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Abstract. A theorem of Gleason states that every compact space admits a projective
cover. More generally, in the category of topological spaces with continuous maps, covers
exist with respect to the full subcategory of extremally disconnected spaces. Such a cover
of a space is called its absolute. We prove that the absolute exists within the category of
schematic spaces, i.e. the spaces underlying a scheme. For a schematic space, we use the
absolute to generalize Bourbaki’s concept of irreducible component, so that embedded and
multiple components may arise. We introduce the essential cover of a schematic space,
and show that it parametrizes the generalized components.

Introduction. Spectral spaces arise as spectra of commutative rings or
abelian l-groups [17, 10]. By Stone’s duality theorem [26], the spectrum of a
bounded distributive lattice is also a spectral space. Hochster [17] has shown
that every spectral space occurs as the spectrum of a commutative ring. By
definition, a T0-space X is said to be spectral if every closed irreducible set is
generic, and the quasi-compact open sets form a basis D(X) of X which is
closed under finite intersections. In particular, the empty intersection, i.e. X
itself, is quasi-compact. If we drop the assumption that X ∈ D(X), we get
precisely the class of spaces that arise as underlying spaces of schemes [17].
Therefore, we call such spaces schematic.

The morphisms in the category GSp of schematic spaces are spectral
maps f : X → Y , i.e. those for which D(f) := f−1 maps D(Y ) into D(X).
By Stone’s duality theorem [26], this gives a duality D between GSp and
the category DL0 of distributive lattices with 0. We call f : X → Y dense if
f(X) is dense in Y , and essentially dense if, in addition, g : Z → X is dense
whenever fg is dense.
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In this paper, we prove that any schematic space X admits an essentially
dense spectral map e : X̃ → X which factors through every essentially dense
spectral map Y → X such that every essentially dense spectral map Z → X̃
is a retraction. We show that such an essential cover e is unique, up to
isomorphism (Theorem 3).

Our motivation comes from the theory of abelian l-groups, i.e. abelian
groups with a lattice structure such that the translations x 7→ a + x are
lattice automorphisms. To allow precise statements, let us recall first some
pertinent facts on abelian l-groups. For details, the reader is referred to books
like [1, 3, 13, 15].

The abelian l-groups form a category Abl, morphisms being the group
homomorphisms which are also lattice homomorphisms. A subgroup A of an
abelian l-group G is said to be an l-ideal if |x| ≤ |a| with a ∈ A implies that
x ∈ A, where |a| := a ∨ (−a). The set of l-ideals of G is denoted by C(G).
For any A ∈ C(G), there is a largest B ∈ C(G) with A ∩ B = 0, the polar
A⊥ of A. An l-ideal P is called prime if the abelian l-group G/P is totally
ordered, or equivalently, if P = A∩B with A,B ∈ C(G) implies that P = A
or P = B. The set SpecG of proper prime l-ideals is a schematic space with
D(SpecG) = {S(a) | a ∈ G}, where S(a) := S({a}), and

S(A) := {P ∈ SpecG | A 6⊂ P}
for any subset A ⊂ G. By [20, Proposition 1.19], the map A 7→ S(A) defines
a lattice isomorphism

C(G)→∼ O(SpecG)

onto the lattice of open sets in SpecG.
The space SpecG was introduced by Keimel [19, 3] and is very useful

for the study of abelian l-groups. Unfortunately, it is not functorial. By
adding the “infinite” prime G to SpecG, we get a spectral space Spec∗G
with D(Spec∗G) = D(SpecG) ∪ {Spec∗G} such that SpecG is a schematic
subspace. We call Spec∗G the spectrum of G. For a morphism f : G → H
in Abl, the map

Spec∗ f : Spec∗H → Spec∗G

with (Spec∗ f)(P ) := f−1(P ) is spectral since

(Spec∗ f)−1(S(a)) = S(f(a))

for all a ∈ G. Thus we have a functor

Spec∗ : Abl → Sp

into the category Sp of spectral spaces.
Not every spectral space is homeomorphic to the spectrum of an abelian

l-group. Some necessary conditions are known [10], but it is still open which
spectral spaces actually occur.
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The lattice isomorphism C(G) ∼= O(SpecG) implies that for A ⊂ G, the
equality

S(A) = (SpecG) r S(A⊥)

holds in SpecG (see [3, Proposition 3.4.1]). Now an abelian l-group G is said
to be strongly projectable [1] if every polar A⊥ of G is a direct summand.
Thus by the above equality, G is strongly projectable if and only if SpecG
is extremally disconnected.

An l-subgroup G of an abelian l-group H is said to be large if each
non-zero A ∈ C(H) intersects G non-trivially. Then H ⊃ G is also called
an essential extension of G. If H is strongly projectable with a large l-
subgroup G such that there is no other strongly projectable l-group between
G and H, then H is called a strongly projectable hull of G. The existence
and uniqueness of the strongly projectable hull was proved by Conrad [12].
An explicit construction was given by Chambless [9].

In [24], the first author proves that every topological space X admits
a cover p : P → X with respect to the full subcategory of extremally dis-
connected spaces, and that p coincides with the absolute [23, 25, 27] of X
(see Section 5). Furthermore, he characterizes the strongly projectable hull
in terms of spectra. Specifically, [24, Theorem 4] states that a morphism
f : G → H in Abl describes the strongly projectable hull if and only if
Spec∗ f induces a map SpecH → SpecG which is the absolute of SpecG. In
other words, the absolute of SpecG lifts uniquely to Abl.

More generally, we will show that the absolute of a schematic space X
is again schematic (Proposition 12). Like the essential cover e : X̃ → X, the
absolute p : P → X is essentially dense, and both P and X̃ are extremally
disconnected. While p is always surjective, the image of e exhibits an inter-
esting invariant of X, namely, Xmin := e(X̃) is the smallest dense schematic
subspace of X (Theorem 1). If Xmin = X, we call X minimal. For example,
if X is extremally disconnected, Xmin consists of the generic points of the
irreducible components [8] of X. Although spectral maps of the form Spec∗ f
with f ∈ Abl are closed [24], the spectrum of an abelian l-group need not
be minimal.

For an arbitrary topological space X with absolute p : P → X, we show
that the quasicomponents C of P map bijectively onto closed irreducible
subspaces p(C) of X including the irreducible components of X. Therefore,
the absolute leads us to redefine the collection of irreducible components
of X to be the family of those p(C), parametrized by the quasicomponents
of P . In case that X is schematic, this yields a new interpretation of the
essential cover e : X̃ → X. Namely, X̃ can be identified with the space Q(P )
of quasicomponents of P , and under this identification, e maps each quasi-
component to the generic point of the corresponding irreducible component
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of X (Theorem 5). Thus in a word, the essential cover of a schematic space X
can be viewed as the space of irreducible components of X in the new sense,
i.e. with embedded components and multiplicities given by the absolute.

As every abelian l-group G has a largest prime, the spectrum Spec∗G is
Hausdorff if and only if G = 0. By [3, Theorem 14.1.2], the Keimel spectrum
SpecG is Hausdorff if and only if G is hyperarchimedean. Thus in general,
the essential cover of X := Spec∗G (or SpecG) cannot be lifted to Abl.
Nevertheless, the Stone space X̃ is an important invariant of G. In fact, the
above formula for S(A) gives

S(A⊥⊥) = intS(A)

for all A ∈ C(G). Therefore, the Boolean algebra P(G) of polars of G is
isomorphic to the complete Boolean algebra of regular open sets in Spec∗G.
So the space X̃ in the essential cover X̃ → X := Spec∗G just the Stone
space of G, i.e. the Stone dual of P(G).

In general, the essential cover e : X̃ → X is not functorial, and not even
a precover with respect to a suitable full subcategory of GSp. However,
the map e always belongs to the subcategory SSp of skeletal maps, i.e.
spectral maps for which the inverse image of a dense open set is dense. In
the subcategory SSp, e is not only a precover, but even functorial. Here
the full subcategory of extremally disconnected locally Stone spaces, i.e. the
spaces of the form X̃, is coreflective (Theorem 4).

By [24, Proposition 19], a morphism f : G → H in Abl represents a
large embedding if and only if Spec∗ f is essentially dense. This shows that
the Stone space of G is invariant under essential extensions. For archimedean
l-groups, essential extensions are characterized by this property (see [3, The-
orem 11.1.5]). Now Bernau’s theorem [2, 11] implies that every archimedean
l-group G admits a unique largest essential extension G ↪→ D(X̃), where
X̃ is the Stone space of G, and D(X̃) denotes the l-group of almost finite
continuous functions X̃ → [−∞,∞] (see [3, 13.2]). So it is natural to ask to
what extent the embedding G ↪→ D(X̃) can be characterized in terms of the
spectra.

Conrad [11] has shown that D(X̃) is the lateral completion ((Gd)∧)L

of (Gd)∧, the Dedekind–MacNeille completion of the divisible hull Gd of G.
Moreover, the proof of [24, Theorem 4] shows that the reason why the abso-
lute p : P → X := SpecG corresponds to the strongly projectable hull of G,
and not to a bigger strongly projectable l-subgroup of D(X̃), is just that p is
separated, i.e. that the diagonal P → P×XP is closed. Now the passage from
G to Gd does not affect the spectrum. Hence the embedding G ↪→ (Gd)∧ in-
duces a spectral map Spec (Gd)∧ → SpecG by virtue of [3, Theorem 11.3.7].
Furthermore, complete l-groups are archimedean and strongly projectable
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([1, Theorem 8.2.3]). So there might be a non-separated version of the abso-
lute that generalizes Spec (Gd)∧ → SpecG.

On the other hand, it follows by [3, Theorem 11.3.7], that (Gd)∧ is an l-
ideal of D(X̃). Hence (Gd)∧ ↪→ D(X̃) does not induce a map SpecD(X̃)→
Spec (Gd)∧. Therefore, a spectral analogue of the embedding G ↪→ D(X̃)
cannot be expected.

1. Preliminaries. For a topological space X and a subset D, we write
D for the closure, and intD for the interior of D. We denote the bounded
lattice of open sets by O(X). Thus every continuous map f : X → Y between
topological spaces X,Y induces a morphism of bounded lattices

(1) f−1 : O(Y )→ O(X).

We call f dense if the image f(X) of f is dense in Y . This means that the
implication U 6= ∅ ⇒ f−1(U) 6= ∅ holds for all U ∈ O(Y ). Therefore, any
pair X f→ Y

g→ Z of continuous maps satisfies

(2) f, g dense ⇒ gf dense ⇒ g dense.

Definition 1. We call a continuous map g : Y → Z essentially dense if
g is dense, and the implication

(3) gf dense ⇒ f dense

holds for every continuous map f : X → Y .

The following is easy to verify (see [24]):

Proposition 1. Let f : X → Y be a continuous map between topological
spaces. The following are equivalent.

(a) f is essentially dense.
(b) f is dense, and for every non-empty U ∈ O(X), there exists a non-

empty V ∈ O(Y ) with f−1(V ) ⊂ U .
(c) The equivalence f(D) = Y ⇔ D = X holds for all D ⊂ X.

Remark. If f : X → Y is closed, the equivalent conditions of Propo-
sition 1 state that f is surjective and irreducible, i.e. f(A) 6= Y for every
proper closed subspace A ⊂ X (cf. [6]).

There is a close relationship between essentially dense maps and regular
open sets. Recall that an open set U of a topological space X is said to be
regular if intU = U . It is well-known (cf. [16, 3.1], [21, Theorem 1.37]) that
the regular open sets form a complete Boolean algebra B(X) with lattice
operations

(4) U ∧ V = U ∩ V, U ∨ V = intU ∪ V .
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For a continuous map f : X → Y and open sets U ∈ O(X) and V ∈ O(Y ),
we define

f∗U :=
⋃
{W ∈ O(Y ) | f−1(W ) ⊂ U},(5)

f−1[V ] := int f−1(V ).(6)

Proposition 2. A continuous map f : X → Y is dense if and only if

(7) V ⊂ f∗f−1[V ] ⊂ V
for all V ∈ O(Y ). A dense f : X → Y is essentially dense if and only if

(8) U ⊂ f−1[f∗U ] ⊂ U
for all U ∈ O(X).

Proof. Let us show first that

(9) V ⊂ f∗f−1[V ], f−1[f∗U ] ⊂ U
for any f . The first inclusion says that f−1(V ) ⊂ f−1[V ] for all V ∈ O(Y ),
which is trivial. Secondly, if U ∈ O(X) and V ∈ O(Y ), then f−1(V ) ⊂ U
implies that f−1(V ) ⊂ U . Hence f−1(f∗U) ⊂ U , and thus f−1[f∗U ] ⊂ U .

Assume that (7) holds for V = ∅. Then Y r f(X) = f∗f
−1[∅] ⊂ ∅,

which implies that f is dense. Conversely, let f be dense. Suppose that (7)
does not hold for some V ∈ O(Y ). Then there is some W ∈ O(Y ) with
f−1(W ) ⊂ f−1[V ] and W 6⊂ V . Thus W r V ∈ O(Y ) is non-empty. Hence
∅ 6= f−1(W rV ) ⊂ f−1[V ] ⊂ f−1(V ). So we get f−1(W rV )∩ f−1(V ) 6= ∅,
a contradiction.

Now let f be essentially dense and U ∈ O(X). Then every non-empty
open U ′ ⊂ U contains an inverse image f−1(V ) with ∅ 6= V ∈ O(Y ). Hence
∅ 6= f−1(V ) ⊂ U ′ ∩ f−1(f∗U). This proves that U ⊂ f−1(f∗U), which yields
(8). Conversely, let f be dense such that (8) holds for every U ∈ O(X). If
U 6= ∅, this gives U ⊂ f−1(f∗U), whence U ∩ f−1(f∗U) 6= ∅. So there exists
some V ∈ O(Y ) with ∅ 6= f−1(V ) ⊂ U . By Proposition 1, it follows that f
is essentially dense.

Corollary. Let f : X → Y be continuous. If f is essentially dense,
the maps (5) and (6) induce a lattice isomorphism B(X) ∼= B(Y ).

Proof. Assume that f is essentially dense. For a given U ∈ B(X), we
show first that f∗U ∈ B(Y ). Thus we have to verify f−1(W ) ⊂ U for every
open W ⊂ f∗U . Since U is regular, it suffices to prove f−1(W ) ⊂ U for
such W . Suppose that f−1(W ) 6⊂ U for some open W ⊂ f∗U . By Propo-
sition 1, there exists a non-empty V ∈ O(Y ) with f−1(V ) ⊂ f−1(W ) r U .
Hence f−1(V ∩ f∗U) = ∅. Since f is dense, this gives V ∩ f∗U = ∅. There-
fore, we get V ∩ f∗U = ∅, and thus V ∩W = ∅, which contradicts f−1(V ) ⊂
f−1(W ). Now the corollary follows immediately by (7) and (8).
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Example 1. If a continuous map f : X → Y induces an isomorphism
B(X) ∼= B(Y ), then (7) holds for V = ∅. Therefore, f is dense. However, f
need not be essentially dense. For example, let S = {0, 1} be the Sierpiński
space with O(S) = {∅, {1},S}. Then B(S) = {∅, S}, and the map f : S → S
with f(S) = {1} induces an isomorphism B(S) ∼= B(S). However, the inclu-
sion (8) does not hold for U = {1}.

2. Schematic spaces. In view of the preceding section, it is natural to
ask which topological spaces X admit an essentially dense map X ′ → X
which is maximal in a suitable sense. For arbitrary spaces X, it is not likely
to find such an X ′ since every dense subspace Y gives rise to an essentially
dense map Y ↪→ X, while the intersection of dense subsets need not be
dense. We will see that this problem does not arise if X is schematic, i.e.
a T0-space for which the set D(X) of quasi-compact open subsets is a basis
with

(10) U, V ∈ D(X) ⇒ U ∩ V ∈ D(X),

and every non-empty closed irreducible set A ⊂ X has a generic point x,
i.e. A = {x}. In [10], such spaces X are called “generalized spectral spaces”.
Since D(X) is closed under finite unions, it follows that D(X) is a lattice
with respect to union and intersection. A continuous map f : X → Y be-
tween schematic spaces is said to be spectral if f−1(V ) belongs to D(X)
whenever V ∈ D(Y ). The category of schematic spaces with spectral maps
as morphisms will be denoted by GSp. The spectral spaces, i.e. the quasi-
compact spaces in GSp, form a full subcategory Sp. A topological space
X is a Hausdorff schematic space if and only if X is a locally Stone space,
i.e. locally compact and totally disconnected. Similarly, a Hausdorff spectral
space is the same as a Stone space, i.e. a compact totally disconnected space.

For X ∈ GSp, let R(X) denote the ring of subsets generated by D(X),
i.e. R(X) consists of the finite unions of differences U r V with U, V ∈
D(X). Then R(X) is a basis of open sets for the patch topology on X (cf.
[17, 10]). With this topology, X becomes a locally Stone space πX (use [17,
Theorem 1]), and

(11) R(X) = D(πX).

Instead of B(X), we consider the sublattice

(12) C(X) := {U ∈ B(X) | ∃V ∈ D(X) : U ⊂ V }.
Recall that a topological space is said to be extremally disconnected if the
closure of every open set is open.

Proposition 3. A topological space X is locally compact and extremally
disconnected if and only if X is a schematic space with D(X) = C(X).
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Proof. Let X ∈ GSp satisfy D(X) = C(X). We show first that every
U ∈ D(X) is closed. To this end, it suffices to verify that U ∩ V = U ∩ V
for each V ∈ D(X). Since V r U ∈ C(X) = D(X), we get V ′ := (V ∩ U)
∪ (V r U) ∈ D(X) = C(X). Hence V ′ = intV ′ = intV = V , and thus
V ∩ U = V ∩ U . This shows that U is closed. Since D(X) is a basis of X,
we infer that X is locally Stone. For any W ∈ O(X) and U ∈ D(X), it
follows that int(W ∩U) ∈ C(X) = D(X). Therefore, W ∩U ⊂ int(W ∩U) ⊂
W ∩ U ⊂ W ∩ U yields W ∩ U = int(W ∩ U) ∈ O(X). Hence W is open.
The converse is trivial.

Similar to [17, Section 2], we define a patch of X ∈ GSp to be a subspace
of X which is closed in πX.

Proposition 4. The image f(X) of a morphism f : X → Y in GSp is
a patch of Y . For every patch Z of Y , the inclusion Z ↪→ Y is a morphism
in GSp.

Proof. Let y ∈ Y belong to the closure of f(X) in πY . Choose U ∈ D(Y )
with y ∈ U . Then f−1(U) is a spectral space. Therefore, [17, Theorem 1]
implies that U ∩ f(X) = f(f−1(U)) is compact in πY . Since y belongs to
the closure of U ∩ f(X) in πY , it follows that y ∈ U ∩ f(X) ⊂ f(X). This
proves that f(X) is a patch of Y .

Now let Z be a patch of Y . Then πZ is a locally Stone subspace of πY ,
and the inclusion πZ ↪→ πY is spectral. Therefore, D(Z) consists of the
intersections U ∩Z with U ∈ D(Y ). Consequently, the T0-space Z has D(Z)
as a basis which satisfies (10). Let A 6= ∅ be a closed irreducible subset of Z.
Then A is irreducible in Y . Hence A = {y} for some y ∈ Y . If y /∈ A,
there exist U, V ∈ D(Y ) with y ∈ U r V and (U r V ) ∩ A = ∅. This gives
U ∩ A ⊂ V . On the other hand, y /∈ V implies that A ∩ V = ∅. Hence
U ∩A = ∅, a contradiction. Thus y ∈ A, which proves that A ⊂ Z is generic.
Therefore, Z is a schematic space, and the inclusion Z ↪→ Y is spectral.

Definition 2. We call a schematic space minimal if it does not contain
a proper dense patch.

For a schematic space X, we define the patch

(13) Xmin := X r
⋃
{U r V | U, V ∈ D(X), U ⊂ V }.

Theorem 1. Let X be a schematic space. Then Xmin is dense in X and
is contained in every dense patch of X. Moreover , X is minimal if and only
if D(X) ⊂ C(X).

Proof. We show first that Xmin is contained in every dense patch Y of X.
In fact, X r Y ∈ O(πX) implies that X r Y is a union of differences U r V
with U, V ∈ D(X). For any such difference U rV , we have U rV ⊂ X rY ,



ESSENTIAL COVER AND ABSOLUTE COVER 61

and thus (U r V ) ∩ Y = ∅. Since U r V is open, this gives U r V = ∅, i.e.
U ⊂ V . Hence Xmin ⊂ Y .

To show that Xmin is dense in X, let W ∈ D(X) be such that W ∩Xmin
= ∅. SinceW is compact in πX, there are U1, . . . , Un and V1, . . . , Vn in D(X)
with Ui ⊂ Vi such that W ⊂

⋃n
i=1(Ui rVi). Then Ui ∩W ⊂ Vi ∩W for all i.

Thus if we replace Ui by Ui ∩W and Vi by Vi ∩W , we have Ui, Vi ∈ D(W )
with Ui ⊂ Vi and
(14) W = (U1 r V1) ∪ · · · ∪ (Un r Vn).

We will show by induction that W = ∅. First, (14) implies V1 ∩ · · · ∩Vn = ∅.
We set V ′i := V1 ∩ · · · ∩ Vi. Assume that V ′i ∩ Vj = ∅ for all j > i. Since
V ′i ∩ (Uj r Vj) = ∅ for j ≤ i, (14) gives V ′i ⊂ (Ui+1 r Vi+1)∪ · · · ∪ (Un r Vn).
Thus if j > i, then V ′i ∩(UjrVj) = V ′i ∩Uj ∈ D(W ). Hence V ′i ∩(UjrVj) = ∅.
Therefore, we get V ′i = ∅. By induction and symmetry, this yields Vi = ∅ for
all i. So we get Ui ⊂ Vi = ∅, and consequently, W = ∅. Thus we have proved
that Xmin is the smallest dense patch of X.

Next let X be minimal. If U ∈ D(X) r C(X), then U ( V ⊂ U for some
V ∈ D(X). Hence U∪(XrV ) is a dense patch ofX, and so U∪(XrV ) = X,
i.e. U = V , a contradiction. Thus D(X) ⊂ C(X). Conversely, the inclusion
D(X) ⊂ C(X) implies that Xmin = X, whence X is minimal.

For an important class of schematic spaces X, the subspace Xmin admits
a simpler description. Note first that every T0-space X is partially ordered
by the specialization order

(15) x ≤ y ⇔ {x} ⊂ {y}.
For example, the Sierpiński space S = {0, 1} (see Example 1) satisfies 0 < 1.
The following Proposition 5 can be derived from Hochster’s theorem [17]
that every spectral space occurs as the spectrum of a commutative ring R,
together with Kaplansky’s observation [18] that SpecR satisfies (K1) and
(K2) of Proposition 5 with respect to inclusion. We will give a direct proof.

Proposition 5. With respect to the specialization order , every spectral
space X satisfies

(K1) A non-empty chain C ⊂ X has a supremum and an infimum. More-
over , {supC} = C and {inf C} =

⋂
x∈C {x}.

(K2) For any pair x < y in X, there exist x′, y′ ∈ X with x ≤ x′ < y′ ≤ y
such that there is no point properly between x′ and y′.

Proof. Let C 6= ∅ be a chain in X. Then C ⊂ X is closed and irreducible.
In fact, suppose that C = A∪B with closed sets A,B ⊂ X. If A 6= C, there is
a point x ∈ CrA. Hence C ⊂

⋃
x≤y∈C {y} ⊂ B, and thus B = C. Therefore,

C contains a generic point z, and thus z = supC. As X is quasi-compact, the
intersection C0 :=

⋂
x∈C {x} is non-empty. Every U ∈ O(X) which intersects
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C0 contains C. Therefore, if U, V ∈ D(X) both intersect C0, then C ⊂ U∩V .
Since U∩V is quasi-compact, we get C0∩U∩V 6= ∅. Hence C0 is irreducible,
and its generic point is the infimum of C. This proves (K1).

For x < y in X, there exists U ∈ D(X) with y ∈ U and x /∈ U . Since U
is a spectral subspace of X, the Kuratowski–Zorn lemma yields a minimal
y′ ∈ U with x < y′ ≤ y. By (K1), every chain C ⊂ X r U with x ∈ C has a
supremum in X r U . Therefore, again by the Kuratowski–Zorn lemma, we
find a maximal x′ < y′ with x′ ≥ x.

The next result shows that for extremally disconnected schematic
spaces X, the subspace Xmin is a locally Stone space and consists of the
“most general” points of X. Recall that a topological space is 0-dimensional
if it has a basis of closed open sets.

Proposition 6. Let X be a schematic space. The maximal points of
X form a 0-dimensional dense Hausdorff subspace µX of Xmin. If X is
extremally disconnected , then µX = Xmin.

Proof. Let µX ⊂ X be the subspace of maximal points with respect
to the specialization order (15). Since every x ∈ X belongs to a spectral
subspace U ∈ D(X) of X, Proposition 5 implies that X =

⋃
x∈µX {x}. This

shows that µX is dense inX. For different x, y in µX, suppose that U∩V 6= ∅
for all U, V ∈ D(X) with x ∈ U and y ∈ V . Since πX is locally compact, this
implies that there is a common point z in all these intersections U∩V . Hence
z ≥ x, y, a contradiction. This proves that µX is Hausdorff. If x ∈ U ∩ µX
and y ∈ U ∩ µX with U ∈ D(X), then y ≤ x′ for some x′ ∈ U . Since y is
maximal, this yields y ∈ U . Thus U ∩ µX = U ∩ µX, which shows that µX
is 0-dimensional.

Now let x ∈ µX be given. Then
⋂
{W ∈ D(X) | x ∈ W} = {x}.

Suppose that x ∈ U rV with U, V ∈ D(X). By the compactness of πV , this
implies that W ∩ V = ∅ for some neighbourhood W ∈ D(X) of x. Hence
x ∈ U ∩W ⊂ U r V . So we get µX ⊂ Xmin.

Finally, let X be extremally disconnected. Suppose that y > x. Then
y /∈ {x}, and so there is some V ∈ D(X) with y ∈ V and x /∈ V . Since V
is open and x ∈ {y} ⊂ V , we find some U ∈ D(X) with x ∈ U ⊂ V . Hence
x ∈ U r V , and thus x /∈ Xmin. This proves that µX = Xmin.

The following example shows that Xmin need not be a Hausdorff space.

Example 2. For an infinite set X ′, consider the spectral space X :=
X ′ t {0} (disjoint union) such that D(X) consists of the finite subsets of X ′
together with X. Then the elements of X ′ are pairwise incomparable, and
0 < x for all x ∈ X ′. By Theorem 1, the whole space X is minimal, and thus
µX = X ′ 6= Xmin.
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3. The essential cover. Theorem 1 provides a step toward a maximal
essentially dense map X̃ → X for a schematic spaceX. To construct X̃ → X,
we use Stone duality. Let DL0 denote the category of distributive 0-lattices
(i.e. with a smallest element 0). Morphisms in DL0 are 0-preserving lattice
homomorphisms f : D → D′ such that for every b ∈ D′, there is an element
a ∈ D with f(a) ≥ b. If D,D′ belong to the full subcategory DLb of bounded
distributive lattices, the latter condition reduces to f(1) = 1. Stone’s duality
theorem [26] implies that the functor D gives a duality

(16) D : GSpop →∼ DL0.

To get the inverse of D, note that the Sierpiński space S can be regarded as
an object in DLb. Therefore, any D ∈ DL0 gives rise to a morphism set

(17) SpecD := HomDL0(D,S),

which can be viewed as a subspace of the product space SD ∈ Sp. If D is
bounded, SpecD is a patch in SD. Otherwise, the closure of SpecD in π(SD)
is (SpecD) ∪ {0}. Hence SpecD is schematic. Thus (17) defines a functor
Spec: DL0 → GSpop which is inverse to (16).

Definition 3. We call a morphism f : D→D′ in DL0 codense if f(a)=0
implies that a = 0. We say that f is essentially codense if f is codense and
for every b > 0 in D′, there is a non-zero a ∈ D with f(a) ≤ b.

As an immediate consequence of Proposition 1, we have

Proposition 7. Let f : X → Y be a morphism of schematic spaces.

(a) f is dense if and only if D(f) : D(Y )→ D(X) is codense.
(b) f is essentially dense if and only if D(f) is essentially codense.

Although continuous maps between schematic spaces need not be spec-
tral, the definition of essentially dense maps carries over to GSp.

Corollary. A dense morphism f : X → Y in GSp is essentially dense
if and only if the implication (3) holds for every g : Y → Z in GSp.

Proof. By Proposition 7, it suffices to prove the dual assertion. Thus let
g : D → D′ be a codense morphism in DL0. Assume first that g is essentially
codense, and let f : D′ → D′′ be a morphism in DL0 such that fg is codense.
If 0 < b ∈ D′, we find a non-zero a ∈ D with g(a) ≤ b. Hence f(b) ≥
f(g(a)) > 0, which shows that f is codense. Conversely, assume that the
dual of (3) is satisfied. Let b ∈ D′ be non-zero. Then x 7→ x ∨ b defines a
morphism f : D′ → [b,−) in DL0. If g(a) 6≤ b for all a > 0 in D, then fg is
codense, while f is not since b > 0.

We say that a morphism f : X → Y in any category is a retraction (resp.
section) if there is a morphism g : Y → X with fg = 1 (resp. gf = 1).
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Theorem 2. Let X be a schematic space. The following are equivalent.

(a) X is locally compact and extremally disconnected.
(b) Every dense morphism Y → X in GSp is a retraction.
(c) Every essentially dense morphism Y → X in GSp is a retraction.

Proof. (a)⇒(b): Let f : Y → X be a dense morphism in GSp. By Propo-
sition 4, f(Y ) is closed in πX = X. Hence f is surjective. To prove that f is
a retraction, we can replace f by πY → Y

f→ X, where πY → Y is the natu-
ral bijection. Therefore, we can assume, without loss of generality, that Y is
Hausdorff. Let C be a chain of closed subspaces A ⊂ Y with f(A) = X. We
show that the intersection C :=

⋂
C also satisfies f(C) = X. If f(C) 6= X,

then Proposition 4 implies that f(C) is a proper closed subset of X. So we
find a non-empty U ∈ D(X) with U ∩ f(C) = ∅. Hence f−1(U) ∩A 6= ∅ for
all A ∈ C, but f−1(U) ∩ C = ∅. Since f−1(U) is compact, this is a contra-
diction. By the Kuratowski–Zorn lemma, we thus obtain a minimal closed
subset Z ⊂ Y with f(Z) = X. If f(D) = X for a subset D ⊂ Z, then
f(D) = f(D) = X, and thus D = Z. Therefore, Proposition 1 implies that
Z ↪→ Y

f−→ X is essentially dense. So there is no loss of generality if we
assume that Y is a locally Stone space and f : Y � X is essentially dense.

Now we proceed as in [16], using the fact that f is a closed map. Suppose
that there are different x, y ∈ Y with f(x) = f(y). Then there are disjoint
U, V ∈ D(Y ) with x ∈ U and y ∈ V . By Proposition 2, the open sets f∗U and
f∗V are disjoint, and their inverse images are dense in U and V , respectively.
Hence f(x) ∈ f∗U and f(y) ∈ f∗V , and thus f∗U ∩ f∗V 6= ∅. Since X is
extremally disconnected, this is a contradiction. So we have shown that f
is bijective, which completes the proof of (b). The implication (b)⇒(c) is
trivial.

(c)⇒(a): By Stone duality, condition (c) implies that every essentially
codense morphism D(X) → D in DL0 is a section. For a dense open set
U ⊂ X, we set

O′(U) := {W ∈ O(U) | ∃V ∈ D(X) : W ⊂ V }
and consider the morphism

p : D(X)→ O′(U)

given by p(V ) := V ∩U . If p(V ) = ∅, then V ⊂ X rU , which yields V = ∅.
Thus p is essentially codense. So (c) implies that p is injective. Therefore,
if V,W ∈ D(X) satisfy W ⊂ V ⊂ W , then U := W ∪ (X r W ) is dense
in X, and V ∩ U = W ∩ U , whence V = W . So we get D(X) ⊂ C(X). By
Theorem 1, this means that X is minimal.

Next we consider the inclusion

i : D(X) ↪→ R(X)
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in DL0, where R(X) is given by (11). Since X is minimal, i is essentially
codense. Hence there exists a morphism f : R(X) → D(X) in DL0 with
fi = 1. For U, V ∈ D(X), we have U r V ⊂ U and (U r V ) ∩ V = ∅. Hence
f(UrV ) ⊂ U and f(UrV )∩V = ∅. Thus f(UrV ) ⊂ UrV , and f(UrV )
is the largest W ∈ D(X) with W ⊂ U r V . Hence U r V ∈ D(X). Since
U ⊂ (U r V ) ∪ V and (UrV )∪V ∈ D(X), the minimality of X implies that
U ⊂ (U r V ) ∪ V . Therefore, U r V ⊂ U r V , which gives U ∩ V ⊂ U ∩ V .
As this holds for all U ∈ D(X), we get V = V . Hence X is locally Stone.

Finally, let us consider the inclusion

j : D(X) ↪→ O′(X).

Since j ∈ DL0 is essentially codense, there exists a morphism g : O′(X) →
D(X) in DL0 such that gj = 1. Let U ∈ O′(X) be given. Then every
V ∈ D(X) with V ⊂ U satisfies V ⊂ g(U). Hence U ⊂ g(U). Similarly,
every V ∈ D(X) with V ⊃ U satisfies V ⊃ g(U). This shows that g(U) is
the smallest V ∈ D(X) with V ⊃ U . For any U ∈ O(X) and W ∈ D(X),
suppose that g(U∩W ) 6⊂ U ∩W . Then there is a non-empty V ∈ D(X) with
V ⊂ g(U ∩W ) r U ∩W . Since V is closed, this contradicts the minimality
of g(U ∩W ). Hence U ∩W = g(U ∩W ) ∈ O(X). As this holds for every
W ∈ D(X), it follows that U is open.

Now we are ready to prove the main result of this section.

Theorem 3. Let X be a schematic space. Up to isomorphism, there is
a unique essentially dense morphism e : X̃ → X in GSp such that e factors
through every essentially dense morphism Y → X, and every essentially
dense morphism Y → X̃ in GSp is a retraction.

Proof. Consider the map

(18) r : O(X)→ B(X)

with r(U) := intU . We show first that r is a morphism in DLb. For U, V ∈
O(X), we have

intU ∪ V ⊂ int r(U) ∪ r(V ) ⊂ intU ∪ V = intU ∪ V .
Hence r(U ∪V ) = r(U)∨r(V ). Furthermore, r(U ∩V ) = intU ∩ V ⊂ intU ∩
intV = r(U)∧r(V ). Thus it remains to verify that intU ∩ intV ⊂ intU ∩ V .
This means that W := intU ∩ intV rU ∩ V is empty. Now W is open, and
W∩U∩V = ∅. HenceW∩U ⊂ V implies thatW∩U = ∅. Therefore,W ⊂ U
yields W = ∅. Since r(∅) = ∅ and r(X) = X, it follows that r ∈ DLb.

The restriction of r to D(X) gives a morphism

r0 : D(X)→ C(X)

in DL0. Since r(U) ⊃ U for all U ∈ D(X), we infer that r0 is codense. The
fact that D(X) is a basis of X implies that r0 is essentially codense. Now
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let f : D(X)→ D be an essentially codense morphism in DL0. We define a
map g : D → C(X) by

(19) g(a) := int
⋃
{U ∈ D(X) | f(U) ≤ a}.

Before we show that the image of g lies in C(X) and not only in B(X), we
verify first that gf = r0. Thus let V ∈ D(X) be given. Then

r(V ) = intV ⊂ int
⋃
{U ∈ D(X) | f(U) ≤ f(V )} = gf(V ).

So we have to prove that gf(V ) ⊂ V . Let W ∈ D(X) be such that W ⊂
gf(V )rV . Then W ∩V = ∅. Therefore, if U ∈ D(X) satisfies f(U) ≤ f(V ),
then f(W ∩ U) ≤ f(W ) ∧ f(V ) = f(W ∩ V ) = 0. Since f is codense, this
gives W ∩ U = ∅. Hence W ∩ gf(V ) = ∅, and thus W = ∅. So we have
proved that gf = r0. Now every a ∈ D can be majorized by some f(V ) with
V ∈ D(X). Therefore, we have g(a) ≤ gf(V ) = r(V ) ⊂ V , which shows that
g(D) ⊂ C(X).

Next we prove that g ∈ DL0. For a, b ∈ D, we have g(a)∨g(b) ⊂ g(a∨ b)
since g is monotone. The reverse inclusion is equivalent to

int
⋃
{U ∈ D(X) | f(U) ≤ a ∨ b} ⊂ int

⋃
{U ∈ D(X) | f(U) ≤ a}(20)

∨ int
⋃
{U ∈ D(X) | f(U) ≤ b}.

Suppose thatW ∈ D(X) is contained in the left-hand side, but disjoint from
the right-hand side of (20). ThenW ∩U = ∅ for all U ∈ D(X) with f(U) ≤ a
or f(U) ≤ b. Hence if f(W )∧a > 0, the essential codensity of f implies that
f(W ) ∧ a ≥ f(U) for some non-empty U ∈ D(X). But this gives f(U) ≤ a
and f(W ∩ U) = f(W ) ∧ f(U) ≥ f(U) > 0, a contradiction. So we get
f(W )∧a = 0, and similarly, f(W )∧b = 0. Thus f(W )∧(a∨b) = 0. For all U ∈
D(X) with f(U) ≤ a∨b, this implies that f(W ∩U) = f(W ∩U)∧(a∨b) = 0.
Hence W ∩U = ∅ for all such U , and therefore W = ∅, which completes the
proof of (20). Thus g(a ∨ b) = g(a) ∨ g(b). Furthermore, we have

g(a ∧ b) = r
(⋃
{U ∈ D(X) | f(U) ≤ a ∧ b}

)
= r
(⋃
{U ∩ V | U, V ∈ D(X), f(U) ≤ a, f(V ) ≤ b}

)
= r
(⋃
{U ∈ D(X) | f(U) ≤ a} ∩

⋃
{V ∈ D(X) | f(V ) ≤ b}

)
= r
(⋃
{U ∈ D(X) | f(U) ≤ a}

)
∧ r
(⋃
{V ∈ D(X) | f(V ) ≤ b}

)
= g(a) ∧ g(b).

Since g(0) = ∅ and gf = r0, we have shown that g ∈ DL0. By Stone
duality, the morphism e := Spec r0 satisfies the first part of the conclusion.
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In particular,

(21) X̃ = Spec C(X).

To show that every essentially dense morphism Y → X̃ is a retraction, we
apply Theorem 2 and Proposition 3. So we have to verify that D(X̃) = C(X̃).
We regard this equation as a property of the lattice C(X) ∼= D(X̃). Denote
the natural isomorphism C(X) →∼ D(X̃) by U 7→ U ′. Thus let U ∈ C(X) be
given. To show that U ′ ⊂ X̃ is regular, let V ∈ C(X) be such that V ′ ⊂ U ′.
This means that the implication

U ∩W = ∅ ⇒ V ∩W = ∅
holds for allW ∈ C(X), hence for allW ∈ D(X). Thus V ′ ⊂ U ′ is equivalent
to V ⊂ U . Hence V ⊂ U , which shows that U ′ ∈ C(X̃). This yields D(X̃) ⊂
C(X̃). Conversely, a set U0 ∈ C(X̃) can be represented by U := {U ∈ C(X) |
U ′ ⊂ U0}. So there exists some V ∈ C(X) with U0 ⊂ V ′, i.e. U ′ ⊂ V ′ for all
U ∈ U. By the above, this gives U ⊂ V for all U ∈ U. The regularity of U0

implies that

(22) V ′ ⊂ U0 ⇒ V ′ ⊂ U0

for all V ∈ C(X). Here V ′ ⊂ U0 means that

(23) U0 ∩W ′ = ∅ ⇒ V ′ ∩W ′ = ∅
for all W ∈ C(X). Now we define

V := int
⋃

U.

Thus V ∈ C(X), and U0 ⊂ V ′. Assume that U0∩W ′ = ∅ for someW ∈ C(X).
Then U ∩W = ∅ for all U ∈ U. Hence V ∩W = ∅. So the implication (23)
holds, i.e. V ′ ⊂ U0. By (22), this gives V ′ ⊂ U0. Thus U0 = V ′ ∈ D(X̃),
which proves D(X̃) = C(X̃).

It remains to prove the uniqueness statement. Thus assume that the
essentially dense morphisms e : X̃ → X and f : X ′ → X in GSp satisfy the
conditions of the theorem. Then f = eg for some g : X ′ → X̃ in GSp. Since
e is essentially dense, g is dense. Therefore, Theorem 2 implies that g is a
retraction, say, gs = 1 for some s : X̃ → X ′ in GSp. Hence e = egs = fs.
Since f is essentially dense, this implies that s is dense. Again by Theorem 2,
we infer that s is a retraction. Thus s is a homeomorphism.

Let us call X̃, together with the map e = eX : X̃ → X of Theorem 3, the
essential cover of X.

Corollary 1. For a schematic space X, the following are equivalent.

(a) X ∼= X̃.
(b) Every dense morphism Y → X in GSp is a retraction.
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(c) For every essentially dense morphism f : Y → X in GSp, the re-
striction f |Ymin is a homeomorphism.

Proof. The implications (c)⇒(a)⇒(b) follow by Proposition 3, Theo-
rem 1, and Theorem 2.

(b)⇒(c): By Theorem 2, every essentially dense morphism f : Y → X is
a retraction. So there exists a morphism s : X → Y in GSp with fs = 1.
Since f is essentially dense, s is dense. Furthermore, Proposition 3 and The-
orem 2 imply that D(X) = C(X). Hence X is minimal by Theorem 1. This
shows that s(X) = Ymin. Since s maps X homeomorphically onto Ymin, the
corollary is proved.

Corollary 2. Let f : Y → X be an essentially dense morphism in GSp
which factors through every essentially dense morphism Z → X in GSp.
Then Y is extremally disconnected, Ymin ↪→ Y is a section, and the compo-
sition Ymin ↪→ Y

f→ X is an essential cover of X.

Proof. Let eX : X̃ → X be an essential cover. By assumption, f = eXg
for some g : Y → X̃ in GSp. Since eX and f are essentially dense, g is
essentially dense. Now let U ∈ O(Y ) be given. Then g∗(Y rU) is open, and
g−1(g∗(Y r U)) ∩ U = ∅. Suppose that g−1(g∗(Y r U)) ∩ U 6= ∅. Since X̃
is extremally disconnected and g essentially dense, there is some non-empty
V ∈ D(X̃) such that g−1(V ) ⊂ g−1(g∗(Y r U)) ∩ U . Since g is dense, this
gives V ⊂ g∗(Y r U), whence V ⊂ g∗(Y r U) r g∗(Y rU), a contradiction.
Thus g−1(g∗(Y r U)) ∩ U = ∅, which implies that g∗(Y r U) is open and
closed. Since g is essentially dense, we infer that g−1(g∗(Y r U)) = Y r U .
Hence Y rU is closed, and thus U is open. This proves that Y is extremally
disconnected. By Corollary 1, the restriction g|Ymin is a homeomorphism.
Now the remaining assertions follow immediately.

4. The essential cover as a functor. To make the essential cover
into a functor, we have to restrict the morphisms in GSp. For example, the
continuous map g : S → S (cf. Example 1) with g(S) = {0} does not leave
Smin = {1} invariant.

Definition 4. We call a morphism f : X → Y in GSp regular if

(24) f−1(r(V )) ⊂ r(f−1(V ))

for all V ∈ D(V ), where r is given by (18).

Note that spectral maps between locally Stone spaces are regular. We
have the following characterization:
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Proposition 8. A morphism f : X → Y in GSp is regular if and only
if there exists a spectral map f̃ : X̃ → Ỹ such that the diagram

(25)

X̃
ef
� Ỹ

X
g

eX

f
� Y

g

eY

commutes.

Proof. By Definition 4, f is regular if and only if the open set f−1(r(V ))r
f−1(V ) is empty for all V ∈ D(Y ). This means that the implication

(26) U ⊂ f−1(r(V )), U ∩ f−1(V ) = ∅ ⇒ U = ∅

holds for all U ∈ D(X) and V ∈ D(Y ). The left-hand side of (26) states that
f(U) ⊂ r(V ) and f(U) ∩ V = ∅, i.e. f(U) ⊂ r(V ) r V . Since U is quasi-
compact, f(U) is quasi-compact. Therefore, the inclusion f(U) ⊂ r(V ) r V
means that f(U) ⊂W r V for some W ∈ D(Y ) with W ⊂ V .

Now assume that f is not regular. Then there is a non-empty U ∈ D(X)
with f(U) ⊂ Y r Ymin. Since Xmin is dense in X, there is an element x ∈
U ∩ Xmin. By Proposition 4, the image of eX is a dense patch, whence
Xmin ⊂ eX(X̃) by Theorem 1. So there is an element x̃ ∈ X̃ with eX(x̃) = x.
Thus feX(x̃) ∈ f(U) ⊂ Y rYmin. On the other hand, eY factors through the
essentially dense map Ymin ↪→ Y . Therefore, a commutative diagram (25)
would give feX(x̃) = eY f̃(x̃) ∈ Ymin, a contradiction.

Conversely, assume that f is regular. For any U ∈ C(Y ) with U ⊂ V
and V ∈ D(Y ), this implies that f−1[U ] = r(f−1(U)) = rf−1(r(V )) ⊂
rf−1(V ). Therefore, the map (6) defines a morphism f∗ : C(Y )→ C(X). For
every V ∈ D(Y ), we have rf−1(V ) ⊂ rf−1(r(V )) ⊂ rf−1(V ), which gives
rf−1(V ) = f−1[r(V )], i.e. the diagram

(27)

D(Y )
D(f)
� D(X)

C(Y )
g

r0

f∗
� C(X)

g

r0

commutes. Hence f̃ := Spec f∗ yields a commutative diagram (25).

A continuous map f : X → Y is said to be skeletal [4] if the inverse image
f−1(V ) of a dense V ∈ O(Y ) is dense in X. The subcategory of GSp with
the same objects and skeletal maps as morphisms will be denoted by SSp.
Let ELSt denote the full subcategory of SSp whose objects are extremally
disconnected locally compact spaces. The proof of Proposition 8 shows that
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the essential cover provides a functor

(28) SSp→ ELSt

which maps f : X → Y in SSp to f̃ = Spec f∗, where f∗ : C(Y ) → C(X)
is given by f∗(V ) := f−1[V ]. In fact, the commutative diagram (25) shows
that f̃ is skeletal: If W ∈ O(Ỹ ) is dense, there is a dense V ∈ O(Y ) with
e−1
Y (V ) ⊂ W . Hence f̃−1e−1

Y (V ) = e−1
X f−1(V ) is dense in X̃. Furthermore,

a composite gf of skeletal maps f, g satisfies f∗g∗(V ) = rf−1rg−1(V ) =
rf−1g−1(V ) = (gf)∗(V ).

Proposition 9 (cf. [4, Lemma 4]). Every essentially dense morphism
in GSp is skeletal , and every skeletal morphism is regular. If f ∈ GSp is
skeletal , the morphism f̃ in the commutative diagram (25) is unique.

Proof. Let f : X → Y be a morphism in GSp. Assume that f is essen-
tially dense. If V ∈ O(Y ) is dense in Y , then f(f−1(V )) = V ∩f(X) is dense
in Y . Hence f−1(V ) ⊂ X is dense by Proposition 1. Thus f is skeletal.

Assume now that f is skeletal. If V ∈ D(Y ), then V ∪ (Y rV ) ∈ O(Y ) is
dense. Hence f−1(V ∪(Y rV )) is dense inX, and thus int f−1(V rV ) = ∅. To
verify (24), we have to show that f−1(r(V )) ⊂ f−1(V ). Thus let U ∈ D(X)
satisfy U ⊂ f−1(r(V )) r f−1(V ). Then f(U) ⊂ r(V ) and U ∩ f−1(V ) = ∅.
Hence f(U) ⊂ r(V ) r V ⊂ V r V , which yields U = ∅. This proves that
f is regular. By Proposition 8, there is a commutative diagram (27), and it
remains to show that f∗ is unique. Let U ∈ C(Y ) be given. For U ∈ D(Y )
with V ⊂ U , this implies that r(V ) ⊂ U , and thus rf−1(V ) = f∗r(V ) ⊂
f∗(U). Hence f−1[U ] ⊂ f∗(U). To prove the reverse inclusion, we have to
verify that f∗(U) ⊂ f−1(U). Assume that W ⊂ f∗(U) r f−1(U) for some
W ∈ D(X). Then W ∩f−1(U) = ∅. For every V ∈ D(Y ) with U ∩V = ∅, we
have U ∩ r(V ) = ∅, which gives f∗(U) ∩ rf−1(V ) = f∗(U) ∩ f∗(r(V )) = ∅.
Hence W ∩ f−1(V ) = ∅, and thus f(W ) ∩ V = ∅. So we get f(W ) ⊂ U ,
which yields W ⊂ f−1(U r U). Since f is skeletal, this implies that W = ∅.
Thus f∗(U) = f−1[U ].

Now we can give a functorial characterization of the essential cover. Recall
that a subcategory of any category is said to be coreflective if the inclusion
admits a right adjoint.

Theorem 4. The full subcategory ELSt of extremally disconnected lo-
cally Stone spaces in SSp is coreflective.

Proof. Let f : X → Y be a morphism in SSp with X ∈ ELSt. By
Corollary 1 of Theorem 3, the map eX is a homeomorphism. Proposition 9
implies that the morphism f̃ in (25) is unique. Therefore, the functor (28)
is right adjoint to the inclusion ELSt ↪→ SSp.
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5. The absolute cover. Let C be an arbitrary category with a full
subcategory P. A morphism p : P → X is said to be a P-precover if P ∈ P
and every morphism Q→ X with Q ∈ P factors through p. If, in addition, p
is minimal, i.e. every morphism f : P → P with pf = p is an automorphism,
then p is called a P-cover.

By Theorem 3, an essential cover e : X̃ → X in GSp is minimal. In fact, if
ef = e, then f is essentially dense, hence a retraction. Thus fg = 1 for some
g : X̃ → X̃, and eg = efg = e. Therefore, g is again a retraction, whence
f is an automorphism with inverse g. In the subcategory SSp, the essential
cover is also an ELSt-precover by Theorem 4, hence an ELSt-cover.

In [24] the first author has shown that in the category Top of topological
spaces with continuous maps, every space X admits a cover p : P → X with
respect to the full subcategory Ed of extremally disconnected spaces, and
that p coincides with the absolute [23, 25, 27] of X. To distinguish p from
the object P , we will also call P the absolute, and refer to p as the absolute
cover of X. Let us briefly review the main features of the absolute, as far as
needed for our present purpose.

Let f : X → Y be a continuous map between topological spaces. Then
f is said to be proper [7] if f × 1: X × Z → Y × Z is closed for each
Z ∈ Top. By [7, I.10.2, Theorem 1], f is proper if and only if f is closed
and has quasi-compact fibers. The map f is said to be separated [5, 27] if the
diagonal map X → X ×Y X is closed, i.e. if any two points x 6= y in X with
f(x) = f(y) have disjoint neighbourhoods. A separated proper map is said
to be perfect. We call f an absolute (cover) of Y if f is essentially dense and
perfect, and X is extremally disconnected. By [24, Theorem 1], an absolute
is an Ed-cover, hence unique up to homeomorphism.

Recall [8] that every topological space X is the union of its irreducible
components, i.e. maximal irreducible subspaces. We will show that the ab-
solute leads to a refined version of irreducible components which may have
a multiplicity and need not be maximal.

Proposition 10. Let f : X → Y be a perfect map in Top. Every irre-
ducible component of X is mapped bijectively onto a closed irreducible subset
of Y . If f is surjective, each irreducible component of Y arises in this way.

Proof. By [8, II.4.1, Proposition 4], the image of an irreducible compo-
nent C of X is irreducible. Since f is perfect, f(C) is closed. Suppose that
there are different points x, y ∈ C with f(x) = f(y). Since f is separated,
there are disjoint U, V ∈ O(X) with x ∈ U and y ∈ V . As C is irreducible,
we have U ∩ V 6= ∅, a contradiction. Thus f |C is injective.

Now let f be surjective, and letD be an irreducible component of Y . Then
the closed set f−1(D) is mapped onto D. Let A be a chain of closed subsets
A ⊂ f−1(D) with f(A) = D. With C :=

⋂
A, suppose that f(C) 6= D.
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Then there is a point y ∈ D r f(C), and
⋂
{f−1(y) ∩A | A ∈ A} = ∅. Since

f−1(y) is compact, this is impossible. Hence f(C) = D, and the Kuratowski–
Zorn lemma yields a minimal closed subset A of f−1(D) with f(A) = D. If
A = A1 ∪A2 with A1, A2 closed, then D = f(A1) ∪ f(A2). Since f is closed
and D irreducible, this implies that D = f(Ai) for some i ∈ {1, 2}. By the
minimality of A, this gives Ai = A. Hence A is irreducible. By [8, II.4.1,
Proposition 5], there is an irreducible component A′ of X with A ⊂ A′. As
f(A′) is irreducible, we have f(A′) = D. Since f |A′ is injective, this implies
that A′ = A.

Recall that the quasicomponent of a point x of a topological space is
defined to be the intersection of all closed open sets containing x.

Proposition 11. The irreducible components of an extremally discon-
nected space X coincide with its quasicomponents.

Proof. Let C be an irreducible component of X. Then every closed open
set which intersects C non-trivially contains all of C. Hence C is contained
in a quasicomponent C ′. If U ∈ O(X) satisfies U ∩ C ′ 6= ∅, then U is open,
whence C ′ ⊂ U . Thus C ′ is irreducible, which gives C ′ = C.

Definition 5. Let X be a topological space, and p : P → X a fixed ab-
solute of X. We define the irreducible components of X to be the restrictions
of p to the quasicomponents of P .

In other words, the quasicomponents of the absolute P of X parametrize
the irreducible components of X. The following example shows that multiple
components as well as embedded components actually occur.

Example 3. LetX := X ′t{0} be the spectral space of Example 2. Then
the Stone-Čech compactification β(X ′) of X ′ is extremally disconnected (see
[14, 6M]). Let i : X ′ ↪→ β(X ′) be the natural inclusion. Then i is an open
map. Consider the disjoint union P := X ′ t β(X ′) with the topology given
by the open sets U t V such that V ∈ O(β(X ′)) and i−1(V ) ⊂ U ⊂ X ′.
Then i−1(V ) ⊂ U , which implies that U t V = U t i(U) ∪ V . Hence P is
extremally disconnected. Define a map p : P → X by p(x) := x for all x ∈ X ′,
and p(β(X ′)) = {0}. Thus p is a continuous surjection. By definition, the
closed sets in P are of the form UtV with V ⊂ β(X ′) closed and U ⊂ i−1(V ).
Hence p is closed. Since β(X ′) is a compact subspace of P , the map p is
perfect. Finally, every non-empty U t V ∈ O(P ) satisfies U 6= ∅. Hence
p−1(U) ⊂ U t V , which shows that p is essentially dense. Thus p is the
absolute cover of X.

The closed open sets of P are the sets i−1(V )tV with V = V ∈ O(β(X ′)).
Therefore, the quasicomponents of P are the singletons in β(X ′)r i(X ′) and
the two-point sets {x, i(x)} with x ∈ X ′. So the irreducible components of
X are {0}, with a big multiplicity, and the sets {0, x} with x ∈ X ′.
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Now we turn our attention to schematic spaces.
Proposition 12. Let p : P � X be the absolute of a schematic space X.

Then P is again schematic, and p is a spectral map.

Proof. Since p is proper, [7, I.10.2, Proposition 6] implies that p−1(V ) is
quasi-compact for each V ∈ D(X). As p is separated, P is a T0-space. By
[24, Proposition 5], the fact that p is perfect implies that the sets U ∩p−1(V )
with U ∈ B(P ) and V ∈ O(X) form an open basis of P . By the corollary
of Proposition 2, the regular open sets of P are of the form p−1[W ] with
W ∈ O(X). Therefore, since P is extremally disconnected, an open basis of
P is given by the sets
(29) p−1(V ) ∩ p−1(W )

with V ∈ D(X) and W ∈ O(X). Furthermore, the sets (29) are quasi-
compact. In fact, if p−1(V ) ∩ p−1(W ) ⊂

⋃
i∈I Ui with Ui ∈ O(P ), then

p−1(V ) ⊂ (P r p−1(W ))∪
⋃
i∈I Ui. As p

−1(V ) is quasi-compact, this implies
that p−1(V ) ⊂ (P r p−1(W )) ∪

⋃
j∈J Uj for a finite subset J ⊂ I. Hence

p−1(V ) ∩ p−1(W ) ⊂
⋃
j∈J Uj . So we have shown that P admits a basis (29)

of quasi-compact open sets. Therefore, every U ∈ D(P ) is a finite union of
sets (29).

Since P is extremally disconnected, the equality
(30) U1 ∩ U2 = U1 ∩ U2

holds for all U1, U2 ∈ O(P ). Therefore, the intersection of two sets (29) is
again of the same form.

Finally, let C ⊂ P be closed and irreducible. Then p(C) is closed and
irreducible. So there is a generic point y ∈ p(C). Choose x ∈ C with p(x) = y.
Then p({x}) is closed and contains y. Thus p({x}) = p(C). Since p|C is
injective by Proposition 10, we infer that {x} = C.

For a topological space X, let Q(X) denote the space of quasicomponents
(see [22, 46.Va]). An open basis for the topology of Q(X) is given by the sets
U ⊂ Q(X) with c−1(U) closed and open. Thus Q(X) is 0-dimensional, hence
a Tikhonov space, and we have a continuous surjection
(31) q : X � Q(X)

with the quasicomponents of X as fibers. Our final theorem characterizes
the essential cover of a schematic space in terms of the absolute.

Theorem 5. Let X be a schematic space with absolute p : P � X. For
each quasicomponent C of P , let e(C) denote the generic point of p(C). Then
e : Q(P )→ X is an essential cover of X.

Proof. Consider the natural map q : P � Q(P ), and the map s : Q(P )
→ P which associates the generic point to each quasicomponent of P . Then



74 W. RUMP AND Y. C. YANG

e = ps and qs = 1. By Proposition 11, the image of s coincides with the
subspace µP of maximal points. Proposition 6 and Theorem 1 imply that
µP is a locally Stone space. By the definition of Q(P ), the map q preserves
closed open sets. Since µP is 0-dimensional, it follows that q|µP is a hom-
eomorphism. Hence s is a continuous embedding. Furthermore, s is dense,
and thus essentially dense. So the composition e = ps is essentially dense,
and Q(P ) is extremally disconnected. By Proposition 9, e is skeletal. Thus
Theorem 4 implies that e factors through the essential cover of X. Hence e
is an essential cover by Theorems 2 and 3.

Remark. By Theorem 5, the essential cover X̃ of a schematic space X
can be regarded as the space of irreducible components of X in the sense
of Definition 5. Since µX need not coincide with Xmin, this gives a general
reason why embedded components of X are possible.

Corollary. For an extremally disconnected schematic space X, the
map (31) is a retraction.

Proof. Since the identity 1X : X → X is an absolute cover, the continu-
ous map e of Theorem 5 satisfies qe = 1.
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