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AFFINE STRUCTURES ON JET AND WEIL BUNDLES

BY

DAVID BLÁZQUEZ-SANZ (Bogotá)

Abstract. Weil algebra morphisms induce natural transformations between Weil
bundles. In some well known cases, a natural transformation is endowed with a canonical
structure of affine bundle. We show that this structure arises only when the Weil alge-
bra morphism is surjective and its kernel has null square. Moreover, in some cases, this
structure of affine bundle passes to jet spaces. We give a characterization of this fact in
algebraic terms. This algebraic condition also determines an affine structure on the groups
of automorphisms of related Weil algebras.

Introduction. The theory of Weil bundles and jet spaces is developed
in order to understand the geometry of PDE systems. C. Ehresmann for-
malized contact elements of S. Lie, introducing the spaces of jets of sections;
simultaneously A. Weil showed in [8] that the theory of S. Lie could be
formalized easily by replacing the spaces of contact elements by the more
formal spaces of “points proches”, known as Weil bundles. The general the-
ory of jet spaces [6] recovers the classical spaces of contact elements J lmM
of S. Lie applying the ideas and methodology of A. Weil.

In the theory of Weil bundles, morphisms A→ B of Weil algebras induce
natural transformations [5] between Weil bundles. There are well known
cases in which these natural transformations are affine bundles that often
appear in differential geometry [5]. In [4] I. Kolář showed that this is the
behaviour of MAl →MAl−1 . In this paper we characterize the natural trans-
formations that are affine bundles. It is done easily by adopting a different
point of view on the tangent space of MA than in [6]. Our result is as follows:
there is a canonical affine structure for natural transformations MA →MB

induced by a surjective morphism A→ B whose kernel has null square. This
is true for MAl →MAk with 2k + 1 ≥ l > k ≥ 0.

In some cases the natural transformations induce maps between jet
spaces. This holds in the cases studied in [4]. We characterize this situ-
ation, and moreover, we determine when an affine structure on the Weil
bundle morphism passes to the jet space morphism. In addition, we prove
that in this case there also exists an affine structure in the morphisms be-
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tween the groups of automorphisms of the Weil algebras. This is true for
spaces J lmM → Jkm with l > k > 0 and 3k + 1 ≥ 2l.

Notation and conventions. All manifolds and maps are assumed to be
infinitely differentiable. All results involving a manifold M assume that it
is not empty and all results involving jet spaces JAM assume that JAM is
also not empty (if it is empty, the algebraic conditions for the existence of
affine structure may be satisfied, but no structure exists).

1. Weil bundles. By a Weil algebra we mean a finite-dimensional,
local, commutative R-algebra with unit. If A is a Weil algebra, let mA be
its maximal ideal. If A and B are Weil algebras, by a morphism A→ B we
mean an R-algebra morphism.

Example 1. Let R[[ξ1, . . . , ξm]] be the ring of formal series with real
coefficients and free variables ξ1, . . . , ξm. Let m be the maximal ideal spanned
by ξ1, . . . , ξm. Then, for any non-negative integer l, the ring

Rl
m = R[[ξ1, . . . , ξm]]/ml+1

is a Weil algebra.

For every Weil algebra A, there is a non-negative integer l such that
ml
A 6= 0 but ml+1

A = 0; we say that l is the height of A. The width of A is the
dimension of the vector space mA/m

2
A. Thus, Rl

m is a Weil algebra of height
l and width m. If A is of height l and width m there exists a surjective
morphism Rl

m → A (see [4], [6]).

Definition 1. Let M be a smooth manifold and A a Weil algebra. The
set MA of R-algebra morphisms

pA : C∞(M)→ A

is called the space of near-points of type A of M , or A-points of M .

Let {ak} be a basis of A. For each f ∈ C∞(M) we define real-valued
functions {fk} on MA by setting

pA(f) =
∑
k

fk(pA)ak.

We say that the {fk} are the real components of f relative to the basis {ak}.
Theorem 1 ([6]). The space MA is endowed with a unique structure of

a smooth manifold such that the real components of smooth functions on M
are smooth functions on MA.

Example 2. It is well known that each morphism C∞(M) → R is a
point of M . Since the real components on MR of smooth functions coincide
with the functions themselves we know that MR = M .
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Example 3. For each Weil algebra Rl
m let M l

m be the space of near-
points of type Rl

m. Then M1
1 is the tangent bundle TM . In general M l

m is
the space of germs at the origin of smooth maps Rm → M up to order l
(see [8]).

A Weil algebra morphism φ : A → B induces by composition a smooth
map φ̂ : MA →MB [5, 6] which is called a natural transformation,

φ̂(pA) = φ ◦ pA.
Example 4. Notice that a Weil algebra is provided with a unique mor-

phism A→ R. It induces a canonical map MA →M which is a fibre bundle.
This bundle is the so-called Weil bundle of type A over M . Let pA be in MA

and p its projection to M . Then we will say that pA is an A-point near p.
For each smooth function f the value pA(f) depends only on the germ of f
at p.

A smooth map f : M → N of smooth manifolds induces by composition
an R-algebra morphism

f∗ : C∞(N)→ C∞(M), f∗(g) = g ◦ f.
We can compose this morphism with A-points of M obtaining A-points of N .
Thus, Weil algebra morphisms and smooth maps transform near-points by
composition, and this implies a functorial behaviour of Weil bundles with
respect to those transformations.

We can formalize this situation in the following way. Let M be the
category of smooth manifolds, and W the category of Weil algebras. In the
direct product categoryM×W, objects are pairs (M,A) and morphisms are
pairs (f, φ). We define w(M,A) = MA. Thus, the natural way of defining
the natural image of the morphism (f, φ),

f : M → N, φ : A→ B,

is
w(f, φ) : MA → NB, pA 7→ φ ◦ pA ◦ f∗.

The following result follows easily:

Proposition 1. The assignment

w : M×W  M, (M,A) MA,

is a covariant functor.

Remark 1. There are two remarkable cases of induced maps:

• If X ⊂ M is an embedding then for each Weil algebra A the induced
map XA →MA is also an embedding.
• If A→ B is a surjective morphism then for all M the induced natural

transformation MA →MB is a fibre bundle.



294 D. BLÁZQUEZ-SANZ

Example 5. Let A be a Weil algebra of height l. For each k ≤ l define
Ak = A/mk+1

A . Then Ak is a Weil algebra of height k and Al = A. For k ≥ r
we have a natural projection MAk →MAr which is a bundle. In particular,
we have the canonical bundles Mk

m →M r
m.

1.1. Tangent structure. Given pA ∈ MA, denote by DerpA(C∞(M), A)
the space of derivations of the ring C∞(M) into the module A, where the
structure of C∞(M)-module on A is induced by the point pA itself. By
derivations we mean R-linear maps δ : C∞(M) → A satisfying Leibniz’s
formula:

(1) δ(f · g) = pA(f) · δ(g) + pA(g) · δ(f).

If D is a tangent vector to MA at pA then it defines a derivation given
by

δ(f) =
∑
k

(Dfk)ak,

and it is easy to prove that the spaces DerpA(C∞(M), A) and TpA(MA)
are identified in this way [6]. Fron now on we will assume this identifica-
tion. It applies not just to the vector spaces, but it is also compatible with
Proposition 1. The following theorem summarizes some results of [6].

Theorem 2 (Muñoz, Rodŕıguez, Muriel [6]). Consider a smooth map
f : M → N , a Weil algebra morphism φ : A → B, and the induced smooth
map

w(f, φ) : MA → NB, pA → qB = φ ◦ pA ◦ f∗.
Then the linearized map w(f, φ)′ : TpA(MA) → TqB (NB) coincides (under
the above identification) with the map

DerpA(C∞(M), A)→ DerqB (C∞(N), B), δ 7→ φ ◦ δ ◦ f∗.
1.2. Affine structure. In this section we will analyze the structure of

the fibre bundle induced by a surjective morphism A → B which has been
introduced in Remark 1. In some specific cases it has been proved that those
bundles are endowed with a canonical structure of affine bundles. We will
see that this structure has its foundation in the algebraic construction of the
spaces of near-points. Indeed, it is easy to give an algebraic characterization
of this fact. A morphism will induce an affine structure if and only if its
kernel ideal has null square.

The key point is to consider both near-points and tangent vectors to MA

as R-linear maps from C∞(M) to a Weil algebra. Thus, they can be added
as R-linear maps. Under some assumptions we will obtain a new near-point
when we add a derivation to a near-point.

Lemma 1. Let pA ∈ MA and D ∈ TpA(MA). The sum pA + D is an
A-point of M if and only if (Im(D))2 = 0.
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Proof. Define τ = pA +D. Then, for all f, g ∈ C∞(M),

τ(f · g) = τ(f) · τ(g)−D(f) ·D(g);

since τ is an R-linear map, it is an algebraic morphism if and only if for any
pair f and g of smooth functions on M we have D(f) ·D(g) = 0.

Lemma 2. Let pA, qA ∈MA. The difference δ = qA− pA is a derivation
and belongs to TpA(MA) if and only if (Im(δ))2 = 0.

Proof. For all f and g in C∞(M) we have

δ(f · g) = pA(f) · δ(g) + pA(g) · δ(f) + δ(f) · δ(g).

Thus, δ satisfies Leibniz’s formula if and only if for all f and g in C∞(M)
the product δ(f) · δ(g) vanishes.

Lemma 3. Let I be an ideal of a k-algebra A with k a field of character-
istic different from 2. The square I2 of the ideal vanishes if and only if for
all x ∈ I its square x2 also vanishes.

Proof. If I2 vanishes it is clear that x2 = 0 for all x ∈ I. Conversely,
assume that the squares of all elements of I vanish. Let x and y be in I.
Then

0 = (x+ y)2 = x2 + y2 + 2xy = 2xy.

Hence, xy = 0 and I2 vanishes.

Let φ : A→ B be a surjective morphism of Weil algebras, and let I be its
kernel ideal. Consider a smooth manifold M , and the induced fibre bundle
φ̂ : MA →MB. The linearization φ̂′ gives rise to an exact sequence

0→ TV φ̂
pA

(MA)→ TpA(MA)→ TpB (MB)→ 0

which defines the vertical tangent subbundle TV φ̂(MA) ⊂ T (MA). Taking
into account that tangent vectors are derivations from C∞(M) to A, we

notice that D ∈ TpA(MA) belongs to TV φ̂
pA

(MA) if and only if Im(D) ⊆ I.

Thus TV φ̂
pA

(MA) is the space of derivations from C∞(M) to I, where the
structure of C∞(M)-module in I is given by the morphism pA : C∞(M)→A.

Assume that I2 vanishes. Let pA and qA be in the same fibre of the
bundle, that is, φ̂(pA) = φ̂(qA) = pB. Then, pA and qA induce the same

structure of C∞(M)-module in I. Hence, the space of derivations TV φ̂
pA

(MA)

is canonically isomorphic to TV φ̂
qA

(MA). We denote this space by TV φ̂
pB

(MB).

Using Lemmas 1 and 2 we conclude that for any pair of A-points pA and
qA in the fibre of pB as above the difference pA − qA is a derivation which
belongs to TV φ̂

pB
(MB). Moreover, for any derivation D ∈ TV φ̂

pB
(MB), the
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sum pA +D is a near-point of type A in the fiber of pB. Thus, the natural
addition law of linear maps,

φ̂−1(pB)× TV φ̂
pB

(MB)→ φ̂−1(pB), (pA, D) 7→ pA +D,

induces an affine structure on the fibre φ̂−1(pB) associated with the vector

space TV φ̂
pB

(MB) of derivations from C∞(M) to I.
We define the vector bundle

TV φ̂(MB)→MB,

whose fibre over a B-point pB is the space TV φ̂
pB

(MB). Hence, TV φ̂(MB) is

the vector bundle associated with the affine bundle φ̂ : MA →MB,

MA ×MB TV φ̂(MB)→MA, (pA, D) 7→ pA +D.

On the other hand, if I2 does not vanish, by applying Lemma 3 we find
a derivation D : C∞(M) → I such that (Im(D))2 does not vanish. Hence,
pA +D does not belong to MA. We have proved the following:

Theorem 3. Let φ : A → B be a surjective Weil algebra morphism,
and let I be its kernel ideal. For any manifold M , the natural addition
law of linear maps induces a structure of affine bundle in the fibre bundle
φ̂ : MA →MB if and only if I2 = 0.

By elementary computations on the algebras Ak and Rl
m we deduce the

following corollaries to Theorem 3.

Corollary 1. Let A be a Weil algebra of height l. The natural projec-
tion MA → MAk is endowed with a canonical structure of affine bundle if
and only if 2k + 1 ≥ l.

Corollary 2. The natural projection of spaces of frames, M l
m →Mk

m,
is endowed with a canonical structure of affine bundle if and only if
2k + 1 ≥ l.

2. Jet spaces

Definition 2. A jet of M is an ideal p ⊂ C∞(M) such that the quotient
algebra Ap = C∞(M)/p is a Weil algebra. A jet p is said to be of type A,
or an A-jet, if Ap is isomorphic to A. The set JAM of A-jets of M is called
the A-jet space of M .

An A-point pA of M is said to be regular if it is a surjective morphism.
The set of regular A-points of M is denoted by M̌A. It is a dense open subset
of MA. It is obvious that an A-point is regular if and only if its kernel is an
A-jet. Thus, we have a surjective map

(2) ker : M̌A → JAM.
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Let Aut(A) be the group of automorphisms of A. It is a linear algebraic
group, as can be easily seen by representing it as a subgroup of GL(mA)
(see [3]). The group Aut(A) acts on M̌A by composition. Two A-points
related by an automorphism have the same kernel ideal. Conversely, two
A-points with the same kernel ideal are related by an automorphism. In
this way JAM is identified with the space of orbits M̌A/Aut(A), and its
manifold structure is determined in this way (see [1]).

Example 6. The group Glm of automorphisms of Rl
m is called the lth

prolongation of the linear group of rank m (see [7]), also called the jet group.
In particular G1

m is a linear group of rank m. The group Glm is the group of
Taylor series of transformations of Rl around a fixed point up to order l.

Theorem 4 (Alonso-Blanco [1]). There is a unique structure of smooth
manifold on JAM such that the map ker (appearing in (2)) is a principal
bundle with structure group Aut(A).

Example 7. Let J lmM denote the space of jets of type Rl
m of M . Thus,

J lmM is the space of germs of m-submanifolds of M up to order l.

The space JAM is a bundle over M . We will say that p is a jet over the
point p if p ⊂ mp, where mp is the ideal of smooth functions vanishing at p.
If pA is an A-point near p then ker(pA) is a jet over p.

2.1. Functorial behaviour. In contrast with Weil bundles, jet spaces do
not show a functorial behaviour. A smooth map f : M → N induces a
smooth map on jet spaces, but in the general case it is defined only on
an open dense subset of JAM , which depends on f . There is no natural
object associated to a Weil algebra morphism A → B. There is a natural,
highly interesting, object associated to a pair (A,B) of Weil algebras: the
Lie correspondence. This is a submanifold ΛA,BM of the fibred product
JAM ×M JBM ,

ΛA,BM = {(p, p) ∈ JAM ×M JBM : p ⊂ p}.
The Lie correspondence is empty if and only if there does not exist any
surjective morphism from A to B. There is a special case to be analyzed in
which it is the graph of a bundle JAM → JBM .

Let I be an ideal of A. Then, for each automorphism σ of A, the space
σ(I) is another ideal of A; the group Aut(A) acts on the set of ideals of A.
We say that I is an invariant ideal of A if I = σ(I) for all σ ∈ Aut(A). Each
positive power of the maximal ideal mk

A is an invariant ideal, and any other
ideals obtained from these by general processes of division and derivation
are also invariant; some examples are shown in [2]. Let I ⊂ A be an invariant
ideal and φ : A→ A/I = B the canonical projection. Let pA be an A-point
and p be its kernel. It is obvious that the kernel ideal p of the composition
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φ ◦ pA is the unique B-jet containing p. Let φ̌ be the restriction of φ̂ to the
space of regular points M̌A. We have a commutative diagram

(3)
M̌A

φ̌ //

��

M̌B

��
JAM

φJ // JBM

pA //

��

φ̌(pA) = pB

��
p // p

The Lie correspondence is precisely the set

ΛA,BM = {(p, φJ(p)) : p ∈ JAM}.
Summarizing, the following result holds:

Theorem 5. If I ⊂ A is an invariant ideal and B is the quotient algebra
A/I then there is a canonical bundle structure JAM → JBM .

2.2. Tangent structure. In order to study the linearization of φJ in dia-
gram (3) we need some characterization of the tangent space to JAM at a
jet p.

Theorem 6 ([1, 6]). The space Tp(JAM) is canonically realized as a
quotient of the space of derivations C∞(M) → Ap. A derivation δ defines
the null vector if and only if δ(p) = 0. Thus,

Tp(JAM) ' Der(C∞(M), Ap)/Der(Ap, Ap).

For a better understanding let us sketch the proof. Recall that the Lie
algebra of Aut(A) is the space of derivations Der(A,A), as can be shown in
a matrix representation of the group (see [6, 3]). Taking pA ∈ M̌A such that
ker(pA) = p, the representation of Der(A,A) as fundamental vector fields of
the action of Aut(A) on M̌A gives rise to an exact sequence

0→ Der(A,A) fun. vec. fields−−−−−−−−−→ TpA(MA) ker′−−→ TpJ
A(M)→ 0.

Note that TpA(MA) is the space of derivations DerpA(C∞(M), A) and
that pA induces an isomorphism of C∞-algebras between A and Ap. This
yields the isomorphism of the theorem. This isomorphism does not depend
on the A-point pA representing the A-jet p. This can be seen by means of
the principal bundle structure stated in Theorem 4.

3. Affine structure on jet spaces

3.1. Space of regular points. Let I be an ideal of the Weil algebra A,
and φ : A→ B the canonical projection onto the quotient algebra B = A/I.

Lemma 4 ([6]). A finite set {a1, . . . , am} ⊂ mA is a system of generators
of A if and only if the set {a1, . . . , am} of their classes in mA/m

2
A is a basis

of mA/m
2
A.
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Lemma 5. If I * m2
A then there exists a non-trivial subalgebra S ⊂ A

such that S/(S ∩ I) ' B.

Proof. If I * m2
A then the canonical projection mA/m

2
A → mB/m

2
B has

non-trivial kernel. There exists a finite set {a1, . . . , ar} such that {φ(a1), . . . ,
φ(ar)} is a basis of mB/m

2
B but {a1, . . . , ar} is not a basis of mA/m

2
A. Then

S = R[a1, . . . , ar] is a proper subalgebra and satisfies S/(S ∩ I) = B.

Note that each subalgebra of a Weil algebra A is a Weil algebra. For each
subset X ⊂ mA, R[X] is a Weil algebra and its maximal ideal is spanned
by X.

Lemma 6. The following conditions are equivalent :

(1) I ⊆ m2
A.

(2) φ̂−1(M̌B) ⊆ M̌A.

Proof. Assume I ⊆ m2
A, and consider pA ∈ MA such that φ̂(pA) is a

regular B-point. There are differentiable functions f1, . . . , fm in M such that
{φ(pA(f1)), . . . , φ(pA(fm))} is a system of generators of B. Then their classes
modulo m2

B form a basis {φ(pA(f1)), . . . , φ(pA(fm))} of mB/m
2
B. Since I is

contained in m2
A and mB = mA/I we see that mB/m

2
B ' mA/m

2
A. Then

{pA(f1), . . . , pA(fm)} is a basis of mA/m
2
A and {pA(f1), . . . , pA(fm)} is a

system of generators of A. Thus, A is regular.
Conversely, assume I * m2

A. Consider a subalgebra S ⊂ A as in Lemma 5.
Then MS → MB is a bundle. Let pB ∈ M̌B be a regular B-point, and pS

any preimage of pB. Hence, pS is an S-point, and thus a non-regular A-point,
but φ̂(pS) = pB.

The annihilator ideal of I is defined by

Ann(I) = {a ∈ A : ∀b ∈ I ab = 0}.
Notice that I ⊆ Ann(I) if and only if I2 = 0.

Theorem 7. The bundle φ̌ : M̌A → M̌B is endowed with a canonical
structure of affine bundle (given by addition of morphisms and derivations)
if and only if I ⊆ m2

A ∩Ann(I).

Proof. Suppose that I ⊆ m2
A ∩ Ann(I). Then addition of A-points and

derivations induces an affine structure on φ̂. Let pB ∈ M̌B be a regular
B-point. In view of Lemma 6 the fibre φ̂−1(pB) consists of regular points.
Thus, φ̌−1(pB) = φ̂−1(pB) so that the bundle M̌A → M̌B is the restriction
of MA →MB to the open submanifold M̌B, which is an affine bundle.

On the other hand, assume that I * m2
A ∩ Ann(I). If I * Ann(I), then

the sum of an A-point and a derivation is not in general an A-point and
there is no affine structure. Finally, assume that I ⊆ Ann(I) but I * m2

A.
Then there is an affine structure on φ̂. However, by Lemma 6 there is a
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non-regular A-point pAM such that its projection pB is regular. Consider
qA ∈ φ̌−1(pB), and D = pA− qA ∈ TV φ̌

qA
M̌A. Thus qA+D ∈ M̌A, and there

is no affine structure.

Corollary 3. Let A be of height l. Then for each l > k > 0 the natural
projection M̌A → M̌Ak is an affine bundle if and only if 2k + 1 ≥ l.

Corollary 4. For any l > k > 0, the natural projection M̌ l
m → M̌k

m is
an affine bundle if and only if 2k + 1 ≥ l.

3.2. Affine structure on the group of automorphisms. Let I ⊂ A be an
invariant ideal of the Weil algebra A, and φ : A → B = A/I the canonical
projection. Each automorphism σ ∈ Aut(A) satisfies σ(I) = I, so it induces
an automorphism φ∗(σ) ∈ Aut(B).

Definition 3. The affine sequence associated to I is the following se-
quence of algebraic groups:

K(I)→ Aut(A)
φ∗−→ Aut(B),

where

K(I) = {σ ∈ Aut(A) : σ(a)− a ∈ I, σ(b) = b, ∀a ∈ A ∀b ∈ I}
is the subgroup of automorphisms of A inducing the identity both in B
and I.

We will say that the affine sequence is exact on the left if K(I) = kerφ∗.
Analogously, we will say that it is exact on the right if φ∗ is surjective. Note
that if a sequence is exact both on the right and on the left then it is an
exact sequence.

Notice that if I ⊆ Ann(I) then the A-module I is also a B-module. By
composition we have a canonical injection Der(B, I) ⊆ Der(A, I) identifiying
derivations from B to I with derivations from A to I which vanish on I ⊂ A.

Proposition 2. Asume I ⊆ Ann(I). The affine sequence associated to
I is exact on the left if and only if Der(B, I) = Der(A, I).

Proof. Assuming that the affine sequence is exact on the left, consider
the sequence of Lie algebras induced by the sequence of algebraic groups
associated to I. The Lie algebra of K(I) is, by the definition of K(I), the
space of derivations from A to I which vanish on I. Thus, it is identified
with Der(B, I). On the other hand, the kernel of the Lie algebra morphism
induced by φ∗ is Der(A, I). If the affine sequence is exact on the left, then
the Lie algebra of K(I) coincides with this last space, and Der(B, I) =
Der(B,A).

Conversely, assume that Der(A, I) = Der(B, I), i.e. all derivations from
A to I vanish on I. Let σ be an automorphism of A. The difference IdA− σ
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is a derivation from A to I. It vanishes on I, and thus for any a ∈ I we have
σ(a) = a, and then σ induces the identity in I, i.e. σ ∈ K(I).

Theorem 8. If I ⊆ Ann(A)∩m2
A and the affine sequence is exact , then

φ∗ is endowed with a natural structure of affine bundle associated with the
space Der(A, I) with the following addition law :

σ ⊕D = σ + σ ◦D.

Proof. Let D be a derivation from A to I. Then IdA + D is an au-
tomorphism of A. Conversely, let σ be an automorphism of A such that
φ∗(σ) = IdB. Then σ − IdA is a derivation with values in I. We have

Der(A, I) = ker(φ∗).

By definition of the addition law we have σ ⊕ D = σ(Id + D), so that
σ ⊕Der(A, I) = σ ◦ ker(φ∗). Finally, let us see that the addition law of the
bundle is compatible with the vector space structure of Der(A, I), i.e.

(σ ⊕D)⊕D′ = σ ⊕ (D +D′).

Indeed, from Proposition 2 we have

σ ⊕D ⊕D′ = σ + σ ◦D(σ + σ ◦D) ◦D′ = σ ⊕ (D +D′) + σ ◦D ◦D′,
and because each derivation vanishes on I we see that D ◦D′ vanishes.

Lemma 7. If I ⊆ (Ann(I))2 then the affine sequence associated to I is
exact on the left.

Proof. Consider a derivation D : A → I, and a in I; thus a is also in
(Ann(I))2 and so we can write a =

∑
bkck for suitable bk and ck in Ann(I).

We have
D(a) =

∑
k

bkD(ck) + ckD(bk) = 0.

Thus, D annihilates I. We conclude that Der(A, I) = Der(B, I). Our asser-
tion now follows directly from Proposition 2.

Corollary 5. If the natural numbers l > r > 0 satisfy 3r+1 ≥ 2l then
the natural projection Glm → Grm is an affine bundle.

Proof. In general Glm→Gkm is a surjective morphism. We apply Lemma 7
to the case A = Rl

m, I = mk+1
A . Then Ann(I) = ml−k

A , and we have mk+1
A ⊆

(Ann(mk+1
A ))2 if and only if k + 1 ≥ 2(l − k).

3.3. Affine structure on jet bundles. Let I ⊂ A be an invariant ideal
with I ⊆ Ann(I)∩m2

A and denote by B the quotient algebra A/I as above.
For each p ∈ JAM denote by πp : C∞(M) → Ap the canonical projection,
and set p = φJ(p) ∈ JBM . Then Ap ' p and p/p ' I. For each D ∈
Der(C∞(M), p/p) define
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(4) p +D = ker(πp +D).

Because I ⊆ Ann(I) we see that πp +D is an Ap-point. It is regular because
I ⊆ m2

A. Hence, p +D is an A-jet. We also have φJ(p +D) = p, because D
takes values in p/p.

Lemma 8. Each derivation D : C∞(M)→ p/p which vanishes on p also
vanishes on p if and only if the affine sequence associated to I is exact on
the left.

Proof. A derivation C∞(M)→p/p which annihilates p factorizes through
a derivation Ap → p/p. Then the claim is equivalent to Lemma 2.

Theorem 9. The addition law (4) defines an affine structure on the
bundle φJ : JAM → JBM for any smooth manifold M if and only if the
affine squence associated to I is exact.

Proof. A derivation D : C∞(M) → p/p defines a tangent vector [D] ∈
Tp(JAM) as shown in Theorem 6. Moreover, [D] ∈ TV φJ

p JAM , because D
takes values in p/p. Let us prove that the following conditions, which are
equivalent to the assertion of the theorem, hold if and only if the affine
sequence associated to I is exact.

(i) If two derivations D and D′ from C∞(M) to Ap define the same
tangent vector at p then p +D = p +D′.

(ii) The natural projection Der(C∞(M), p/p)→ TV φJ

p (JAM) is surjec-
tive.

(iii) For each q ⊂ p there is a unique [D] ∈ TV φJ

p (JAM) such that
p + [D] = q.

(iv) For each A-jet q contained in the B-jet p there is a canonical iso-
morphism TV φJ

p (JAM) ' TV φJ
q (JAM).

• Condition (i) holds if and only if the affine sequence is exact on the
left.

Let D and D′ define the same tangent vector [D] ∈ TV φJ

p (JAM). Then
the difference δ = D − D′ vanishes on p. By Lemma 8, each derivation
vanishing on p also vanishes on p if and only if the affine sequence associated
to I is exact on the left. In the case of exact affine sequence we have

ker(πp +D) = ker(πp +D′).

• If the affine sequence is exact on the right then condition (ii) holds.

This is an application of the classical Snake Lemma. We have a natural
diagram of exact columns and arrows:
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0

��

0

��

0

��
0 // Der(Ap, p/p) //

��

Der(Ap, Ap)
ψ //

��

Der(Ap, Ap)

��
0 // Der(C∞(M), p/p) //

ψ

��

Der(C∞(M), Ap) //

��

Der(C∞(M), Ap) //

��

0

0 // TV φJ

p (JAM) // Tp(JAM) //

��

Tp(JBM) //

��

0

0 0

According to the Snake Lemma, if coker(ψ) vanishes then we have an
exact sequence

· · · → 0→ coker(ψ)→ 0→ · · ·

and vice versa. Hence, coker(ψ) vanishes if and only if coker(ψ) vanishes.
Note that the natural mapping ψ is the linearization of the algebraic group
morphism Aut(Ap)→ Aut(Ap). Since Ap ' A and Ap ' B we conclude that
if the affine sequence associated to I is exact on the right then (ii) holds.

• Condition (iii) holds if and only if the affine sequence associated to I
is exact on the right.

Let us consider any other A-jet q ⊂ p and an isomorphism τ : Aq → Ap.
Thus, we have a diagram (not commutative):

C∞(M)
πq //

πq ##G
GGGGGGGG
Ap

πp

  @
@@

@@
@@

@

Aq
πq

//

τ

OO

Ap

Let us prove the following assertion: for each q as above we can find
an isomorphism τ such that πp ◦ τ = πq if and only if the affine sequence
associated to I is exact on the right. First, assume that the affine sequence is
exact on the right. Let pA and qA be A-jets representing p and q respectively.
The B-points φ̌(pA) and φ̌(qA) represent the same B-jet p. Hence, φ̌(pA)
and φ̌(qA) are related by an automorphism τ1 of B. If the affine sequence
associated to I is exact on the right, then Aut(B) is a quotient of Aut(A).
Hence, τ1 lifts to an automorphism τ2 of A. This automorphism induces the
isomorphism τ when we substitute A for Ap and Aq. Conversely, if the affine
sequence is not exact on the right, we can choose q and A-points pA and qA



304 D. BLÁZQUEZ-SANZ

such that φ̌(pA) and φ̌(pB) are related by an automorphism which cannot
be lifted to A. In that case, we cannot find such an isomorphism τ .

Now, suppose that the affine sequence is exact on the right and let τ be
as above. Then πp and τ ◦ πp are regular Ap-points that project onto the
same Ap-point. Then D = πp−τ ◦πτq is a derivation of C∞(M) and it takes

values in p/p. It defines a vertical vector [D] ∈ TV φJ

p (JAM) and it follows
that

p + [D] = q.

• If the affine sequence is exact then condition (iv) holds.

If the affine sequence is exact, we can find τ and τ : Aq → Ap as above.
Then σ = τ ◦ τ is an automorphism of Ap which induces the identity on Ap.
Since the affine sequence is exact on the right, σ induces the identity map
on p/p. It follows that the restriction of τ to p/q is canonical and does not
depend on τ . This canonical identification τ : p/q → p/p induces canonical
isomorphisms

Der(Ap, p/q) //

��

Der(C∞(M), p/q) //

��

TV φJ
q (JAM)

τ∗

��
Der(Ap, p/p) // Der(C∞(M), p/p) // TV φJ

p (JAM)

Thus, condition (iv) is satisfied.

If the affine sequence is exact then the vector space TV φJ

p (JAM) depends
only on the base B-jet p. Those spaces define a vector bundle TV φJ (JBM)
→ JBM , and the composition law

JAM ×JBM TV φJ (JBM)→ JAM, (p + [D]) 7→ p + [D],

is an affine structure on the bundle φJ .

Corollary 6. Let Al be of height l, and l > k > 0. The natural projec-
tion JAlM → JAkM is endowed with a canonical structure of affine bundle
if and only if 3k + 1 ≥ 2l and Aut(Al)→ Aut(Ak) is surjective.

Corollary 7. The natural projection J lmM → JrmM for l > r > 0 is
endowed with a canonical structure of affine bundle if and only if 3r + 1
≥ 2l.

Remark 2. Those results extend the well known affine structure of the
spaces of jets of sections. First, they show that this structure arises not only
for the projection J lm → J l−1

m , but also for projections between jet spaces of
orders satisfying an unexpected condition, different from that of duplicating
orders. Second, this affine structure is inherent to the spaces J lmM as spaces
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of ideals, it does not depend on their realization as spaces of sections of fibre
bundles.
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