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ORBIT ALGEBRAS AND PERIODICITY

BY

PETTER ANDREAS BERGH (Trondheim)

Abstract. Given an object in a category, we study its orbit algebra with respect
to an endofunctor. We show that if the object is periodic, then its orbit algebra modulo
nilpotence is a polynomial ring in one variable. This specializes to a result on Ext-algebras
of periodic modules over Gorenstein algebras. We also obtain a criterion for an algebra to
be of wild representation type.

1. Introduction. Given a suitably nice category and an endofunctor, we
may construct the orbit algebra of a given object (cf. [Len]). These algebras
are well suited for studying various types of periodicity. For example, when
the endofunctor is an equivalence, then we show that, modulo nilpotence,
the orbit algebra of an indecomposable periodic object is the polynomial
ring in one variable. Using this, we generalize [GSS, Proposition 1.3] and
obtain a periodicity result for modules over Gorenstein algebras. Moreover,
we use this theory to study modules over selfinjective algebras, in particular
modules which are periodic with respect to the Auslander–Reiten translate.
Namely, we show that, modulo nilpotence, the Ext-orbit algebra of such a
module with respect to the Nakayama automorphism is the polynomial ring
in one variable. As an application of the latter, we provide a criterion for an
algebra to be of wild representation type.

2. Orbit algebras. Throughout this paper, we let k be an algebraically
closed field and Λ a finite-dimensional k-algebra. We denote by modΛ the
category of finitely generated left Λ-modules. Whenever we deal with Λ-
modules, we assume they belong to modΛ.

Recall that a category C is k-linear if for all objects X,Y, Z ∈ C the set
HomC(X,Y ) is a k-vector space, and the composition

HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z)

is k-bilinear. Furthermore, such a category is Hom-finite if all the morphism
spaces are finite-dimensional over the ground field. Now let C F−→ C be an
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endofunctor. Then we may define a graded algebra

HomC(F ∗(X), X) :=
∞⊕
i=0

HomC(F i(X), X),

with ring structure given as follows: for f ∈ HomC(F i(X), X) and g ∈
HomC(F j(X), X), the product fg is the composition f ◦ F i(g), which is
an element in HomC(F i+j(X), X).

The algebra just defined is the orbit algebra of M with respect to F (cf.
[Len]). As an example, suppose Λ is selfinjective, and denote its enveloping
algebra Λ⊗k Λop by Λe. Furthermore, let mod Λe be the stable module cate-
gory of bimodules, and denote by τΛe the Auslander–Reiten translate of Λe.
The orbit algebra

A(Λ, τΛe) :=
∞⊕
i=0

HomΛe(τ iΛe(Λ), Λ)

is called the Auslander–Reiten orbit algebra of Λ. In [Po1] it was shown that
these algebras are invariant under stable equivalences of Morita type between
symmetric algebras, and this was generalized in [Po2] to arbitrary finite-
dimensional selfinjective algebras. In [Po4] the Auslander–Reiten orbit alge-
bras of a class of finite-dimensional basic connected selfinjective Nakayama
algebras were computed. In particular, it was shown that if Γ is such an alge-
bra over a field K, and τΓ e(Γ ) ' Γ , then there are two possibilities. Namely,
if Γ is a radical square zero algebra then A(Γ, τΓ e) ' K[x], and if not then
there exists a natural number t such that A(Γ, τΓ e) ' K[x, y]/(yt). In [Po3],
τ -periodicity was investigated using similar techniques to those used in [Sc1]
to study syzygy-periodicity.

We end this section with the following result. It shows that if the endo-
functor F is an equivalence andM is “indecomposable” and F -periodic, then
the orbit algebra of M modulo nilpotence is a polynomial ring. The result
and its proof are inspired by [GSS, Proposition 1.3].

Theorem 2.1. Let C be a k-linear Hom-finite category , and let C F−→ C
be an equivalence. Furthermore, let M ∈ C be an object whose endomorphism
ring is local , and suppose Fn(M) 'M for some n ≥ 1, where n is minimal
with this property. Then

HomC(F ∗(M),M)/I ' k[x],

where I is the ideal in HomC(F ∗(M),M) generated by the homogeneous
nilpotent elements, and x is a homogeneous element in degree n.

Proof. Let f ∈ HomC(F u(M),M) be a homogeneous nilpotent element.
We first show that for any homogeneous element g ∈ HomC(F v(M),M),
the products fg and gf are also nilpotent in HomC(F ∗(M),M). Choose
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a positive number p with the property that p(u + v) is a multiple of n.
If the element (fg)p is is an isomorphism, then there is a morphism h ∈
HomC(M,F u(M)) such that f ◦ h is the identity on M . This implies that
the map h◦f is not nilpotent in EndC(F u(M)), and therefore an isomorphism
since this endomorphism ring is local. But then f is an isomorphism, contra-
dicting the assumption that it is nilpotent in HomC(F ∗(M),M). Thus the
element (fg)p cannot be an isomorphism in HomC(F p(u+v)(M),M). Since
HomC(F p(u+v)(M),M) is isomorphic to EndC(M), we see that (fg)p corre-
sponds to an element in the radical of EndC(M), and the same holds for
Fni((fg)p) for any i ≥ 0. However, the radical is nilpotent, hence (fg)p,
and therefore also fg, is nilpotent. A similar argument shows that gf is also
nilpotent in HomC(F ∗(M),M).

Next, let u be a multiple of n, and let f and g be homogeneous nilpotent
elements in HomC(F ∗(M),M) of degree u. We show that f + g is also nilpo-
tent. Both f and g correspond to radical elements of EndC(M), and the same
holds for Fni(f) and Fni(g) for every i ≥ 0. Since the radical of EndC(M)
is nilpotent, we see that f + g must be nilpotent in HomC(F ∗(M),M).

We now show that if u is not a multiple of n, then any element of
HomC(F u(M),M) is nilpotent in HomC(F ∗(M),M). Let f be such an ele-
ment, and choose a number p with the property that pu is a multiple of n.
Using the same arguments as above, we see that the element fp cannot be an
isomorphism, hence it corresponds to a radical element of EndC(M). Again
using arguments as above, we see that fp, and therefore also f , must be
nilpotent in HomC(F ∗(M),M).

Finally, let Fn(M)
f−→ M be an isomorphism, and suppose fu ∈ I

for some u. Then by the first part of the proof, we can write fu = f1 +
· · · + ft, where each fi is an element of HomC(F un(M),M) nilpotent in
HomC(F ∗(M),M). By the second part of the proof, the element fu, and
therefore also f , is nilpotent, an obvious contradiction. Therefore fu does not
belong to I for any u ≥ 0. Since k is algebraically closed, the ring EndC(M)
modulo its radical is just k itself. Therefore, up to scalars, for any i ≥ 0
there is only one non-nilpotent element in HomC(F in(M),M), namely f i.
This shows that HomC(F ∗(M),M)/I is isomorphic to the polynomial ring
k[f ].

3. Applications. As a first application of Theorem 2.1, we generalize
[GSS, Proposition 1.3] on extension algebras of periodic modules. Suppose
the algebra Λ is Gorenstein, that is, the injective dimension of Λ as a module
over itself is finite. Denote by MCM(Λ) the category of maximal Cohen–
Macaulay Λ-modules, i.e.

MCM(Λ) = {M ∈ modΛ | ExtiΛ(M,Λ) = 0 for all i > 0}.
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It follows from general cotilting theory that this is a Frobenius exact category,
in which the projective-injective objects are the projective Λ-modules, and
the injective envelopes are the left (addΛ)-approximations. Therefore the
stable category MCM(Λ), which is obtained by factoring out all morphisms
which factor through projective Λ-modules, is a triangulated category. Its
shift functor is given by cokernels of left (addΛ)-approximations, the inverse
shift is the usual syzygy functor.

Theorem 3.1. Suppose that Λ is Gorenstein, and let M be an indecom-
posable Λ-module such that Ωn

Λ(M) 'M for some n ≥ 1, where n is minimal
with this property. Then

Ext∗Λ(M,M)/I ' k[x],

where I is the ideal in Ext∗Λ(M,M) generated by the homogeneous nilpotent
elements, and x is a homogeneous element of degree n.

Proof. SinceM is periodic, it must be a maximal Cohen–Macaulay mod-
ule. Consider the equivalence ΩΛ on MCM(Λ). It follows from Theorem 2.1
that

HomMCM(Λ)(Ω
∗
Λ(M),M)/J ' k[x],

where J is the ideal in HomMCM(Λ)(Ω∗Λ(M),M) generated by the homo-
geneous nilpotent elements. Now when i is positive, we may identify the
module HomMCM(Λ)(Ωi

Λ(M),M) with ExtiΛ(M,M). Furthermore, modulo
nilpotence the rings EndMCM(Λ)(M) and EndΛ(M) are isomorphic.

Now let Λ be arbitrary. Let modΛ F−→ modΛ be an exact functor such
that F (Λ) is a projective left module (as happens for example when F is an
equivalence). Then F preserves projective modules (cf. [Ber, Section 2]). For
a positive integer t, we then define a graded algebra

Extt∗Λ (F ∗(M),M) :=
∞⊕
i=0

ExttiΛ(F i(M),M),

with ring structure given as follows: for η ∈ ExttuΛ (F u(M),M) and θ ∈
ExttvΛ (F v(M),M), the product ηθ is the Yoneda product η ◦ F u(θ), which
is an element in Extt(u+v)

Λ (F u+v(M),M). This ring structure is well defined
by [Ber, Lemma 2.1], and in the following result we apply Theorem 2.1 to
these algebras.

Theorem 3.2. Suppose that Λ is selfinjective, and let modΛ F−→ modΛ
be an equivalence. Let M be an indecomposable Λ-module, and suppose that
Ωtn
Λ (Fn(M)) ' M for some n ≥ 1, where n is minimal with this property.

Then
Extt∗Λ (F ∗(M),M)/I ' k[x],
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where I is the ideal in Extt∗Λ (F ∗(M),M) generated by the homogeneous nilpo-
tent elements, and x is a homogeneous element of degree tn.

Proof. The proof is analogous to that of Theorem 3.1.

Recall that if Λ is selfinjective, then the Nakayama automorphism N is
the equivalence D ◦ HomΛ(−, Λ), where D is the usual k-dual. The compo-
sition Ω2

Λ ◦ N is isomorphic to the Auslander–Reiten translate τ of Λ (cf.
[ARS, Proposition IV.3.7]). An immediate application of Theorem 3.2 is the
following result on τ -periodic modules.

Corollary 3.3. Suppose that Λ is selfinjective, and let M be an in-
decomposable Λ-module. Suppose τn(M) ' M for some n ≥ 1, where n is
minimal with this property. Then

Ext2∗
Λ (N ∗(M),M)/I ' k[x],

where I is the ideal in Ext2∗
Λ (N ∗(M),M) generated by the homogeneous

nilpotent elements, and x is a homogeneous element of degree 2n.

We now look at orbit algebras of modules whose minimal projective res-
olutions are not “too big". Let M be a Λ-module with minimal projective
resolution

· · · → P2 → P1 → P0 →M → 0,

say. Recall that the complexity of M , denoted cxM , is defined as

cxM := inf{t ∈ N ∪ {0} | ∃a ∈ R such that dimk Pn ≤ ant−1 for n� 0}.
In general, the complexity of a module may be infinite. From the definition,
we see that cxM = 0 if and only if M has finite projective dimension,
and that cxM = 1 precisely when {dimk Pn}∞n=0 is bounded. The following
lemma shows that any equivalence of modΛ preserves the complexity of a
module.

Lemma 3.4. If modΛ F−→ modΛ is an equivalence, then:

(i) cxM = cxF (M) for every M ∈ modΛ,
(ii) if {Mi}∞i=1 is a set of modules such that {dimkMi}∞i=1 is bounded ,

then {dimk F
ti(Mi)}∞i=1 is also bounded , where each ti is an arbitrary

number.

Proof. Since F is an equivalence, it maps a projective resolution of M
to a projective resolution of F (M). Moreover, it maps the minimal projec-
tive resolution PM of M to that of F (M). Namely, if F (PM ) contains a
direct summand of the form Q

id−→ Q, where Q is a projective module, then
F−1(F (PM )) contains F−1(Q) id−→ F−1(Q) as a summand. However, since
F−1(F (PM )) is isomorphic to PM , the projective module F−1(Q) must be
the zero module. Then Q is the zero module, hence F (PM ) contains no
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non-trivial direct summands of the form Q
id−→ Q. This shows that F (PM )

is the minimal projective resolution of F (M), and so cxM = cxF (M). The
second part follows from the fact that F preserves the length of a module.

With the help of this lemma, we obtain the following converse to Theo-
rem 3.2, for modules of complexity one.

Theorem 3.5. Suppose that Λ is selfinjective, and let modΛ F−→ modΛ
be an equivalence. Let M be an indecomposable Λ-module of complexity one.
If

Extt∗Λ (F ∗(M),M)/I

is a polynomial ring in one variable, where I is the ideal in Extt∗Λ (F ∗(M),M)
generated by the homogeneous nilpotent elements, thenM is (Ωt

Λ◦F )-periodic.

Proof. Suppose that Extt∗Λ (F ∗(M),M)/I is a polynomial ring k[x]. Let
η be a homogeneous element in Extt∗Λ (F ∗(M),M) corresponding to x in the

factor algebra, and choose a map Ωtn
Λ (Fn(M))

fη−→ M representing this ele-
ment. Note that by Dickson’s lemma, the module Ωti

Λ(M), and therefore also
Ωti
Λ(F i(M)), is indecomposable for all i. Moreover, since M is of complex-

ity one, it follows from Lemma 3.4 that {dimk Ω
ti
Λ(F i(M))}∞i=1 is bounded.

Therefore, if fη is not an isomorphism, then the Harada–Sai lemma and a
proof analogous to that of [Sc2, Theorem 2] shows that η is nilpotent. This
clearly cannot be the case, hence fη must be an isomorphism.

Using Lemma 3.4, we now show that, under certain conditions, given a
number t and an equivalence F on modΛ, there exists an infinite set {Mi}∞i=1

of modules satisfying the following: the modules are of the same dimension
and pairwise non-isomorphic, and each of them is indecomposable and not
periodic with respect to Ωt

Λ ◦ F .

Theorem 3.6. Suppose that Λ is selfinjective, and let modΛ F−→ modΛ
be an equivalence. Furthermore, suppose there exists an indecomposable Λ-
module M such that :

(i) cxM = 1,
(ii) Extt∗Λ (F ∗(M),M)/I is not a polynomial ring , where I is the ideal

generated by the homogeneous nilpotent elements.

Then M is not periodic with respect to Ωt
Λ ◦F . Moreover , there exists a posi-

tive integer d and infinitely many non-isomorphic indecomposable Λ-modules
of dimension d, none of which are (Ωt

Λ ◦ F )-periodic.

Proof. That M is not (Ωt
Λ ◦ F )-periodic is an immediate consequence

of Theorem 3.2. Now the modules {Ωtn
Λ (Fn(M))}∞n=0 are all pairwise non-

isomorphic, and not (Ωt
Λ ◦F )-periodic. Furthermore, from Lemma 3.4 we see

that {dimk Ω
tn
Λ (Fn(M))}∞n=0 is bounded.
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Applying this theorem to the Nakayama automorphism of a selfinjective
algebra, we obtain the following result, which provides infinitely many mod-
ules of the same dimension, none of which are τ -periodic.

Corollary 3.7. Let Λ be selfinjective, and suppose there exists an in-
decomposable Λ-module M such that :

(i) cxM = 1,
(ii) Ext2∗

Λ (N ∗(M),M)/I is not a polynomial ring , where I is the ideal
generated by the homogeneous nilpotent elements.

Then M is not τ -periodic, and there exists a positive integer d and infinitely
many non-isomorphic indecomposable Λ-modules of dimension d, none of
which are τ -periodic.

Recall that an algebra is of wild representation type if its representation
theory is at least as complicated as the classification of finite-dimensional
vector spaces together with two non-commuting endomorphisms (see [Ben],
[C-B] or [SiS] for a precise definition). We end this paper with the following
application of Corollary 3.7, providing a criterion for an algebra to be of
wild representation type. See also [BGL] for a related result on hereditary
algebras.

Corollary 3.8. Let Λ be selfinjective, and suppose there exists an in-
decomposable Λ-module M such that :

(i) cxM = 1,
(ii) Ext2∗

Λ (N ∗(M),M)/I is not a polynomial ring , where I is the ideal
generated by the homogeneous nilpotent elements.

Then Λ has wild representation type.

Proof. By Corollary 3.7 and [C-B, Theorem D], the algebra is not of
tame representation type, hence it is wild.
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