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EQUIVALENT METRICS AND THE SPANS OF GRAPHS

BY

L. C. HOEHN (Toronto) and A. KARASSEV (North Bay)

Abstract. We present a result which affords the existence of equivalent metrics on a
space having distances between certain pairs of points predetermined, with some restrictions.
This result is then applied to obtain metric spaces which have interesting properties pertain-
ing to the span, semispan, and symmetric span of metric continua. In particular, we show
that no two of these variants of span agree for all simple closed curves or for all simple triods.

1. Introduction. The span of a continuum was defined by A. Lelek
in [4]. Since then, several variants of his definition have been given. The most
prevalent of these are the semispan (see [6]), the symmetric span (see [3]),
and, for simple closed curves, the essential span (see [1]).

It has been asked (see, for instance, [1] and [2]) whether some of these
different quantities always agree for certain classes of continua, particularly
for simple triods and simple closed curves. In this paper, we demonstrate
that no two of these versions of span agree for all simple triods or for all
simple closed curves. We also include an example which violates a conjec-
tured bound between two versions of span.

A natural way to construct examples of metric spaces is to look at subsets
of R3 with the Euclidean metric (see, for instance, [5], [6], and Section 7 of
this paper). In Section 3 we develop an alternative approach which allows
one to construct a metric for a space with certain distances predetermined.
Related results have been obtained in [7] and [8]. This enables us to prove
in Section 6 the existence of spaces with interesting span properties without
producing subsets of R3.

2. Notation. If (X, d) is a metric space, x ∈ X, and A,B ⊂ X, then
define

d(x,B) = inf{d(x, b) : b ∈ B},
d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
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If ε > 0, then define the ε-neighborhood of A by

Aε = {x ∈ X : d(x,A) < ε}.
Define also the ε-ball about x with respect to the metric d by

Sd(x, ε) = {y ∈ X : d(x, y) < ε}.
If % is another metric on X, then % is equivalent to d if the topologies

generated by % and d are identical.
Define the metric d× d on X ×X by

(d× d)((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2).

The diagonal of X is ∆X = {(x, x) : x ∈ X} ⊂ X ×X.
An arc is a space which is homeomorphic to the closed unit interval

[0, 1]. A simple closed curve is a space which is homeomorphic to the unit
circle S1.

A simple triod with legs A1, A2, and A3 is a space of the form T =
A1∪A2∪A3, where A1, A2, and A3 are arcs which have a common endpoint
o, and which are otherwise pairwise disjoint. The point o is called the branch
point of T .

3. Equivalent metrics with given distances

Theorem 3.1. Let (X, d) be a metric space. Suppose k > 0, 0 < ε ≤ 2/k,
and f : X ×X → R is a function such that :

(1) f is Lipschitz continuous with Lipschitz constant k (with respect to
the metric d× d on X ×X),

(2) f(x, y) = f(y, x) for all x, y ∈ X,
(3) f(X ×X) ⊆ [1, 2],
(4) f((∆X)ε) = {1}, where (∆X)ε is the ε-neighborhood of the diagonal

∆X.

Then there exists an equivalent metric % on X such that %(x, y) = f(x, y)
whenever d(x, y) ≥ ε/2, and %(x, y) < 1 whenever d(x, y) < ε/2.

Proof. Define the function % : X ×X → R by

%(x, y) =
{
f(x, y) if d(x, y) ≥ ε/2,
(2/ε)d(x, y) if d(x, y) < ε/2.

It is clear from the definition of %, and from conditions (2) and (3) on f ,
that %(x, y) = 0 if and only if x = y, and %(x, y) = %(y, x) for all x, y ∈ X.
Hence to prove that % is a metric on X, we need only check that % satisfies
the triangle inequality. Let x, y, z ∈ X, and consider the following cases:

Case 1: d(x, y), d(y, z), d(x, z) ≥ ε/2. In this case %(x, y) = f(x, y) ≥ 1,
%(y, z) = f(y, z) ≥ 1, and %(x, z) = f(x, z) ≤ 2 ≤ %(x, y) + %(y, z).
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Case 2: d(x, y) < ε/2 and d(y, z), d(x, z) ≥ ε/2. Here %(y, z) = f(y, z)
and %(x, z) = f(x, z), so

|%(y, z)− %(x, z)| = |f(y, z)− f(x, z)|
≤ k · (d× d)((y, z), (x, z)) (by condition (1))
= k · (d(y, x) + d(z, z)) = k · d(x, y)
≤ (2/ε)d(x, y) (since ε ≤ 2/k)
= %(x, y)

It follows that %(x, y) + %(y, z) ≥ %(x, z).

Case 3: d(x, y), d(y, z) < ε/2 and d(x, z) ≥ ε/2. Note that d(x, z) ≤
d(x, y) + d(y, z) < ε/2 + ε/2 = ε, so (x, z) is in the ε-neighborhood of ∆X.
This implies by condition (4) that %(x, z) = f(x, z) = 1. Also, since ε/2 ≤
d(x, z) ≤ d(x, y)+d(y, z), we have 1 ≤ (2/ε)d(x, y)+(2/ε)d(y, z) = %(x, y)+
%(y, z). Thus %(x, y) + %(y, z) ≥ %(x, z).

Case 4: d(x, y), d(y, z), d(x, z) < ε/2. Here %(x, y)+%(y, z) = (2/ε)d(x, y)
+ (2/ε)d(y, z) ≥ (2/ε)d(x, z) = %(x, z).

Case 5: d(x, z) < ε/2 and d(x, y) ≥ ε/2. In this case, %(x, z) =
(2/ε)d(x, z) < 1 and %(x, y) = f(x, y) ≥ 1. Therefore %(x, y) + %(y, z) ≥
1 > %(x, z).

Because of the symmetry between %(x, y) and %(y, z) in the inequality
%(x, y) + %(y, z) ≥ %(x, z), we need not consider the remaining cases, as
they have already been dealt with above (specifically in Cases 2 and 5) but
with the pairs (x, y) and (y, z) interchanged. Thus % satisfies the triangle
inequality, and so it is a metric.

Let x∈X and let α>0. Let α′=min{α, ε/2}. Then %(x, y)<(2/ε)α′ ≤ 1
implies %(x, y) = (2/ε)d(x, y), so d(x, y) < α′ ≤ α, hence S%(x, (2/ε)α′) ⊆
Sd(x, α). Conversely, let α′′ = min{α, 1}. Then d(x, y) < (ε/2)α′′ ≤ ε/2
implies %(x, y) = (2/ε)d(x, y) < α′′ ≤ α, so Sd(x, (ε/2)α′′) ⊆ S%(x, α). This
implies that % is equivalent to d.

Theorem 3.2. Let (X, d) be a metric space. Suppose F,N ⊂ X×X are
nonempty subsets such that :

(1) for some ε > 0, (d× d)(F,N ∪ (∆X)ε) > 0,
(2) F = F−1, N = N−1.

Then there exists an equivalent metric % on X such that %(X ×X) ⊆ [0, 2],
%(F ) = {2}, and %(N) ⊆ [0, 1].

Proof. Let N ′ = N ∪ (∆X)ε, and let δ = (d × d)(F,N ′) > 0. Then
Fδ/2 ∩N ′δ/2 = ∅.
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Define the function f : X ×X → R by

f(x, y) =


2− (1/δ) · (d× d)((x, y), F ) if (x, y) ∈ Fδ/2,
1 + (1/δ) · (d× d)((x, y), N ′) if (x, y) ∈ N ′δ/2,
3/2 otherwise.

It follows from the fact that F = F−1 and N ′ = (N ′)−1 that f(x, y) =
f(y, x) for all x, y ∈X. Also, it is clear that 1≤ f(x, y)≤ 2 for all x, y ∈X.
Furthermore, we claim that f is Lipschitz continuous, with Lipschitz con-
stant 1/δ. To see this, we will argue for two particular cases; the rest follow
similarly.

Case 1: (x1, y1) ∈ Fδ/2 and (x2, y2) ∈ Fδ/2. Assume (d× d)((x1, y1), F )
≤ (d × d)((x2, y2), F ). For any α > 0, there is some z ∈ F such that
(d× d)((x1, y1), z) < (d× d)((x1, y1), F ) + α. Then

(d× d)((x2, y2), F ) ≤ (d× d)((x2, y2), z)
≤ (d× d)((x1, y1), (x2, y2)) + (d× d)((x1, y1), z)
< (d× d)((x1, y1), (x2, y2)) + (d× d)((x1, y1), F ) + α

and it follows that

|f(x1, y1)− f(x2, y2)|

=
∣∣∣∣[2− 1

δ
· (d× d)((x1, y1), F )

]
−
[
2− 1

δ
· (d× d)((x2, y2), F )

]∣∣∣∣
=

1
δ
· (d× d)((x2, y2), F )− 1

δ
· (d× d)((x1, y1), F )

<
1
δ
· (d× d)((x1, y1), (x2, y2)) +

α

δ
.

This holds for any α > 0, so the claim follows.

Case 2: (x1, y1) ∈ Fδ/2 and (x2, y2) ∈ N ′δ/2. Given any α > 0, there is
some z ∈ F and some w ∈ N ′ which satisfy

(d× d)((x1, y1), z) < (d× d)((x1, y1), F ) + α,

(d× d)((x2, y2), w) < (d× d)((x2, y2), N ′) + α.

Then

(d× d)((x1, y1), (x2, y2))
≥ (d× d)(z, w)− (d× d)((x1, y1), z)− (d× d)((x2, y2), w)

> δ − (d× d)((x1, y1), F )− (d× d)((x2, y2), N ′)− 2α

and so



EQUIVALENT METRICS 139

|f(x1, y1)− f(x2, y2)|

=
[
2− 1

δ
· (d× d)((x1, y1), F )

]
−
[
1 +

1
δ
· (d× d)((x2, y2), N ′)

]
= 1− 1

δ
· (d× d)((x1, y1), F )− 1

δ
· (d× d)((x2, y2), N ′)

<
1
δ
· (d× d)((x1, y1), (x2, y2)) +

2α
δ

.

This holds for any α > 0, so again the claim follows.

Finally, we have f((∆X)ε′) = {1} for any ε′ ≤ ε, since (∆X)ε ⊆ N ′.
Therefore f satisfies conditions (1) through (4) of Theorem 3.1. Thus we
may apply this theorem to obtain an equivalent metric % on X such that %
agrees with f outside of some small neighborhood of ∆X (which is contained
in (∆X)ε, hence is disjoint from F ), and % < 1 within this neighborhood. It
follows that %(X ×X) ⊆ [0, 2], %(F ) = {2}, and %(N) ⊆ [0, 1].

4. Visualizing the set T ×T for T a simple triod. Given a space X,
it will be useful to have a practical but accurate way of visualizing the
product X × X. The goal of this section is to explain the pictures that
will be used in later sections to describe the sets F and N required by
Theorem 3.2.

If X is the unit interval [0, 1] or the circle S1, then we can easily visualize
X ×X in the plane as the square (with opposite sides identified in the case
of the circle).

We now extend this idea to the case of X a simple triod. Let J =
[0, 1] ∪ [2, 4] ⊂ R. Observe that X is homeomorphic to J/{1, 3}, i.e. the
space J with the points 1 and 3 identified. Then we can view X ×X as a

Fig. 1. (a) Standard visualization of the torus S1 × S1 in the plane. (b) Analogous visu-
alization of T × T as a quotient of a subset of the plane, for T a simple triod.
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subset of the plane consisting of four rectangles as shown in Figure 1, where
each point on the right edges of the two rectangles on the left is identified
with the point at the same height in the middle of the rectangles on the
right, and each point on the top edges of the two rectangles at the bottom
is identified with the point in the same vertical line in the middle of the
rectangles at the top.

In fact, for any space X that can be written as a quotient of a bounded
subset of the real line, we can visualize X ×X as a quotient of a bounded
subset of the real plane in a straightforward way. In particular, any graph
admits such a visualization. See Section 7 for another example.

5. Identifying components of a subset of T × T for T a simple
triod. When working with the spans of a space X (defined below), it
is helpful to be able to identify components of a subset of X × X. We
will suppose that the reader is comfortable working with connected sets
in the “square with opposite sides identified” representation of the torus
S1×S1; one need only keep in mind that connected sets can “wrap around”
from the left edge of the square to the right, and from the top to bot-
tom.

We note the following sufficient condition for finding a component of a
subset of the torus:

Given nonempty sets K ⊆ Y ⊂ S1 × S1, consider the corresponding
subsets K ′ ⊆ Y ′ of the square I2 = [0, 1]× [0, 1]. If K ′ is clopen in Y ′ and is
such that its intersections with the edges of the square I2 match up in pairs
on opposite sides, then K is clopen in Y . In particular, if K is connected,
then it is a component of Y .

A similar approach is available for finding components of subsets of T×T ,
where T is a simple triod, using the visualization described in the previous
section. The following technical result validates the intuitive idea that we
can identify a component of a set Y ⊂ T × T by finding a collection of
clopen (in Y ) sets in the squares of our picture whose union is connected,
and whose boundaries match up in triples in the appropriate places.

We emphasize that the following provides merely a sufficient condition
for K to be a component of Y ⊂ T ×T ; for less well-behaved subsets Y than
what we will consider below, there may be components which do not arise
this way.

Proposition 5.1. Let T be a simple triod with legs A1, A2, A3 and
branch point o. Suppose Y ⊂ T × T , and let Yij = Y ∩ (Ai × Aj) for i, j =
1, 2, 3. Suppose {Kij : i, j = 1, 2, 3} is a collection of nine sets such that
Kij ⊆ Yij. Let K :=

⋃3
i,j=1Kij , and assume the following :



EQUIVALENT METRICS 141

(1) Kij is clopen in Yij for each i, j = 1, 2, 3,
(2) if (o, y) ∈ Kij then (o, y) ∈ K1j ∩K2j ∩K3j ,
(3) if (x, o) ∈ Kij then (x, o) ∈ Ki1 ∩Ki2 ∩Ki3.

Then K is clopen in Y . In particular , if K is also connected (and nonempty),
then it is a component of Y .

Proof. Observe that Ai×Aj is closed in T ×T , hence Yij is closed in Y .
Furthermore, distinct sets Yi0j0 and Yi1j1 may intersect only in points of the
form (x, o) or (o, y).

Since each set Kij is a closed subset of Yij (by condition (1)), which
is a closed subset of Y , we see that Kij is closed in Y . This implies K =⋃3
i,j=1Kij is closed in Y .

Also, note that each set of the form Yij rKij is closed in Yij (since Kij is
open in Yij , again by condition (1)), so likewise we find that

⋃3
i,j=1(YijrKij)

is closed in Y .
Since Y =

⋃3
i,j=1 Yij , it is clear that Y rK ⊆

⋃3
i,j=1(Yij rKij). For the

reverse inclusion, suppose that (x, y) ∈
⋃3
i,j=1(YijrKij), but (x, y) /∈ Y rK,

that is, (x, y) ∈ K.
If x 6= o and y 6= o, then there is a unique pair (i, j) such that (x, y) ∈ Yij ,

so we must have (x, y) ∈ Yij rKij . But since (x, y) ∈ K, we must also have
(x, y) ∈ Kij , which is a contradiction.

If x = o and y 6= o, then there is exactly one j0 such that (o, y) ∈
Y1j0 ∩ Y2j0 ∩ Y3j0 , and (o, y) /∈ Yij whenever j 6= j0. Since (o, y) ∈ K, we
must have (o, y) ∈ Kij0 for some i, which implies by condition (2) that
(o, y) ∈ K1j0 ∩K2j0 ∩K3j0 . This contradicts the fact that (x, y) = (o, y) ∈⋃3
i,j=1(Yij rKij).

Likewise, if y = o and x 6= o, we arrive at a contradiction using condi-
tion (3). If x = y = o, then it follows from condition (2) (applied once) and
then condition (3) (applied three times) that (o, o) ∈ Kij for each i, j, which
again contradicts the fact that (x, y) = (o, o) ∈

⋃3
i,j=1(Yij rKij).

Therefore, Y rK =
⋃3
i,j=1(Yij rKij), which, as noted above, is closed

in Y . Hence K is open in Y .

6. Application to span theory. Let π1 and π2 denote the first and sec-
ond coordinate projections, respectively, of X×X onto X; that is, π1(x1, x2)
= x1 and π2(x1, x2) = x2.

If (X, d) is a connected metric space, then define the surjective semispan
of X, σ∗0(X) (see [6]), to be

σ∗0(X) = sup
Z∈Z

inf
(x1,x2)∈Z

d(x1, x2),

where Z is the family of subsets Z of X ×X with the following properties:
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(1) Z is connected,
(2) π1(Z) = X.

If we strengthen condition (2) to

(2′) π1(Z) = π2(Z) = X

then the value we obtain is called the surjective span of X, σ∗(X). If on top
of this we require the condition

(3) Z = Z−1

on Z, then the value we obtain is called the surjective symmetric span of X,
s∗(X) (see [3]).

Now we define the semispan, span, and symmetric span of X to be,
respectively,

σ0(X) = sup{σ∗0(Y ) : Y is a connected subset of X},
σ(X) = sup{σ∗(Y ) : Y is a connected subset of X},
s(X) = sup{s∗(Y ) : Y is a connected subset of X}.

Notice that the only connected proper subsets of a simple closed curve
are arcs. Since arcs have surjective semispan, span, and symmetric span all
equal to zero (see [6]), we have σ0 = σ∗0, σ = σ∗, and s = s∗ for simple closed
curves.

Suppose Γ is a simple closed curve with metric d. Define the essential
span of Γ , σe(Γ ) (see [1]), to be

σe(Γ ) = sup
f,g

inf
θ∈S1

d(f(θ), g(θ)),

where f and g are degree one maps from S1 to Γ .

Remark. The original definition of the essential span given in [1] is
restricted to simple closed curves in the plane R2. There is no problem in
extending the definition to arbitrary simple closed curves; however, the ex-
amples we consider below are not planar, and so it remains an open question
whether essential span can differ from the other versions of span in the plane.
In fact, it is still unknown for most pairs of spans whether they can differ
among continua in the plane.

For each of the examples below, the metric is constructed by using The-
orem 3.2. This means that each space has diameter equal to 2, and hence
each version of span takes a value ≤ 2.

Example 6.1. There exists a simple closed curve Γ with σ(Γ ) = σe(Γ )
= 2 and s(Γ ) = 1.

Proof. Let F and N be subsets of the torus S1 × S1 as shown in Fig. 2,
where F is depicted by the thick solid lines, and N is depicted by the dashed
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Fig. 2. Subsets F (thick solid lines) and N (dashed lines) of S1 × S1 for constructing a
metric % on S1 for which essential span and symmetric span differ.

lines. It is clear that F = F−1 and N = N−1, so we can apply Theorem 3.2
to obtain a metric % on S1 such that %(x, y) = 2 if (x, y) ∈ F , and %(x, y) ≤ 1
if (x, y) ∈ N . Denote the metric space (S1, %) by Γ .

Notice that F consists of two essential loops in Γ × Γ , and this implies
that σ(Γ ) = σe(Γ ) = 2.

Note also that (Γ ×Γ ) rN consists of two components, say K1 and K2,
and K−1

1 = K2. In particular, K1 ∩K−1
1 = K2 ∩K−1

2 = ∅. Thus if Z is a
connected subset of Γ × Γ such that Z = Z−1, then Z must meet N . It
follows that s(Γ ) ≤ 1. It is clear from the construction of the metric % in the
proof of Theorem 3.2 that in fact s(T ) = 1 (since %(x, y) ≥ 1 for all points
(x, y) ∈ Γ × Γ except those in a small neighborhood of the diagonal).

Remark. We can in fact find a simple closed curve Γ in R3 with the
Euclidean metric which (nearly) satisfies the properties of Example 6.1. Take
Γ to be the boundary circle of the usual embedding of the Möbius strip in R3.
Then if we graph the Euclidean metric d : Γ ×Γ → R, the resulting picture
will have the form of Figure 2, where the thick solid lines represent pairs of
points that are far apart (say at distance 1), and the dashed lines represent
pairs of points which are closer than ε to one another, where ε is the width
of the strip. Thus for any ε > 0, we can find a simple closed curve Γ ⊂ R3

with the Euclidean metric such that σ(Γ ) = σe(Γ ) = 1 and s(Γ ) < ε.

Example 6.2. There exists a simple closed curve Γ with σ(Γ ) = 2 and
σe(Γ ) = 1.

Proof. Let F and N be subsets of the torus S1 × S1 as shown in Fig. 3,
where F is depicted by the thick solid lines, and N is depicted by the dashed
lines. Again, we have F = F−1 and N = N−1, so we can apply Theorem 3.2
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Fig. 3. Subsets F (thick solid lines) and N (dashed lines) of S1 × S1 for constructing a
metric % on S1 for which span and essential span differ.

to obtain a metric % on S1 such that %(x, y) = 2 if (x, y) ∈ F , and %(x, y) ≤ 1
if (x, y) ∈ N . Denote the metric space (S1, %) by Γ .

Note that F consists of two components, both of which have both first
and second coordinate projections equal to Γ (since the “handles” in the
corners overlap horizontally and vertically). It follows that σ(Γ ) = 2.

Note also that (Γ × Γ ) rN consists of two components, both of which
are simply connected. This implies that any essential loop in Γ × Γ must
meet N . It follows that σe(Γ ) ≤ 1. Again, it is clear from the construction
of the metric % in the proof of Theorem 3.2 that in fact σe(Γ ) = 1.

Example 6.3. There exists a simple closed curve Γ with σ0(Γ ) = 2 and
σ(Γ ) = 1.

Fig. 4. Subsets F (thick solid lines) and N (dashed lines) of S1 × S1 for constructing a
metric % on S1 for which span and semispan differ.
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Proof. Let F and N be subsets of the torus S1 × S1 as shown in Fig. 4,
where F is depicted by the solid black lines, and N is depicted by the dashed
lines. Again, we have F = F−1 and N = N−1, so we can apply Theorem 3.2
to obtain a metric % on S1 such that %(x, y) = 2 if (x, y) ∈ F , and %(x, y) ≤ 1
if (x, y) ∈ N . Denote the metric space (S1, %) by Γ .

Note that F consists of two components, say F1 and F2, with F−1
1 = F2,

where π1(F1) = Γ (and π2(F2) = Γ ). It follows that σ0(Γ ) = 2.
Note also that (Γ ×Γ ) rN consists of two components, say K1 and K2,

with K−1
1 = K2, where F1 ⊂ K1, F2 ⊂ K2. We have π2(K1) = Γ r {q} and

π1(K2) = Γ r{q} (where q is as shown in Figure 4). Hence if Z ⊂ Γ ×Γ is a
connected set with π1(Z) = π2(Z) = Γ , then we must have Z ∩N 6= ∅. This
implies σ∗(Γ ) ≤ 1, so σ(Γ ) ≤ 1. Again, it is clear from the construction of
the metric % in the proof of Theorem 3.2 that in fact σ(Γ ) = 1.

Example 6.4. There exists a simple triod T with σ(T )=2 and s(T )=1.

Fig. 5. Subsets F (thick solid lines) and N (dashed lines) of T × T for constructing a
metric % on the simple triod T for which span and symmetric span differ.

Proof. Let F and N be subsets of T × T as shown in Figure 5, where F
is depicted by the thick black lines, and N is depicted by the dashed lines.
It is clear that F = F−1 and N = N−1, so we can apply Theorem 3.2 to
obtain a metric % on T such that %(x, y) = 2 if (x, y) ∈ F , and %(x, y) ≤ 1
if (x, y) ∈ N . We shall refer to the metric space (T, %) simply as T for the
rest of this example.
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It can readily be seen that F consists of two components, each of which
has both first and second coordinate projections equal to T . It follows that
σ∗(T ) = 2, hence σ(T ) = 2 (since the diameter of T is 2).

Using Proposition 5.1, one can verify that (T × T ) r N consists of two
components, say K1 and K2, with K−1

1 = K2. In particular, K1 ∩ K−1
1 =

K2∩K−1
2 = ∅. Thus if Z is a connected subset of T ×T such that Z = Z−1,

then Z must meet N . It follows that s(T ) ≤ 1. Once again, it is clear from
the construction of the metric % in the proof of Theorem 3.2 that in fact
s(T ) = 1.

Example 6.5. There exists a simple triod T with σ0(T ) = 2 and
σ∗(T ) = 1.

Proof. Let F and N be subsets of T × T as shown in Figure 6, where F
is depicted by the thick solid lines, and N is depicted by the dashed lines.
It is clear that F = F−1 and N = N−1, so we can apply Theorem 3.2 to
obtain a metric % on T such that %(x, y) = 2 if (x, y) ∈ F , and %(x, y) ≤ 1
if (x, y) ∈ N . We shall refer to the metric space (T, %) simply as T for the
rest of this example.

It can readily be seen that F consists of two components, say F1 and
F2, with F−1

1 = F2, where π1(F1) = T (and π2(F2) = T ). It follows that
σ∗0(T ) = 2, hence σ0(T ) = 2.

Fig. 6. Subsets F (thick solid lines) and N (dashed lines) of T × T for constructing a
metric % on the simple triod T for which surjective span and semispan differ.
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Using Proposition 5.1, one can verify that (T × T ) r N consists of two
components, say K1 and K2, with K−1

1 = K2, where F1 ⊂ K1, F2 ⊂ K2.
Once these components have been ascertained, it can easily be seen that
π2(K1) = π1(K2) = T r{q} (where q is the endpoint of A2 which is distinct
from o; see Figure 6). Hence if Z ⊂ T × T is a connected set with π1(Z) =
π2(Z) = T , then we must have Z ∩N 6= ∅. This implies σ∗(T ) ≤ 1. Again,
it is clear from the construction of the metric % in the proof of Theorem 3.2
that in fact σ∗(T ) = 1.

Remark. By looking at subtriods of the triod T of Example 6.5, it is
not difficult to see that in fact σ(T ) = 1.

7. Further span examples in R3. We begin by remarking that there
exists a simple triod T in R3 with the property that σ0(T ) = σ∗0(T ) = 1 and
σ(T ) = σ∗(T ) = 1/2, that is, with the same ratio as in Example 6.5. The
specifics of the construction of this triod may be gleaned from Example 7.1
below, but for now we will omit the details, and simply refer to Figure 7 to
get some sense of the shape of it. In this picture, the positive x-axis points to
the right, the positive y-axis points away from the viewer, and the positive
z-axis points upward. Note that the lower leg and the right upper leg both
lie entirely in the xz-plane, and the third leg spirals around in the x and y
directions while simultaneously rising in the z direction.

Fig. 7. A simple triod in R3 for which surjective span and semispan differ.

We will not prove the above statements about the spans of this triod T ,
but the same approach taken in Example 6.5 above works here as well; one
needs to find appropriate subsets F and N of T × T so that pairs in F are
at distance ≥ 1 and points in N are at distance ≤ 1/2 (in the Euclidean
metric), then proceed as above.

Next, given any δ > 0, we can embed a simple closed curve in R3 as
follows: start near (i.e. within δ/2 of) o, then travel along one leg of T to its
tip, then back near o, then along the next leg of T to its tip, then back near o,
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then along the third leg of T to its tip, then back to the original starting
point, all that while staying within δ/2 of T and avoiding any unwanted
self-intersections. One can verify that the resulting simple closed curve Γ is
such that σ0(Γ ) > 1 − δ and σ(Γ ) < 1/2 + δ; hence it nearly attains the
same ratio as in Example 6.3.

Now, it turns out that one can add an arc to this space Γ to obtain
the following example, which answers negatively the question of whether
σ0(X) ≤ 2σ∗0(X) for all continua X (see [6]).

Example 7.1. For any δ > 0, there exists a graph Γ in R3 (with the
Euclidean metric) such that σ0(Γ ) > 1− δ and σ∗0(Γ ) ≤ 1/4 + δ.

Proof. Define the maps αi : [0, 1]→ R3 as follows:

α1(t) = (1− t)
(
−1

2 , 0,−1
)

+ t
(
−1

2 , 0, 0
)
,

α2(t) = (1− t)
(
−1

2 , 0, 0
)

+ t(0, 0, 0),

α3(t) = (1− t)(0, 0, 0) + t
(

1
8 , 0,

1
2

)
,

α4(t) = (1− t)
(

1
8 , 0,

1
2

)
+ t(0, 0, 1),

α5(t) = α4(1− t),
α6(t) = α3(1− t),

α7(t) =



(
−1

2 + 1
2 cos(5tπ), 1

2 sin(5tπ
)
, 0
)

if t ∈
[
0, 3

10

]
,(

−1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 1

2 cos(5tπ)
)

if t ∈
[

3
10 ,

4
10

]
,(

−1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 1

2

)
if t ∈

[
4
10 ,

7
10

]
,(

−1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 1

2 + 1
4 cos(5tπ)

)
if t ∈

[
7
10 ,

8
10

]
,(

−1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 5

4 t−
1
4

)
if t ∈

[
8
10 , 1

]
,

α8(t) = α7(1− t),
α9(t) = α2(1− t),
α10(t) = α1(1− t),

and define φ∗ : [0, 1]→ R3 by

φ∗ = α1 ∗ · · · ∗ α10,

where ∗ denotes the usual homotopy product of paths.
Note that each αi is one-to-one, and φ∗(0) = φ∗(1) =

(
−1

2 , 0,−1
)
, so we

may regard φ∗ as a piecewise homeomorphism of the circle S1. Given any
δ > 0, there exists a continuous function φδ : [0, 1] → R3 such that φδ is
one-to-one on [0, 1), φδ(0) = φδ(1) (hence φδ([0, 1]) is a simple closed curve),
and d(φ∗(t), φδ(t)) < δ/2 for all t ∈ [0, 1]. In other words, we can perturb
the path in R3 defined by φ∗ by an arbitrarily small amount to obtain an
embedding of the circle S1. Let Γδ be the resulting simple closed curve, that
is, Γδ = φδ([0, 1]).
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Fig. 8. Images of the maps βi against φ∗([0, 1]) (in gray), for (a) i = 1, 2, 3, 4; (b) i = 6, 7;
(c) i = 13, 14.

Next, define the maps βi : [0, 1]→ R3 as follows (see Figure 8):

β1(t) = (1− t)
(
−1

2 , 0,−1
)

+ t
(
−1

2 , 0, 0
)
,

β2(t) = (1− t)
(
−1

2 , 0, 0
)

+ t
(
−1

4 , 0, 0
)
,

β3(t) =

{(
−1

2 + 1
4 cos(2tπ), 1

4 sin(2tπ), 0
)

if t ∈
[
0, 3

4

]
,(

−1
2 + 1

2 cos(2tπ), 1
4 sin(2tπ), 1

4 cos(2tπ)
)

if t ∈
[

3
4 , 1
]
,

β4(t) = (1− t)
(
0, 0, 1

4

)
+ t
(
0, 0, 3

4

)
,

β5(t) = β4(1− t),

β6(t) =

{(
−1

2 + 1
2 cos(2tπ), 1

2 sin(2tπ), 1
4

)
if t ∈

[
0, 3

4

]
,(

−1
2 + 1

2 cos(2tπ), 1
2 sin(2tπ), 1

4 + 1
2 cos(2tπ)

)
if t ∈

[
3
4 , 1
]
,

β7(t) =
(
−1

2 + 1
2 cos(tπ), 1

2 sin(tπ), 3
4

)
,

β8(t) = β7(1− t),
β9(t) = β6(1− t),
β10(t) = β5(1− t),
β11(t) = β4(1− t),
β12(t) = β3(1− t),
β13(t) = (1− t)

(
−1

4 , 0, 0
)

+ t
(
0, 0, 1

2

)
,

β14(t) = (1− t)
(
0, 0, 1

2

)
+ t(0, 0, 1),

and define ψ∗ : [0, 1]→ R3 by

ψ∗ = β1 ∗ · · · ∗ β14.

Let P be the “lollipop” figure obtained by taking the union of the unit
circle S1 in the plane with the line segment joining the points (1, 0) and
(2, 0). Denote the point (1, 0) ∈ P by v.
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Note that each function βi above is one-to-one, and ψ∗(0) = φ∗(0) =
φ∗(1) =

(
−1

2 , 0,−1
)

=: v′, so the combination of φ∗ and ψ∗ may be re-
garded as a piecewise homeomorphism θ∗ of the space P into R3, taking v
to v′. Given any δ > 0, there exists an embedding θδ : P → R3 such that
d(θ∗(x), θδ(x)) < δ/2 for all x ∈ P . Let Γδ = θδ(P ). We can ensure that
θδ restricted to the circle in P agrees with the embedding φδ, so that Γδ
contains the simple closed curve Γδ as a subset.

Let the functions α′i and β′i be approximations of the maps αi and βi,
respectively, such that we can regard the function θδ restricted to the circle
S1 ⊂ P as α′1∗· · ·∗α′10, and θδ restricted to the arc [1, 2] ⊂ P as β′1∗· · ·∗β′14.

We can show, using the following subsets F1, . . . , F6 of Γδ × Γδ, that
σ∗0(Γδ) > 1− δ. This then implies that σ0(Γδ) > 1− δ. The subsets are:

F1 =
(
φδ
([

58
60 , 1

])
∪ φδ

([
0, 3

6

]))
×
{
φδ
(

5
6

)}
,

F2 =
{
φδ
(

3
6

)}
×
(
φδ
([

5
6 , 1
])
∪ φδ

([
0, 1

6

]))
,

F3 = φδ
([

3
6 ,

42
60

])
×
{
φδ
(

1
6

)}
,

F4 =
{
φδ
(

42
60

)}
× φδ

([
0, 1

6

])
,

F5 =
{(
φδ
(

42+t
60

)
, φδ
(
1− t

60

))
: t ∈ [0, 8]

}
,

F6 =
{(
φδ
(

50+t
60

)
, φδ
(

52+t
60

))
: t ∈ [0, 8]

}
.

Let F =
⋃6
i=1 Fi. One can verify that the set F is connected, π1(F ) = Γδ,

and d(x1, x2) > 1− δ for all (x1, x2) ∈ F .
To show that σ∗0(Γδ) < 1/4+δ, we define the following subsets of Γδ×Γδ:

N1 = {(β′1(t), α′1(t)) : t ∈ [0, 1]},
N2 = β′2([0, 1])× {α′2(0)},
N3 = β′3

([
0, 3

4

])
× {α′2(0)},

N4 =
{(
β′3
(

3
4 + 1

4 t
)
, α′2
(

cos
[(

3
2 + 1

2

)
tπ
]))

: t ∈ [0, 1]
}
,

N5 =
{(
β′4
(

1
2 t
)
, α′3(t)

)
: t ∈ [0, 1]

}
,

N6 =
{(
β′4
(

1
2 + 1

2 t
)
, α′4(t)

)
: t ∈ [0, 1]

}
,

N7 =
{(
β′5
(

1
2 t
)
, α′5(t)

)
: t ∈ [0, 1]

}
,

N8 =
{(
β′5
(

1
2 + 1

2 t
)
, α′6(t)

)
: t ∈ [0, 1]

}
,

N9 =
{(
β′6(t), α′7

(
4
10 t
))

: t ∈ [0, 1]
}
,

N10 =
{(
β′7(t), α′7

(
4
10 + 2

10 t
))

: t ∈ [0, 1]
}
,

N11 =
{(
β′8(t), α′7

(
6
10 −

2
10 t)

)
: t ∈ [0, 1]

}
,

N12 =
{(
β′9(t), α′7

(
4
10 −

4
10 t
))

: t ∈ [0, 1]
}
,
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N13 =
{(
β′10

(
1
2 t
)
, α′6(1− t)

)
: t ∈ [0, 1]

}
,

N14 =
{(
β′10

(
1
2 + 1

2 t
)
, α′5(1− t)

)
: t ∈ [0, 1]

}
,

N15 =
{(
β′11

(
1
2 t
)
, α′4(1− t)

)
: t ∈ [0, 1]

}
,

N16 =
{(
β′11

(
1
2 + 1

2 t
)
, α′3(1− t)

)
: t ∈ [0, 1]

}
,

N17 =
{(
β′12

(
1
4 t
)
, α′2
(

cos
[(

3
2 + 1

2

)
(1− t)π

]))
: t ∈ [0, 1]

}
,

N18 = β′12

([
1
4 , 1
])
× {α′2(0)},

N19 =
{
β′12(1)} × α′2([0, 1]),

N20 = {(β′13(t), α′3(t)) : t ∈ [0, 1]},
N21 = {(β′14(t), α′4(t)) : t ∈ [0, 1]},
N22 = {(β′14(1− t), α′5(t)) : t ∈ [0, 1]},
N23 = {(β′13(1− t), α′6(t)) : t ∈ [0, 1]},
N24 =

{(
β′12(1− t), α′7

(
4
10 t
))

: t ∈ [0, 1]
}
,

N25 = β′11([0, 1])×
{
α′7
(

4
10

)}
,

N26 = β′10([0, 1])×
{
α′7
(

4
10

)}
,

N27 =
{(
β′9(1− t), α′7

(
4
10 + 4

10 t
))

: t ∈ [0, 1]
}
,

N28 =
{(
β′8(1− t), α′7

(
8
10 + 2

10 t
))

: t ∈ [0, 1]
}
,

N29 =
{(
β′7(1− t), α′8

(
2
10 t
))

: t ∈ [0, 1]
}
,

N30 =
{(
β′6(1− t), α′8

(
2
10 + 4

10 t
))

: t ∈ [0, 1]
}
,

N31 = β′5([0, 1])×
{
α′8
(

6
10

)}
,

N32 = β′4([0, 1])×
{
α′8
(

6
10

)}
,

N33 =
{(
β′3(1− t), α′8

(
6
10 + 4

10 t
))

: t ∈ [0, 1]
}
,

N34 = {(β′2(1− t), α′9(t)) : t ∈ [0, 1]},
N35 = {(β′1(1− t), α′10(t)) : t ∈ [0, 1]},
N36 = {(β′i(t), β′i(t)) : t ∈ [0, 1], i = 1, . . . , 14}.

Let N =
⋃36
i=1Ni. Figure 9 depicts the set Γδ × Γδ as a subset of the plane

in a manner similar to that described in Section 4, with the set N drawn
in with dashed line. Essentially, this picture is obtained as follows: starting
with the set P (which is homeomorphic to Γδ), we pluck one of the ends of
the circle away from the point v, so that we are left with an arc. We then
“unroll and flatten” this arc to view it as a subset of the real line R. This
allows us to view P × P , and hence Γδ × Γδ, as a subset of the plane R2.

One can check that d(x1, x2) < 1/4+δ for all (x1, x2) ∈ N . One may also
verify (see Figure 9) that (Γδ×Γδ) rN consists of two components, neither



152 L. C. HOEHN AND A. KARASSEV

Fig. 9. The space Γδ × Γδ with the subset N depicted with dashed line.

of which has first coordinate projection equal to Γδ. This implies that if Z
is a connected subset of Γδ × Γδ with π1(Z) = Γδ, then Z must meet N . It
follows that σ∗0(Γδ) ≤ 1/4 + δ.
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