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LINEAR DERIVATIONS WITH RINGS OF CONSTANTS
GENERATED BY LINEAR FORMS

BY

PIOTR JĘDRZEJEWICZ (Toruń)

Abstract. Let k be a field. We describe all linear derivations d of the polynomial
algebra k[x1, . . . , xm] such that the algebra of constants with respect to d is generated by
linear forms: (a) over k in the case of char k = 0, (b) over k[xp

1, . . . , x
p
m] in the case of

char k = p > 0.

Introduction. Throughout this paper k is a field of characteristic p ≥ 0.
We denote by k[X] the polynomial algebra k[x1, . . . , xm] with the natural
grading

k[X] =
∞⊕
j=0

k[X]j ,

where k[X]j is the subspace of forms of degree j. We also denote by k[Xp]
the subalgebra k[xp1, . . . , x

p
m], but in the case of p = 0 we assume xpi = 1, i =

1, . . . ,m, and k[Xp] = k. If v1, . . . , vn ∈ k[X], then we denote by 〈v1, . . . , vn〉k
the k-linear space spanned by v1, . . . , vn. Throughout this paper we denote
by N the set of nonnegative integers, and by Fp the prime subfield of k.

A k-linear mapping d : k[X] → k[X] is called a k-derivation of k[X] if
d(fg) = fd(g)+ gd(f) for all f, g ∈ k[X]. If d is a k-derivation of k[X], then
we denote by k[X]d the ring of constants of d, that is,

k[X]d = {f ∈ k[X] : d(f) = 0}.
Note that k[Xp] ⊆ k[X]d, so k[X]d is a k[Xp]-algebra.

A mapping d : k[X] → k[X] is called a linear derivation if d is a k-
derivation of k[X] and d(k[X]j) ⊆ k[X]j for j = 0, 1, 2, . . . . It is clear that a
k-derivation d of k[X] is a linear derivation if and only if

d(xj) =
m∑
i=1

aijxi for j = 1, . . . ,m,

where aij ∈ k for i, j = 1, . . . ,m. A linear derivation d is uniquely determined
by the matrix (aij).
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In the case of char k = 0, Nowicki ([2]) described the linear derivations
of k[X] such that k[X]d = k. He also described such derivations satisfying
the condition k(X)d = k, where k(X) is the field of rational functions.
In this paper we consider the following, more general problem, concerning
polynomial constants of linear derivations. Let 0 ≤ r ≤ m. The problem is
to describe all linear derivations d of k[X] such that

k[X]d = k[y1, . . . , yr, y
p
r+1, . . . , y

p
m]

(i.e. k[X]d = k[y1, . . . , yr] in the case of p = 0) for some k-linear basis
y1, . . . , ym of k[X]1.

1. The Jordan case. In this section we consider a special case when
the matrix (aij) of a linear derivation d of k[X] = k[x1, . . . , xm] is already
in the Jordan form
Jm1(%1) 0 · · · 0

0 Jm2(%2)
. . .

...
...

. . . . . . 0
0 · · · 0 Jms(%s)

 , Jmi(%i) =


%i 1 · · · 0

0 %i
. . .

...
...

. . . . . . 1
0 · · · 0 %i︸ ︷︷ ︸

mi

 ,

i = 1, . . . , s, where s ≥ 1, m1 ≥ · · · ≥ ms, m1 + · · · + ms = m, and where
%1, . . . , %s ∈ k.

Let n1 = 1 and ni = m1 + · · ·+mi−1 + 1 for i = 2, . . . , s. Then d(xni) =
%ixni and d(xni+l) = xni+l−1+%ixni+l for l = 1, . . . ,mi−1, whenevermi > 1.

Let
I = {1, . . . , s}, I0 = {i ∈ I : %i = 0}.

We denote by d|k[X]1 the restriction of d to k[X]1. The kernel of d|k[X]1 is
k-linearly spanned by all the elements of the form xni , where i ∈ I0, that is,

k[X]d ∩ k[X]1 = 〈xni ; i ∈ I0〉k.
This implies the following fact.

Proposition 1.1. Assume that k[X]d = k[y1, . . . , yr, y
p
r+1, . . . , y

p
m] for

some k-linear basis y1, . . . , ym of k[X]1. Then 〈y1, . . . , yr〉k = 〈xni ; i ∈ I0〉k
and k[X]d is generated over k[Xp] by the elements xni , where i ∈ I0, that is,

k[X]d = k[Xp][xni ; i ∈ I0].
The aim of this section is to prove the following theorems.

Theorem 1.2. Let p = 0. The equality k[X]d = k[xni ; i ∈ I0] holds if
and only if the following three conditions are satisfied :

(1) the system (%i; i ∈ I \ I0) is linearly independent over N,
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(2) mi ≤ 2 for every i ∈ I0,
(3) mi = 2 for at most one i ∈ I0.
Theorem 1.3. Let p > 0. The equality k[X]d = k[Xp][xni ; i ∈ I0] holds

if and only if the following three conditions are satisfied :

(1) the system (%i; i ∈ I \ I0) is linearly independent over Fp,
(2) m1 ≤ 2 or m1 = 3, p = 2,
(3) m2 = 1.

Let λ1, . . . , λm be the diagonal elements of the matrix of d, that is, λni =
· · · = λni+mi−1 = %i for i = 1, . . . , s. Obviously d = dD + dN , where dD and
dN are the linear derivations defined by:

dD(xj) = λjxj for j = 1, . . . ,m,

dN (xj) =

{
0 for j = n1, . . . , ns,

xj−1 for j 6= n1, . . . , ns.

We see that
dD(xl11 . . . x

lm
m ) = (l1λ1 + · · ·+ lmλm)xl11 . . . x

lm
m ,

dN (xl11 . . . x
lm
m ) =

∑
j 6=n1,...,ns

ljx
l1
1 . . . x

lj−1+1
j−1 x

lj−1
j . . . xlmm .

Proposition 1.4. k[X]d = k[X]dN ∩ k[X]dD .

Proof. In the case of p = 0 this fact is well known ([4, Corollary 2.3] or
[3, Corollary 9.4.4]). Assume that p > 0.

The inclusion k[X]dN ∩ k[X]dD ⊆ k[X]d is clear. To prove the reverse
inclusion, suppose that d(f) = 0 for some f ∈ k[X]. Let l be a positive
integer such that pl ≥ m, where m = dimk k[X]1. Then (dN |k[X]1)

pl
= 0, so

dp
l

N = 0, and we have dp
l

D(f) = dp
l
(f) = 0.

It is easy to see that all the monomials of the form xl11 . . . x
lm
m such that

l1λ1 + · · ·+ lmλm = 0 form a k-linear basis of k[X]dD , and all the monomials
of the form xl11 . . . x

lm
m such that l1λ

pl

1 + · · · + lmλ
pl

m = 0 form a k-linear

basis of k[X]d
pl

D . Since l1λ
pl

1 + · · · + lmλ
pl

m = (l1λ1 + · · · + lmλm)p
l for every

l1, . . . , lm ∈ Z, we have k[X]d
pl

D = k[X]dD . This implies that dD(f) = 0, so
dN (f) = d(f)− dD(f) = 0, and finally f ∈ k[X]dN ∩ k[X]dD .

Note the following useful proposition.

Proposition 1.5. Let K be a domain of characteristic p ≥ 0. Let δ be a
K-derivation of K[x1, . . . , xm] such that δ(xi) = 0 for i ≤ r and δ(xi) = µixi
for i > r, where µr+1, . . . , µm ∈ K \ {0} are linearly independent (over Fp
in the case of p > 0, over N in the case of p = 0). Then K[x1, . . . , xm]δ =
K[x1, . . . , xr, x

p
r+1, . . . , x

p
m].
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Proof. It is enough to observe that d(xl11 . . . x
lm
m ) = (lr+1µr+1 + · · · +

lmµm)xl11 . . . x
lm
m for every l1, . . . , lm ≥ 0, so K[x1, . . . , xm]δ is a free K-

module and the monomials xl11 . . . x
lm
m such that lr+1µr+1 + · · · + lmµm = 0

form a basis of this module.

Recall that I = {1, . . . , s} and I0 = {i ∈ I : %i = 0}. Let J = {1, . . . ,m}
and J0 = {j ∈ J : λj = 0}.

Proof of Theorem 1.2. (⇒) (1) Assume that the system (%i; i ∈ I \ I0) is
linearly dependent over N. Then there exist l1, . . . , ls ∈ N such that l1%1 +
· · · + ls%s = 0 and lj > 0 for some j ∈ I \ I0. In this case xl1n1

. . . xlsns
∈

k[X]d \ k[xni ; i ∈ I0].
(2) The condition mi ≥ 3 for some i ∈ I0 means that d(xni) = 0,

d(xni+1) = xni and d(xni+2) = xni+1. Then x2
ni+1 − 2xnixni+2 ∈ k[X]d \

k[xni ; i ∈ I0].
(3) The condition mi,mj ≥ 2 for some i, j ∈ I0, i 6= j means that

d(xni) = 0, d(xni+1) = xni , d(xnj ) = 0 and d(xnj+1) = xnj . Then xnixnj+1−
xni+1xnj ∈ k[X]d \ k[xni ; i ∈ I0].

(⇐) Assume that conditions (1)–(3) hold.
We have dD(xj) = 0 for j ∈ J0 and dD(xj) = λjxj for j ∈ J \ J0, where

λj = %i 6= 0, ni ≤ j < ni+mi, i ∈ I\I0. The system (λj ; j ∈ J\J0) is linearly
independent over N, because (%i; i ∈ I \ I0) is, so k[X]dD = k[xj ; j ∈ J0] by
Proposition 1.5.

Let d′N be the restriction of dN to k[xj ; j ∈ J0]. Then, by Proposition 1.4,
k[X]d = (k[X]dD)d

′
N = k[xj ; j ∈ J0]d

′
N . If mi0 = 2 for some i0 ∈ I0, then it

is easy to see that k[xj ; j ∈ J0]d
′
N = k[xj ; j ∈ J0 \ {ni0+1}] = k[xni ; i ∈ I0].

If mi = 1 for every i ∈ I0, then d′N = 0, so k[xj ; j ∈ J0]d
′
N = k[xj ; j ∈ J0] =

k[xni ; i ∈ I0].

Proof of Theorem 1.3. (⇒) (1) Assume that the system (%i; i ∈ I \I0) is
linearly dependent over Fp. Then there exist nonnegative integers l1, . . . , ls
< p such that l1%1 + · · · + ls%s = 0 and lj > 0 for some j ∈ I \ I0. In this
case xl1n1

. . . xlsns
∈ k[X]d \ k[Xp][xni ; i ∈ I0].

(2) The condition m1 ≥ 3 means that d(x1) = %1x1, d(x2) = x1 + %1x2

and d(x3) = x2 + %1x3. Then for p > 2 we have xp−2
1 x2

2 − 2xp−1
1 x3 ∈ k[X]d \

k[Xp][xni ; i ∈ I0].
The condition m1 ≥ 4 means that d(x1) = %1x1, d(x2) = x1 + %1x2,

d(x3) = x2 + %1x3 and d(x4) = x3 + %1x4. Then for p = 2 we have x3
1x4 +

x2
1x2x3 + x1x

3
2 ∈ k[X]d \ k[Xp][xni ; i ∈ I0].

(3) The condition m2 ≥ 2 means that d(x1) = %1x1, d(x2) = x1 + %1x2,
d(xm1+1) = %2xm1+1 and d(xm1+2) = xm1+1+%2xm1+2. Then x

p−1
1 x2x

p
m1+1−

xp1x
p−1
m1+1xm1+2 ∈ k[X]d \ k[Xp][xni ; i ∈ I0].
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(⇐) Assume that conditions (1)–(3) hold.
Let d′D be the restriction of dD to k[Xp][xn1 , . . . , xns ]. Recall that J =

{1, . . . ,m}. Consider the set J ′ = J \ {n1, . . . , ns}. Let K = k[xpj ; j ∈ J ′].
We see that d′D is a K-derivation of K[xn1 , . . . , xns ] = k[Xp][xn1 , . . . , xns ]
such that d′D(xni) = %ixni , where %i = 0 for i ∈ I0, %i 6= 0 for i ∈ I \ I0 and
the system (%i; i ∈ I \ I0) is linearly independent over Fp. Proposition 1.5
implies that k[Xp][xn1 , . . . , xns ]d

′
D = k[Xp][xni ; i ∈ I0]. This ends the proof

if m1 = 1.
If m1 = 2, then it is easy to see that k[X]dN = k[x1, x

p
2, x3, . . . , xm] =

k[Xp][xn1 , . . . , xns ]. If p = 2 and m1 = 3, then it is easy to see that
k[X]dN = k[x1, x

p
2, x

p
3, x4, . . . , xm] = k[Xp][xn1 , . . . , xns ]. In both cases, by

Proposition 1.4, k[X]d = (k[X]dN )d
′
D = k[Xp][xni ; i ∈ I0].

2. Some facts about graded algebras. In this section by a graded
k-algebra we mean a k-algebra with a Z-grading A =

⊕∞
j=0Aj . Nonzero

elements of Aj are called homogeneous of degree j.
Note the following well known fact.

Lemma 2.1. Let B =
⊕∞

j=0Bj be a graded commutative k-algebra,B0 = k,
and M =

⊕
j>0Bj. Let f1, . . . , fn ∈M .

(a) If B = k[f1, . . . , fn], then M/M2 = 〈f1 +M2, . . . , fn +M2〉k.
(b) If f1, . . . , fn are homogeneous elements and M/M2 = 〈f1 +M2, . . .

. . . , fn +M2〉k, then B = k[f1, . . . , fn].

The original version of this lemma ([1, II.3.2]) was formulated as an equiv-
alence of three conditions under the assumptions that k = C and f1, . . . , fn
are homogeneous elements. However, the proof is valid for an arbitrary field k
and the implication in (a) is true for arbitrary f1, . . . , fn ∈M .

If elements f1, . . . , fn generate the k-algebra B, with n smallest possible,
then we say that f1, . . . , fn form a minimal system of generators of B. Using
the previous lemma we can easily establish the following proposition.

Proposition 2.2. Let B =
⊕∞

j=0Bj be a graded commutative k-algebra
with B0 = k and let Cj =

∑j−1
l=1 Bl ·Bj−l for j > 1, C1 = 0, C0 = k.

(a) Homogeneous elements f1, . . . , fn form a minimal system of gener-
ators of B if and only if for every j the residue classes modulo Cj
of all the elements fi of degree j form a basis of the k-linear space
Bj/Cj.

(b) Let k ⊆ k′ be a field extension. Denote by B′ the graded k′-algebra
k′ ⊗k B. Let C ′j =

∑j−1
l=1 B

′
l · B′j−l for j > 1, C ′1 = 0, C ′0 = k′. Then

dimk Bj/Cj = dimk′ B
′
j/C

′
j for every j. Moreover , if homogeneous
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elements f1, . . . , fn form a minimal system of generators of the k-
algebra B, then the elements 1⊗f1, . . . , 1⊗fn form a minimal system
of generators of the k′-algebra B′.

Proof. (a) Let M =
⊕

j>0Bj . Then M
2 =

⊕
j>0Cj . Lemma 2.1 implies

that the elements f1, . . . , fn generate the k-algebra B if and only if their
residue classes modulo M generate the linear space M/M2 '

⊕
j Bj/Cj . So

f1, . . . , fn form a minimal system of generators of B if and only if for every j
the residue classes modulo Cj of all the elements fi of degree j form a basis
of Bj/Cj .

(b) For every j > 1 we have a canonical k′-linear isomorphism
j−1∑
l=1

(k′ ⊗k Bl) · (k′ ⊗k Bj−l) ' k′ ⊗k
j−1∑
l=1

Bl ·Bj−l,

that is, C ′j ' k′ ⊗k Cj . This implies that dimk Bj/Cj = dimk′ B
′
j/C

′
j .

Let fi1 , . . . , fis be all the elements fi of degree j. By (a), the residue
classes modulo Cj of fi1 , . . . , fis form a k-linear basis of Bj/Cj . Then the
residue classes of 1⊗ fi1 , . . . , 1⊗ fis form a k′-linear basis of B′j/C

′
j . Again

by (a), the elements 1⊗ f1, . . . , 1⊗ fn form a minimal system of generators
of the k′-algebra B′.

Note the following immediate consequence of Lemma 2.1 and Proposi-
tion 2.2(a).

Corollary 2.3. If B is generated by n elements (not necessarily homo-
geneous), then B is generated by some n homogeneous elements.

Proof. LetM and Cj be defined as in Lemma 2.1 and Proposition 2.2. It
is enough to observe that M/M2'

⊕∞
j=0Bj/Cj , so

∑∞
j=0 dimk Bj/Cj≤n.

Now we will prove the following proposition.

Proposition 2.4. Let k ⊆ k′ be an extension of fields of arbitrary char-
acteristic p ≥ 0, let B be a graded subalgebra of k[X] and B′ = k′ ⊗k B the
corresponding subalgebra of k′[X]. Let r ∈ {0, 1, . . . ,m}. Then the following
conditions are equivalent :

(i) B = k[y1, . . . , yr, y
p
r+1, . . . , y

p
m] for some k-linear basis y1, . . . , ym of

k[X]1,
(ii) B′ = k′[z1, . . . , zr, z

p
r+1, . . . , z

p
m] for some k′-linear basis z1, . . . , zm of

k′[X]1.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(i). Assume that B′ = k′[z1, . . . , zr, z

p
r+1, . . . , z

p
m] for some k′-linear

basis z1, . . . , zm of k′[X]1. Let Cj and C ′j be defined as in Proposition 2.2.
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Let p = 0. The elements z1, . . . , zr form a minimal system of generators of
the k′-algebra B′, so dimk′ B

′
1 = r and dimk′ B

′
j/C

′
j = 0 for j > 1 by Proposi-

tion 2.2(a). Proposition 2.2(b) implies that dimk B1 = r and dimk Bj/Cj = 0
for j > 1. Let y1, . . . , yr be a k-linear basis of B1. Then y1, . . . , yr form a
minimal system of generators of the k-algebra B (Proposition 2.2(a)), so
B = k[y1, . . . , yr].

Now let p > 0. Using similar arguments to those for p = 0, we show
that the elements y1, . . . , yr of a k-linear basis of B1 together with some
elements tr+1, . . . , tm ∈ Bp form a minimal system of generators of the k-
algebra B. We can enlarge {y1, . . . , yr} to a basis {y1, . . . , ym} of k[X]1. Let
V = k[y1, . . . , yr]p+〈ypr+1, . . . , y

p
m〉k. Then V ⊆ Bp, but we see that dimk V =

dimk Bp, so V = Bp, that is, k[y1, . . . , yr]p+〈ypr+1, . . . , y
p
m〉k = k[y1, . . . , yr]p+

〈tr+1, . . . , tm〉k. This implies that B = k[y1, . . . , yr, y
p
r+1, . . . , y

p
m].

Recall the following fact.

Proposition ([3, 5.1.1], [2, 2.1]). Let k ⊆ k′ be a field extension and
let d be a k-derivation of a k-algebra A. Denote by i the inclusion Ad ↪→ A.
Then d′ = 1 ⊗ d is a k′-derivation of the k′-algebra A′ = k′ ⊗k A and
(1⊗ i)(k′ ⊗k Ad) = A′d

′ .

The way of reducing an arbitrary linear derivation to its Jordan form is
given in the following corollary of the above proposition and Proposition 2.4.

Corollary 2.5. If d is a k-derivation of k[X] and d′ is a k′-derivation of
k′[X] such that d′(xi) = d(xi) for i = 1, . . . ,m, then the following conditions
are equivalent :

(i) k[X]d = k[y1, . . . , yr, y
p
r+1, . . . , y

p
m] for some k-linear basis y1, . . . , ym

of k[X]1;
(ii) k′[X]d

′
=k′[z1, . . . , zr, z

p
r+1, . . . , z

p
m] for some k′-linear basis z1, . . . , zm

of k′[X]1.

3. The general case. Now let d be a linear derivation of k[X]. Using
Corollary 2.5 for the algebraic closure k of k, Proposition 1.1 and Theo-
rems 1.2 and 1.3 for the Jordan matrix of the endomorphism d|k[X]1 over k,
we obtain the following theorems.

Theorem 3.1. Let d be a linear derivation of k[X], where k is a field of
characteristic 0. Then

k[X]d = k[y1, . . . , yr]

for some linearly independent homogeneous polynomials y1, . . . , ym of degree
1 if and only if the Jordan matrix of d|k[X]1 satisfies the following conditions.

(1) There are exactly r Jordan blocks with zero eigenvalues.
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(2) Nonzero eigenvalues of different Jordan blocks are pairwise different
and linearly independent over N.

(3) At most one Jordan block with zero eigenvalue has dimension greater
than 1, and if such a block exists, it is of dimension 2.

Theorem 3.2. Let d be a linear derivation of k[X], where k is a field of
characteristic p > 0. Then

k[X]d = k[y1, . . . , yr, y
p
r+1, . . . , y

p
m]

for some k-linear basis y1, . . . , ym of k[X]1 if and only if the Jordan matrix
of d|k[X]1 satisfies the following conditions.

(1) There are exactly r Jordan blocks with zero eigenvalues.
(2) Nonzero eigenvalues of different Jordan blocks are pairwise different

and linearly independent over Fp.
(3) At most one Jordan block has dimension greater than 1, and if such

a block exists, then its dimension is 2 in the case of p > 2, and 2 or 3
for p = 2.

Note that all the rings of constants mentioned in Theorems 3.1 and 3.2
are polynomial k-algebras. It is well known that in the case of char k = 0
there exist linear derivations of k[X] with rings of constants being polynomial
k-algebrasnotgeneratedby linear forms.Letusendwith the followingquestion.

Question. Does there exist a linear derivation of k[X], where char k =
p > 0, such that k[X]d is a polynomial k-algebra not of the form mentioned
in Theorem 3.2?
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