there is an integer m with
umM = u2mM . Let v = um, and let f : vM → vM be the composition of the
inclusion vM ↪→ M and the canonical morphism M → vM induced by v.
Then f is an isomorphism, because f is clearly a monomorphism and vM =
v2M = f(vM), which implies that f is an epimorphism. Thus the inclusion
vM ↪→ M is splittable. On the other hand, obviously M 〈u〉 = uM 〈u〉, and
hence M 〈u〉 = vM 〈u〉 ⊆ vM , so that vM EM , because M 〈u〉EM . Therefore
we have vM = M , which obviously implies that u is an epimorphism.

3. Main theorems. A semiregular endomorphism ring Λ = EndR(M)
with respect to the ideal Lar(Λ) of Λ is simply said to be L-semiregular.

Theorem 3.1. For an R-module M and Λ = EndR(M), the following
conditions are equivalent :

(i) Λ is L-semiregular.
(ii) For any u ∈ Λ, there are semicomplements N1, N2 of Keru in M

such that

(a) (u|N1)−1 : uN1 → N1 extends to an endomorphism of M ,
(b) uN2 is large in a direct summand of M if u2 − u ∈ Lar(Λ).

(iii) For any u ∈ Λ, there is a semicomplement N of Keru in M such
that

(a) (u|N )−1 : uN → N extends to an endomorphism of M ,
(b) uN is large in a direct summand of M if u2 − u ∈ Lar(Λ).

Proof. The implications (i)⇒(ii) and (iii)⇒(i) follow from Propositions
2.1 and 2.2.

(ii)⇒(iii). If Keru E M , it is enough to take N = 0. Hence we assume
that Keru is not large in M .
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For u ∈ Λ let N1, N2 be the non-zero semicomplements of Keru in M
given in (ii) and uN2EeM for some idempotent e of Λ. Assume that u2 = u.
It suffices to show that we can take a common submodule N as N1 and N2.
Let ϕ : N1 ⊕Keru→ N1 be a projection and

N ′ = (N1 ⊕Keru) ∩N2, N = ϕ(N ′).

Then, since N ⊆ N1, we have N ∩Keru = 0 and the restriction of vu to N
is the identity. Hence, to show that N satisfies (iii)(b), it suffices to prove
that

N ⊕KeruEM, uN E eM.

However, N ′+ Keru = N + Keru because uN ′ = uN , and therefore we will
show that N ′ ⊕KeruEM and uN ′ E eM . Now, by the modular law,

N ′ ⊕Keru = ((N1 ⊕Keru) ∩N2)⊕Keru
= (N1 ⊕Keru) ∩ (N2 ⊕Keru),

which implies that N ′⊕KeruEM , because Ni⊕KeruEM by the choice of Ni

for i = 1, 2. Next, to show that uN ′EeM , we show that uN ′EuN2, because
uN ′ ⊆ uN2 EeM . Take a non-zero x ∈ uN2 and let x = uy for some y ∈ N2.
Since N1 ⊕KeruEM , there is an r ∈ R with 0 6= yr ∈ N1 ⊕Keru, so that
0 6= yr ∈ N ′. It therefore follows that 0 6= xr ∈ N ′, because N ′∩Keru = 0.

Proposition 3.2. For an R-module M and Λ = EndR(M), the follow-
ing conditions are equivalent :

(i) Λ/Rad(Λ) is regular and Rad(Λ) = Lar(Λ).
(ii) Λ/Lar(Λ) is regular and any u ∈ Λ with M 〈u〉 E M is an isomor-

phism.

Proof. The implication (i)⇒(ii) follows from Proposition 2.3.
(ii)⇒(i). It is enough to show that Rad(Λ) = Lar(Λ). In fact, we have

Lar(Λ) ⊆ Rad(Λ), by Proposition 2.3. On the other hand, Λ = Λ/Lar(Λ) is
regular by assumption, and hence Rad(Λ) = 0, which implies that Rad(Λ) ⊆
Lar(Λ). Therefore we have Rad(Λ) = Lar(Λ).

Proposition 3.2 can be restated as follows.

Theorem 3.3. Let M be an R-module and Λ = EndR(M), and assume
that any monomorphism u ∈ Λ with M 〈u〉 EM is an isomorphism. Then Λ
is L-semiregular if and only if Λ is semiregular and Rad(Λ) = Lar(Λ).

The following is an immediate consequence of Theorem 3.3 and Corollary
2.4.

Corollary 3.4. The endomorphism ring Λ = EndR(M) of an artinian
R-module M is L-semiregular if and only if Λ is semiregular and Rad(Λ) =
Lar(Λ).
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An R-module M is said to be uniform if any non-zero submodule of M
is large in M .

Corollary 3.5. The endomorphism ring Λ = EndR(M) of an artinian
uniform R-module M is semiregular and Rad(Λ) = Lar(Λ).

Proof. Notice that either any endomorphism u of M is injective or
Keru E M . In the first case, it is easy to see that u is an isomorphism,
because M is artinian. Hence, condition (ii) in Theorem 3.1 clearly holds
for any endomorphism u of M , so that Λ = EndR(M) is L-semiregular. The
semiregularity of Λ then follows from Theorem 3.3.

The following corollary mentioned in the introduction now follows from
Theorems 3.1 and 3.3, where a module M is said to be continuous in the
sense of Utumi provided a submodule of M is a direct summand of M if
it is isomorphic to a complement in M . Notice that any complement of
a continuous module M is a direct summand of M . Obviously, injective
modules and quasi-injective modules are continuous.

Corollary 3.6. The endomorphism ring Λ = EndR(M) of a continu-
ous R-module M is semiregular and Rad(Λ) = Lar(Λ).

Proof. Assume that M is continuous, and for any u ∈ Λ take a com-
plement N of Keru. Then N and uN (' N) are direct summands of M
by assumption. Hence condition (ii) in Theorem 3.1 holds and hence Λ is
L-semiregular. On the other hand, for a monomorphism u : M → M with
M 〈u〉EM , we clearly have M 〈u〉 ⊆ uM ⊆M , so that uMEM . It follows that
uM = M , because uM is isomorphic to M and hence is a direct summand
of M by continuity of M . Thus the corollary follows from Theorem 3.3.

4. Direct sum of injective modules. As a generalization of the the-
orem for injective modules, we consider the semiregularity of the endomor-
phism ring of a module which is decomposable into a direct sum of injective
submodules. The aim of this section is to show the semiregularity for direct
sums of indecomposable injective submodules.

The following well known lemma is useful to check the decomposability
of a module.

Lemma 4.1. Let M be a direct sum of submodules X and Y , and let
pX : M → X, pY : M → Y be the projections. Then a submodule N of M
is a direct summand with complement Y , M = N ⊕ Y , if the restriction of
pX to N is isomorphic.

Lemma 4.2. Let M be a direct sum of submodules X and Y , and N be
a submodule of M such that pX |N : N → X is monomorphic and there is
an injective hull of pY (N) in Y . Then
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(i) There is a submodule L such that N ⊆ L ⊆M and M = L⊕ Y .
(ii) If pX(N) has an injective hull X0 in X, then there is an injective

hull I of N in M with pX(I) = X0.

Proof. (i) Since pX |N : N → X is a monomorphism, pX(x) = 0 implies
pY (x) = 0, for x ∈ N . Hence the correspondence ϕ0 : pX(N)→ pY (N) with
ϕ0(pX(x)) = pY (x) is well defined. Let Y0 be an injective hull of pY (N)
in Y , and ϕ1 : pX(N) → Y0 be the composition of ϕ0 with the inclusion
pY (N) ↪→ Y0. Then ϕ1 extends to a homomorphism ϕ2 : X → Y0, by
injectivity of Y0, and we get the commutative diagram

pX(N)

ϕ1

��

� � // X

ϕ

��
ϕ2{{wwwwwwwww

Y0
� � // Y

Let ϕ be the composition of ϕ2 with the inclusion Y0 ↪→ Y , and let L =
{(x, ϕ(x)) | x ∈ X}. Then N ⊆ L and the restriction pX |L : L → X is
obviously an isomorphism. It follows from Lemma 4.1 that M = L⊕ Y .

Now we are able to prove the main result of this section.

Theorem 4.3. Let M be an R-module decomposable into a direct sum
of indecomposable injective submodules. Then EndR(M) is L-semiregular.

Proof. Let M =
⊕

i∈ΩMi, where all Mi are indecomposable injective
submodules of M , and for a subset Ω′ of Ω, denote by MΩ′ the direct
summand

⊕
i∈Ω′Mi of M . For an endomorphism u of M , we will show that

there is a semicomplement N of Keru in M such that N E eM for some
e = e2 ∈ EndR(M), and (u|N )−1 : uN → N lifts to an endomorphism of M .
Then the theorem follows from Theorem 3.1.

Let Ω1 be a maximal subset of Ω with MΩ1 ∩ Keru = 0, and Ω2 be
a maximal subset of Ω with uMΩ1 ∩ MΩ2 = 0. Then MΩ1 ⊕ Keru and
uMΩ1 ⊕ MΩ2 are large in M . Let X = MΩ−Ω2 and Y = MΩ2 , and let
pX , pY be the projections of M = X ⊕ Y to X and Y , respectively. Since
pX(uMΩ1) E X, we have pX(uMΩ1) ∩Mi 6= 0 for any i ∈ Ω − Ω2. Take
a non-zero finitely generated submodule S′i ⊆ pX(uMΩ1) ∩MΩi . Then Mi

is an injective hull of S′i, because Mi is indecomposable injective. Let Si =
p−1
X (S′i) ∩ uMΩ1 for i ∈ Ω −Ω2. Clearly pX |Si : Si → S′i is an isomorphism,

which implies that Si is finitely generated and so is pY (Si). Hence pY (Si) is
contained in a direct sum of finitely many summands Yj (j ∈ Ω2), and so
pY (Si) has an injective hull in Y . It therefore follows from Lemma 4.2(ii)
that there is an injective hull Ei of Si of M such that pX(Ei) = Mi, where
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Ei is indecomposable, because of the uniformity of Si. Now, if

E =
⊕

i∈Ω−Ω2

Ei and S =
⊕

i∈Ω−Ω2

Si,

then S E E. Since Ei and Mi are indecomposable injective and pX |Si :
Si → S′i is an isomorphism, pX |Ei : Ei → Mi is also an isomorphism for all
i ∈ Ω − Ω2 and so pX |E : E → X is an isomorphism. Hence, by Lemma
4.1, there is an idempotent e of EndR(M) with E = eM . This shows that
S E eM .

Let Ni = u−1(Si) ∩MΩ1 and N =
⊕

i∈Ω−Ω2
Ni. Then uN = S E eM .

Since Ni is isomorphic to Si by u, it is finitely generated, and hence there
is an injective hull Fi of Ni in M . Let θi : Fi ↪→M be the inclusion, and let
vi : Ei → Fi be an extension of (u|Si)−1 : Si

∼→ Ni, and v′ =
∑

i θivi : E =⊕
iEi →M , that is, there is a commutative diagram

Si

(u|Si )
−1 ∼

��

� � // Ei

vi
��

� � // E

v′

��

� � // M

v
~~}

}
}

}

Ni
� � // Fi

� � θi // M

Since E is a direct summand of M , the homomorphism v′ naturally extends
to an endomorphism v of M . It is clear that the restriction of vu to N is the
identity. Moreover, N ∩Keru = 0 because N ⊆MΩ1 , and N EMΩ1 because
S =

⊕
Si E uMΩ1 and u|MΩ1

is a monomorphism. Thus

N ⊕KeruEMΩ1 ⊕KeruEM,

and therefore N ⊕KeruEM .

The endomorphism ring of a direct sum M =
⊕

i∈ΩMi of indecompos-
able injective submodules is not necessarily semiregular. In fact, if EndR(M)
is semiregular, then EndR(M) is an exchange ring and hence M has the finite
exchange property by a theorem of Warfield. See [1, Corollaries 11.21 and
11.17]. Then the system {Mi}i∈Ω is locally semi-T-nilpotent by [6] (see [1,
Corollary 12.14] for a general result). But, in general, the family of indecom-
posable injective modules does not form a locally semi-T-nilpotent system.
An example is obtained by making use of the following ring constructed by
Osofsky.

Let Z(p) denote the ring of p-adic integers for some prime p, and R be the
trivial extension ring Z(p)nZp∞ , where Zp∞ is considered as a Z(p)-bimodule
by the canonical isomorphism Z(p) ' EndZ(Zp∞). Then R is a commutative
local ring with the maximal ideal generated by p = (p, 0) and simple socle.
Moreover, R is an indecomposable injective cogenerator as an R-module.
See [4, Example 1]. Now let Mn (n ∈ N) be a copy of the R-module R and
let fn : Mn → Mn+1 be the multiplication map fn(x) = xp (x ∈ Mn). It is
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clear that fn . . . f1(1, 0) = (pn, 0) 6= 0 for any n ∈ N, which shows that the
system {Mn, fn}n∈N is not locally semi-T-nilpotent.

We finish the paper by stating an open problem which was one of the
motivation of this work.

Problem. Is the ring EndR(M) L-semiregular for an R-module M that
decomposes into a direct sum of injective submodules?
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