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Abstract. We prove criteria for relative compactness in the space of set-valued mea-
sures whose values are compact convex sets in a Banach space, and we generalize to
set-valued measures the famous theorem of Dieudonné on convergence of real non-negative
regular measures.

Introduction. We expand and complete the two results presented in
[9, Theorem 9] and [10, Theorem 4]. Let T be an abstract set, let B be a
o-field of subsets of T', and let K be a family of subsets of T' closed under
finite unions and finite intersections. Let M, (T, K, ck(FE)) be the set of all
positive JC-inner regular set-valued measures defined on B with values in
ck(F) where ck(F) is the set of all compact convex non-empty subsets of
a Banach space E. We consider on ck(F) the Hausdorff distance and on
]\7+ (T, K, ck(E)) the s-topology, that is, the weakest topology for which all
mappings M — M(A), A € B, are continuous. We prove criteria of com-
pactness of subsets of M+(T,IC, ck(E)) (Theorems 1-3) and we generalize
to set-valued measures (Theorem 4) the famous theorem of Dieudonné [4,
Proposition 8] on convergence of real non-negative regular measures. Theo-
rems 2 and 3 are known for real non-negative measures (see e.g. [12]). This
paper is a continuation of [11].

1. Notations and preliminaries. Throughout this paper, T' denotes
an abstract set, and G and K denote families of subsets of T. We let B denote
the smallest o-field containing every set A C T for which K N A € K for all
K € K. The family K is said to be semicompact if every countable family of
sets in IC with the finite intersection property has a non-empty intersection.
We shall say that G separates the sets in K if for any pair K, K’ of disjoint
sets in KC we can find a pair G, G’ of disjoint sets in G such that K C G and
K' cd@.
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A set F of subsets of T'is filtering to the leftif for all F € F and F' € F
there exists Fy € F such that Fy C FNF'. We write F | Fy if F is filtering
to the left and Fy = {F; F € F}.

1.1. Nets on T. Let X be a non-empty subset of T' and (x;);er be a net
on T. We say that x; € X eventually if there exists ¢ € I such that x; € X
for every j € I with j > i. A net (x;);cr on T is universal if, for every subset
X C T, either x; € X eventually or x; € T'\ X eventually.

Note that a net corresponding to an ultrafilter is universal. Conversely,
the filter corresponding to a universal net is an ultrafilter. Every net has a
universal subnet. For a more detailed account of nets we refer to [7]. Let
T’ be a Hausdorff topological space. A subset X of T” is called net-compact
if every net on X has a convergent subnet, i.e. if every universal net on
X converges. In case T” is a regular topological space, a subset X of T” is
net-compact if and only if X is relatively compact.

1.2. Set-valued measures. Let E be a Banach space and E’ its dual
space. We denote by | - | the norm on E and E’. The closed unit ball of E,
denoted by B’(0,1),is {y; y € E', |y| < 1}. If F and G are two subsets of E,
we shall denote by F' + G the family of all elements of the form x + y with
x € Fand y € G, and by F'+ G the closure of F'+G. The closed convex hull
of F is denoted by @ F. The support function of F' is the function §*(:|F)
from E’ to [—o00, +00] defined by

6" (y|F) = sup{y(x); = € F'}.

We denote by cf(E) the set of all closed convex non-empty subsets of E,
and by ck(E) the set of all compact convex non-empty subsets of E. We
endow ck(E) with the Hausdorff distance, denoted by . Recall that for C
and C’ in ck(E), §(C, C") = sup{|0*(y|C) — 6*(y|C")|; y € B'(0,1)} and that
(ck(E),d) is a complete metric space [2].

DEFINITION 1. Let A be a set of subsets of T. Assume that () € A and
that A is closed under finite unions and finite intersections. Let M be a map
from A to c¢f(E). Then M is

(a) additive if for any disjoint sets A, B in A we have M(AUB) =
M(A) + M(B); that is, M(A) = closure{a + b;a € M(A),
be M(B)}:

) monotone if A C B implies M(A) C M(B), and M () = {0};
(c) subadditive if M(AU B) C M(A)+ M(B) for all A, B in A;

) positive if M(0) = {0} and if {0} C M(A) for all A € A,;

) o-smooth with respect to K if M is monotone and for all countable
subsets K* of K the conditions K* | Ag and Ay € A imply M (Ap) =

({M(A); 3K € K*,AD K}.
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If we only require the last relation to hold when Ay = (), then we
shall say that M is o-smooth at () with respect to K. In the case of a

real non-negative measure p the previous equality is replaced by u(Ag) =
inf{u(A); 3K € £*, AD K}.

DEFINITION 2. Let M be a map from B to cf(E). We say that M is a weak
set-valued measure if for every y € E’ the map 6*(y|M(-)) : B — ]—00, +o0]
is a o-additive measure.

Note that if M maps into ck(E) this condition is equivalent to the
following: for any sequence (A,) of pairwise disjoint sets in B of union
A the series ) M(A,) is convergent and M(A) = > M(A,); that is,
M(A) = limp o0 > p_g M(Ax) where the limit is taken with respect to the
Hausdorff topology [3]. A weak set-valued measure from B to ck(E) will be
called a set-valued measure.

DEFINITION 3. A positive weak set-valued measure M : B — cf(E) is

said to be inner regular with respect to K or K-inner regular if M(A) =
coU{M(K); K CA, K € K} for any A € B.

In the case of a real non-negative measure u defined on B this equality
is replaced by u(A) = sup{u(K); K C A, K € K}.

Note that a positive additive map M : B — cf(FE) is monotone. Indeed,
let A and B be elements of B such that A C B. Then M(B) = M(A) +
M(B\ A) and for all z € M(A), v =2+ 0 € M(B) where 0 € M(B \ A).
Hence M(A) C M(B).

1.3. Topologies on ]\7+(T, ck(E)). We denote by M+(T, ck(E)) [resp.
M, (T, K, ck(E))] the set of all positive [resp. positive K-inner regular] set-
valued measures defined on B. In the case of real non-negative measures we
shall use the notations My (T"), M4 (T, K) respectively.

DEFINITION 4. The narrow topology on ]\7+(T, ck(FE)) is the weakest
topology on M, (T, ck(E)) for which the map M+— M(T) is continuous and
the maps M~ §*(y|M(G)) are lower semicontinuous for all G € G and
yeFlE.

Let (M;)ic; be a net on M (T,ck(E)) and M € M, (T,ck(E)). Then
(M;) converges narrowly to M, i.e. converges in the narrow topology, if and
only if (M;(T)) converges to M(T) in ck(F) and liminf; 6*(y|M;(G)) >
*(y|M(G)) for all y € E' and G € G.

The narrow topology on M, (T) is the weakest topology on M, (T) for
which the map p — p(7) is continuous and the maps p — u(G) are lower
semicontinuous for all G € G.
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DEFINITION 5. The s-topology on M;(T, ck(E)) is the weakest topology
on M, (T,ck(E)) for which all maps M — M(A), A € B, are continuous.

M, (T, ck(E)) endowed with this topology is a Hausdorff space. The s-
topology is a uniform topology. The uniformity is generated by the family
of pseudo-metrics (ha)aep where ha(M,M') = §(M(A), M'(A)) for all M
and M’ in M, (T, ck(E)).

The s-topology on M, (T) is defined analogously. M. (T, KC, ck(E)) [resp.
M (T,K)] will be endowed with the relative topology generated by the
topology considered on M (T, ck(E)) [resp. M, (T)].

Let Ky € ck(F) with 0 € Ky, and let p € M, (T, K). Denote by u ® Ky
the set-valued measure defined by p ® Ko(A) = u(A)Kyp for all A € B.
Consider M, (T,K) [resp. M, (T, KC,ck(E))] with the s-topology. By iden-
tifying My (T,K) with the closed subspace {u ® Ko; p € M (T,K)} of
M+(T,K,Ck(E)), the results of Topsge ([12, Lemma 4, p. 208; Theorem 8,
p. 209; Corollary 3, p. 211]) may be regarded as particular cases of our
Theorems 2-4.

2. Preliminary results. Consider now the following axioms on G and K.
These are the same as those of Topsge [12].

(I) K is closed under finite unions and countable intersections and
0e k.
(IT) G is closed under finite unions and finite intersections and ) € G.
(IIlI) K\Ge K forall K € K and G €G.
(IV) G separates the sets in K.
(V) K is semicompact.

Note that axioms (I) and (IV) imply that “G dominates K”: for every
K € K there exists G € G such that G D K. In the following, sets denoted
by the letters K, G, A are elements of I, G and B, respectively.

LEMMA 1. Let T be an abstract set, and let G and K be sets of subsets
of T. Assume that azioms (1)—(IV) are satisfied, and consider a finite non-
negative JC-inner reqular measure p defined on B. Then

pw(K) =inf{u(G); G D K, Ge G} forall K € K.

Proof. Let K € K. We have u(K) = w(T) — (T \ K) = w(T) —
sup{u(K'); K" € T\ K, K' € K}. For a given ¢ > 0 choose K. such
that —p(T \ K) > —u(K.) —e. Since G separates the sets in K we may
find a pair G,G’ of disjoint sets in G such that G D K and G’ D K.. We
have u(T) > pn(GUG") = u(G) + u(G”). On the other hand, —u(7T \ K) >
—u(G") —e. Hence pu(K) = p(T) — w(T \ K) > u(G) —e. It follows that
p(K) > inf{u(G); G 2 K, G € G}. The converse inequality is obvious.
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LEMMA 2. Let T be an abstract set, and let G and IC be sets of subsets
of T. Assume that azioms (I)—(IV) are satisfied, and consider a positive
KC-inner reqular set-valued measure M defined on B. Then

:ﬂ{M(G); GeG, GDOK} foradl K eK.

Proof. Let y € E'. By applying Lemma 1 to the measure 6*(y|M(-))
we have 0*(y|M(K)) = inf{6*(y|M(G)); G € G, G D K} for all K € K.
By [11, Lemmas 2-3], §*(y|M(K)) = 6" (y| Ngox M(G)). Hence M(K) =
({M(G); G 2 K, G € G} ([11, Lemmas, 1-2]).

LEMMA 3. Let p € My (T,K) let (u)ier be a net on M4 (T, K), and let

(Gk)ren be a sequence of pairwise disjoint sets in G such that lim; p;(Gy) =
1(Gr) for every k and lim; p;(U; G;) = u(U; Gj). Then

lignz |1i(Gr) — u(G)| = 0.
k=0

Proof. Fix € > 0. Choose p € N such that 7, u(Gy) < £/3. Since
lim; 11;(Gr) = p(Gy) for each k € N and lim; p1;(J; Gx) = n(U,, Gi) there is
19 such that for all ¢ € I and 7 > 1,

5 (Ge) — WGl <23 and | S (o) — (G| < /3.
Thenkzo -
> mlGh) = io (Gr) = 1G] - Zz_é[uxak) ~ MG+ 3G
< | S0 — iG] + 3 G — (G| + 3 (G
< ;;Z e/3+¢/3=c. - -
Therefore

- 117-

i (Gr) — (G| + Z 1i(Gr) — (G|

D |1i(Gr) — (G|
k=0

k>p+1
< pi(Gr) = (Gl + > pi(Gr)+ Y u(Gr)
k=0 k>p+1 k>p+1

<e/3+e+¢e/3<2e.

LEMMA 4. Consider on M, (T,K,ck(E)) the narrow topology. Let H
be a subset of My(T,IC,ck(E)) such that {M(G); M € H} is relatively
compact in ck(E) for every G € G. If H is net-compact, then so is 6(H) =
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{6*(y|M(-)); M € Hyy € E', |ly| < 1} in the space M (T,K) endowed with
the narrow topology.

Proof. Let (6*(yi|Mi(+)))icr be a net on §(H). By assumption the net
(M;) has a subnet which converges to M € M, (T, K, ck(E)). The closed
unit ball B’(0,1) is a compact subset of E’ endowed with the weak topology
o(E', E). Hence the net (y;) has a subnet which converges toy € B’(0,1). We
may assume that these subnets have the same indices. Assume for simplicity
that the nets (M;) and (y;) converge to M and y respectively. Consider now a
universal subnet (M;, ) of (M;). We will prove that (6*(y;, |M;, (+))) converges
narrowly to 6*(y|M(-)). We have

107 (i | M3, (T) — 6" (y|M(T))| < |st1(\5*(y\Mik(T)) — 6" (y|M(T))])
yl<

+10%(yir [ M(T)) = 67 (y|M(T))].

Since (M;, ) converges narrowly to M, the subnet (M; (T')) converges to
M(T) in ck(E). On the other hand, (6*(y;,|M (1)) ) converges to 6*(y|M (T'))
because the map 6*(-|M(T')) : B'(0,1) — R is continuous for the restriction
of o(E',E) to B'(0,1). Hence it follows from the previous inequality that
(0* (i), | M;, (T'))) converges to 0*(y|M(T')). Let G € G; since {M(G); M e H}
is relatively compact, the universal subnet (M, (G)) converges to an ele-
ment C' of ck(F). Using once again the previous arguments we infer that
(0* (i, | M;, (G))) converges to 6*(y|C). Since (M;, ) converges narrowly to
M and (M;, (G)) converges to C' we then have liminfy §*(y|M;, (G)) >
0*(y|M (G)) and limg, 6* (y;, | M;, (G)) = 6" (y|C). Hence lim infy, 6*(y;, | M, (G))
> 0*(y|M(G)). This ends the proof.

LEMMA 5. Let E be a Banach space, let T' be an abstract set, and let G
and IC be sets of subsets of T. Assume that G and KC satisfy axioms (I)—(V).
Let H be a subset of M, (T, K, ck(E)) such that for any sequence (Gn)n>1
of pairwise disjoint sets in G we have limy, o, M (G,) = {0} uniformly with
respect to M € H. Then

VK €K inf sup{d"(y|M(G\ K)); M € H,y € E, [y] <1} = 0.

Proof. Assume that there exist Ky € K and € > 0 such that for every
G € G with G D Ky we may find Mg € H and yg € B'(0,1) which
satisfy 0*(ya|Ma(G\ Ky)) > €. We will construct by induction a decreasing
sequence (G,,), a sequence (G}, of pairwise disjoint sets, a sequence (M,,) in
H, and a sequence (y,,) in B’(0,1) such that for all n > 1 we have Ky C Gy,
G, C Gp \ Gpi1, 0% (yn| My (G \ Ko)) > € and 6*(yn| M, (G),)) > €. This last
inequality contradicts the condition lim, .., M(G)) = {0} uniformly with
respect to M € H.
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Assume that the construction is made up to rank n. Choose Gn11 D
Ky (G4 exists since G dominates K), M,,+1 € H, and y,+1 € B'(0,1)
such that 0*(yp+1|Mn+1(Gny1 \ Ko)) > €. Since M,y is K-inner regu-
lar, so is 0*(yn+1|Mn+1(-)). Hence there exists Kp41 C Gpt1 \ Ko with
O (Yn41|Mny1(Kpy1)) > €. By axiom (IV) there exist Gpyo and GJ,
such that Ko C Gpny2, Knp1 C G) 4y and G2 NG, = (. Clearly
we may assume that Gpyo C Gpp1 and G C Gpyr \ Gpgz. We have
0" (Yn+1|Mn41(Grpq)) > €.

PROPOSITION 1. Let T be an abstract set, and let K and G be sets of
subsets of T. Assume that azioms (I)-(V) hold, and consider the space
M (T,K) with the s-topology. Let H be a subset of M, (T,K) such that
sup{m(T); m € H} <oo. Then the following four conditions are equivalent:

(1) H is relatively compact.
(2) (i) VK € K infgok sup,,eg m(G\ K) =0,
(ii) VA € Binfgcasup,,egm(A\ K) =0.
(3) (i) VK € K infgox sup,,eg m(G\ K) =0,
(ii) infgex sup,egm(T \ K) = 0.
(4) (i) VK € K infgok sup,,eg m(G\ K) =0,
(i)
Proof. The proposition results from [12, Theorem 7, p. 207]. Indeed, we
consider the net on M, (T,K) defined by the identity map id : H — H
where the domain of id is given the “diffuse” ordering: m < m' for any pair

of measures in H. (It is the reasoning that is used in [12] for the proof of
Corollary 2, pp. 203-204.)

H is net-compact in the narrow topology.

3. Main results

THEOREM 1 ([9]). Let E be a Banach space, let T be an abstract set, and
let G and K be sets of subsets of T. Assume that axioms (I1)—(V) hold. Con-
sider the space M (T, K, ck(E)) of positive K-inner reqular set-valued mea-
sures defined on B with the s-topology. Then a subset H C M+(T, K, ck(E))
1s relatively compact if and only if the following conditions are satisfied.

(i) 6(H) ={6*(y|M(-)); M € H,y € FE', |y| < 1} is relatively compact in
the space M (T, K) endowed with the s-topology.

(ii) {M(T); M € H} and {M(G); M € H} for any G € G are relatively
compact in the space ck(E).

Proof. Assume that H is relatively compact. Since the maps M

M(A), A € B, are continuous on M (T, K, ck(FE)), (ii) is satisfied. Con-
sider the closed unit ball B'(0,1) = {y; y € F’, |y| < 1} of the dual space
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E' of E with the relative topology defined by the weak topology o(F’, E)
of E', and consider B'(0,1) x M4 (T,K,ck(FE)) with its product topology.
For any K € ck(FE) the map 6*(-|K) : B'(0,1)— R is continuous. For all

AeB, MM € M, (T,K,ck(E)) and y,y’ € E' we have

|07 (y| M (A)) — 5 (y'|M'(A))] < sup 167 (y| M (A)) — 6" (y|M'(A))]

+107(yIM'(A)) = 6™ (y'[M'(A))].

It follows that the map 0 : B'(0,1) x My (T, K,ck(E)) — M4 (T,K), (y, M)
— O(y, M) = §*(y|M(-)), is continuous. Denote by H the closure of H.
Then B’(0,1) x H is a compact subset of the product space B’(0,1) x
M, (T, K,ck(E)). We have §(H) C 6(B'(0,1) x H), hence §(H) is a rela-
tively compact subset of M (T, K).

Let us now prove the sufficiency. Assume that (i) and (ii) hold. To show

that H is a relatively compact subset of M (T, KC, ck(E)) it suffices to prove
that every universal net on H is convergent. Let (M;);c; be a universal
net on H. According to (ii) the universal nets (M;(7")) and (M;(G)) are

convergent in ck(E). Put N(G) = lim; M;(G) for all G € G, and M(A) =
0 UgcaNeox N(G) for all A € B. 1t is clear that N(G) C lim; M;(T') for
all G € G, and M(A) € ck(E).
By [11, Theorem 2|, the map M : B — ck(E) is in M4 (T, KC,ck(E)). For
all y € E' we have
5 (y|M(A)) = inf §*(y|N
(y|M(A)) sup nf (yIN(G))

([11, Lemma 1-3]) and 6*(y|N(G)) = lim; 6*(y|M;(G)). By (i) the universal
net (0*(y|M;(+)))icr on 6(H) is convergent in the space M, (T, ). Denote
by m,, its limit. For all A € B, lim; §*(y|M;(A)) = my(A), and for all K € K,
5 INI()) = inf T (4] M3(G)
= dnf {lim & (y[M;(K)) + lim " (y| M (G \ K))}
— lim & ([ M(K))  (Prop. 1(2)(0).
For any A € B we have

0" (UIM(A)) = sup 8" (y|M(K)) = sup lim &" (4l Mi(K)) = sup my(K)

= 1y (4) = lim & (4 Mi(4)).

We have just proved that lim; 6*(y|M;(A)) = 6*(y|M(A)) for all A € B
and y € B'(0,1). To finish the proof it suffices to show that for every
A € B, (M;(A)) is convergent in ck(E). Since ck(F) is a complete met-
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ric space it suffices to prove that (M;(A)) is a Cauchy net. If this were
not so, there would exist By € B and ¢y > 0 such that for every ¢ € I
we would be able to find k;,j; € I with k;,j; > i and y; € B'(0,1)
such that |0*(y;| My, (Bo)) — 0*(yi|Mj,(Bo))| > eo. Consider now the nets
(0% (yi| M, (+))ier and (6™ (yi|M;,(+))ier. According to (i) each of them admits
a convergent subnet. We may choose the subnets with the same indices. As-
sume for simplicity that the nets (6* (y;| My, (-))) and (6*(y;|M;,(+))) converge
to u and y respectively. Since for every G € G the universal net (M;(G)) is
convergent in ck(E), one has

lim o 0% (y|Mi; (G)) — 6% (y| M, (G))| = 0.
Y=

On the other hand,
107 (sl My, (G)) — 0" (ys| Mj;,(G))| < sup |67 (y| My, (G)) — 6" (y| M, (G))].

ly|<1
Then

W(G) = lim 6* (y;| My, (G)) = lim 6" (y;|M;,(G)) = 1/(G)  for all G € G.

Hence p(K) = (/(K) for all K € K (Lemma 1). Since g and g/ are K-inner
regular we conclude that g = ' and that there exists i € I such that
|0% (yi| M, (Bo)) — 0*(vi| M;,(Bo))| < e0/2 for all i € I with i > ig. That is a
contradiction.

THEOREM 2 ([10]). Let E be a Banach space, let T be an abstract set,
and let G and KC be sets of subsets of T'. Assume that G and KC satisfy axioms
(D)—(V) and consider the space M (T, IKC,ck(E)) with the s-topology. Then a
subset H of M, (T, K, ck(E)) is relatively compact if and only if the following
three conditions hold:

(i) H is net-compact in the narrow topology,
(ii) {M(G); M € H} for all G € G and {M(T); M € H} are relatively
compact in ck(E).
(iii) For any sequence (Gp)n>1 of pairwise disjoint sets in G we have
lim,, oo M(Gy) = {0} uniformly with respect to M in H.

Proof. Assume that H is relatively compact. Then (i) is obvious. Since
for each A € B the map M — M(A) from ]\7+(T,IC,ck(E)) to ck(E) is
continuous, (ii) holds. If (iii) did not hold we would be able to find a sequence
(Gn)n>1 of pairwise disjoint sets, an € > 0, a sequence (M,,) of set-valued
measures in H, and a sequence (yy,,) in B’(0, 1) such that §*(y,|M,(G,)) > ¢
for all n > 1. Put p, = 0*(yn|M,(+)) for all n > 1. By Theorem 1, §(H) =
{6*(y|M(-)); M € H,y € F', l[y| < 1} is a relatively compact subset of
M (T,K) in the s-topology. Then the sequence (u,) has a cluster point u.
Hence there exists a subnet () of (14,,) which converges to p. In particular,
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(tn,(Gk)) converges to u(Gy) for all k& > 1, and (u,(U; G;)) converges
to u(U; Gj). By Lemma 3, 3772, |pn, (G) — u(Gk)| — 0. Choose ko such
that u(Gr) < ¢/2 for all k > ko and choose ¢ such that n; > ko and
> i |1n (Gr) — (G| < €/2. We have

tin; (Grn;) < |pin (Gr,) = (G, [+ (G Z‘Nm Gr) = (Gr)|+p(Gn,) <e.
k=1

That is a contradiction.

Let us now prove that H is relatively compact if (i)—(iii) hold. Accord-
ing to Theorem 1 it suffices to prove that §(H) = {0*(y|M(-)); M € H,
y € F', ly| < 1} is relatively compact in M, (T, K) endowed with the s-
topology. Since {M(T'); M € H} is relatively compact, | J{M(T'); M € H}
is a bounded subset in E. Hence sup{0*(y|M(T)); M € H,y € E', |y| <1}
< 0. By Proposition 1 and Lemmas 4-5, §(H) is relatively compact.

This proof is an adaptation of that of Topsge ([12, Lemma 4, pp. 208
209]).

THEOREM 3. Let E be a Banach space, let T be an abstract set, and
let G and K be sets of subsets of T. Assume that G and K satisfy axioms
(I)-(V) and the condition

(C) forall K € K and G € G,
KCG = 3G',G" such that K CG' CT\G" CG.

Consider the space M+(T,IC,ck(E)) with the s-topology. Then a subset H
of My (T,K,ck(E)) is relatively compact if and only if the following two
conditions are satisfied:

(i) ForallG € G, {M(G); M € H} is relatively compact in ck(E).

(ii) For any sequence (Gp)n>1 of pairwise disjoint sets in G we have

lim,, 0o M(Gy) = {0} uniformly with respect to M in H.

Proof. Condition (C) implies that T' € G. We only have to prove that H
is net-compact in the narrow topology, i.e. every universal net (M;);er on H
converges narrowly in M (T, /C,ck(E)) if (i) and (ii) hold. Assume that (i)
and (ii) hold. Then for each G € G the universal net (M;(G)) converges in
ck(E). Consider the map N from G to ck(E) defined by N(G) = lim; M;(G),
and the map M : B — ck(E) defined by

A)=e | (| NG), AeB
KCAGDK

The map M is an element of M, (T, K, ck(E)) ([11, Theorem 2]). Let us prove
that (M;) converges narrowly to M. It is obvious that liminf; 0*(y|M;(G)) >
0*(y|M(QG)) for all y € E' and all G € G. To finish the proof we have to
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show that lim; M;(T) = M(T) Since (M;(T)) is convergent in ck(E) we
need only prove that lim; 0*(y|M;(T")) = 0*(y|M(T)) for all y € B’(O, 1), i.e
Vy € B'(0,1) énf sup hmd*(y|M (T\QG)) =
ek

([11, Lemmas 1-3]). If this were not so, we would be able to find € > 0 and
y € B’(0,1) such that for every K € K there exist Gx € G with G 2 K
and Mx € H such that §*(y|Mg(T \ Gk)) > . We can then construct
by induction a sequence (Kj,)n>0 of sets in K, two sequences (G,),>1 and
(GI)p>1 of sets in G, and a sequence (M,,)n>1 of elements in H such that
the following conditions hold:

(a) The sets K, are parwise disjoint.

) 0*(y|M,(Ky)) > e foralln > 1.

) Gi, D K, foralln > 1.

) GI'D U?:_OI K; for all n > 1.

(e) Gi,NGI =10 for all n > 1.

(f) suppren 6 (yIM(T \ (G2 U K,)) < e/2"F! for all n > 1.

The construction is identical with that of Topsge ([12, Theorem 8, p. 209)).
Lemma 4 in [12] should be replaced by our Lemma 5. Let (O,) be the
sequence defined by O = G} and O,, = G/,N'=,' G for n>2. Then O,, € G
for all n and O, N O,, = 0 for n < m, because O, N O,, C G, NG = (.
Put p, = 6*(y|My,(-)). For all n > 1, we have

n—1
pin(On) = UH(G — Hn (G/ m G”) n(Kn) — Nn< U (T'\ G;/) N G%))
=1
n—1 00
>~ UT\(GIUK)) 22 =Y (T \ (GYUK)
i=1 =1
>e— ia/?iﬂ =¢e/2.
=1

This contradicts condition (ii) of the theorem.

Note that if 7" is a normal space (resp. locally compact space), if G is
the family of all open subsets of T, and if I is the family of all closed
(resp. compact) subsets of T' then axioms (I)—(V) and condition (C) are
simultaneously satisfied.

The following result is proved for real non-negative measures by Grothen-
dieck ([6, p. 150]), Dieudonné ([4, Proposition 8]), Topsge ([12, Corollary 3])
and by Brooks for vector measures ([1]). The result of Topsge generalizes
those of [6] and [4]. The following result is a generalization of that of Topsge
to set-valued measures.
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THEOREM 4. Let E be a separable Banach space, let T be an abstract
set, and let G and K be sets of subsets of T. Assume that axioms (I)—(V)
and condition (C) from Theorem 3 are satisfied, and that G is closed under

countable unions. Consider M+(T,K,ck(E)) with the s-topology. Then a
sequence (My) in My (T,KC,ck(E)) is convergent if and only if for every
G € G the sequence (M, (Q)) is convergent.

Proof. Assume that (M, (G)) is convergent for all G € G. Put H =
{M,; n € N}. Let us prove that H is relatively compact in M (T, K, ck(E)),
i.e. H satisfies conditions (i) and (ii) of Theorem 3. It is clear that (i) holds. If
(ii) failed we would be able to find an € > 0, a sequence (M;);>1 of set-valued
measures in H, a sequence (G;);>1 of pairwise disjoint sets, and a sequence
(yi)i>1 in B’(0,1) such that 6*(y;|M;(G;)) > ¢ for all i > 1. The closed unit
ball B’(0,1) of E’ is a metrizable compact subset of E’ in the weak topology
o(E', E) ([5, 4.2 and 5.1]). Hence the sequence (y;) admits a convergent sub-
sequence (y;, ). Put y = limy_ v, and N(G) = limy_,o M;, (G). We have
limy 00 0 (yi, | M, (G)) = 6*(y|N(Q)) for all G € G. Put py, = 6*(yi, | M;, ()
for k € N. Let ' be the Banach space of summable scalar sequences un-
der its natural norm. For all u € M, (T,K) let 1z be the element of !
defined by pu(j) = p(G;). For all subsets I of N, limy oo > ,cs fin(p) =
limy o0 p (U Gp) exists because G is closed under countable unions. We
deduce from this that the sequence (fi;)>1 is convergent in the weak topol-
ogy o(I',1°°). Hence the subset {jix; k > 1} is weakly relatively compact.
By [8, pp. 281-282],

lim sup fix(p) = lim sup §*(ys, | M;, (Gp)) = 0.

P—0 keN P00 keN
This contradicts the condition 6*(y;|M;(G;)) > € for all @ > 1. Hence H
is relatively compact in the s-topology. Now let M and M’ be two cluster
points of the sequence (M,)nen. We have M(G) = M'(G) for all G € G.
By Lemma 2 we have M(K) = M'(K) for all K € K. Since M and M’
are IC-inner regular we conclude that M(A) = M'(A) for all A € B. The
sequence (M, )nen has only one cluster point. Since H is relatively compact,
the sequence (M,,) is convergent.
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