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Abstract. A zone diagram of order n is a relatively new concept which was first
defined and studied by T. Asano, J. Matoušek and T. Tokuyama. It can be interpreted
as a state of equilibrium between n mutually hostile kingdoms. Formally, it is a fixed
point of a certain mapping. These authors considered the Euclidean plane with finitely
many singleton-sites and proved the existence and uniqueness of zone diagrams there.
In the present paper we generalize this concept in various ways. We consider general
sites in m-spaces (a simple generalization of metric spaces) and prove several existence
and (non)uniqueness results in this setting. In contrast with previous works, our (rather
simple) proofs are based on purely order-theoretic arguments. Many explicit examples are
given, and some of them illustrate new phenomena which occur in the general case. We
also re-interpret zone diagrams as a stable configuration in a certain combinatorial game,
and provide an algorithm for finding this configuration in a particular case.

1. Introduction and notation. A zone diagram of order n is a rela-
tively new concept which can be interpreted as a state of equilibrium between
n mutually hostile kingdoms. More formally, let (X, d) be a metric space,
and suppose P = (Pk)k∈K is a given tuple of nonempty sets in X. A zone
diagram with respect to P is a tuple R = (Rk)k∈K of nonempty sets such
that each Rk is the set of all x ∈ X which are closer to Pk than to

⋃
j 6=k Rj .

In other words, R is a fixed point of a certain mapping (called the Dom
mapping). Neither its existence nor its uniqueness are obvious a priori.

The concept of a zone diagram was first defined and studied by T. Asano,
J. Matoušek and T. Tokuyama [1, 2], in the case where X was the Euclidean
plane, K was finite, each Pk was a single point and all these points were
different. They proved the existence and uniqueness of a zone diagram in
this case. Their proofs rely heavily on this specific setting.

In our paper we generalize this concept in various ways. As we have al-
ready mentioned, we consider general tuples of sets P = (Pk)k∈K , and gen-
eral metric spaces. In fact, we consider a more general setting (m-spaces; see
Section 3). One of the advantages of this generalization, besides its leading
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to general results, is that it yields a better understanding of the concept, and
enables us to give plenty of explicit examples of zone diagrams, a task which
is quite hard in the case of singleton-site zone diagrams in the Euclidean
plane. These examples illustrate some new phenomena which occur in the
general case. Moreover, this generalization also opens up new possibilities
for applying this concept in other parts of mathematics and elsewhere.

Exact definitions, as well as several examples, are given in Sections 2
and 3. In Section 4 we re-interpret the concept of a zone diagram as a stable
configuration in a certain combinatorial game.

Our main existence results are Theorem 5.6, which shows the existence
of a zone diagram of order 2 in any m-space, and Theorem 5.5, which shows
the existence of a double zone diagram (a fixed point of the second iteration
Dom2) of any order. Our method, which is different from the methods de-
scribed in [1] and [2], is based on the Knaster–Tarski fixed point theorem for
monotone (increasing) mappings. [One, in fact two, of the arguments in [2]
do make use of a fixed point theorem (the Schauder fixed point theorem),
but for continuous mappings rather than monotone ones.] It can be seen that
our (rather simple) proofs have a purely order-theoretic character; there is
no need to take into account any other considerations (algebraic, topological,
analytical, etc.). As a corollary we obtain the existence of a trisector in any
Hilbert space, and the proof can be considered “conceptual”; see Remark 5.7
in Section 5.

In Section 6 we discuss the uniqueness question. In general, there can
be several zone diagrams, but we present several necessary and sufficient
conditions for uniqueness. In Section 7 we describe a simple algorithm for
constructing a zone diagram of order 2 and a double zone diagram of any or-
der in the case where X is a finite set. We conclude the paper by formulating
some interesting open problems.

We end this introduction with a couple of words about notation. Through-
out the text wewill make use of tuples, the components of which are sets. Every
operation or relation between such tuples, or on a single tuple, is done compo-
nentwise. Hence, for example, ifK 6= ∅ is a set of indices, and if R = (Rk)k∈K

and S = (Sk)k∈K are two tuples of sets, then R ∩ S = (Rk ∩ Sk)k∈K ,
R = (Rk)k∈K , and R ⊆ S means Rk ⊆ Sk for each k ∈ K. The tuple (X)k∈K

has all the components equal to X. Given a set X, we denote by P∗(X) the
set of all nonempty subsets of X, and by |X| the cardinal number of X.

2. Definitions and examples. Zone diagrams can be naturally defined
in any metric space. In Section 5 we will prove a theorem which ensures the
existence of zone diagrams of order n = 2 in any metric space. Surprisingly,
the proof can be carried over to a more general setting, which we call m-
spaces. However, since the latter concept seems to be new, and since the
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concept of a zone diagram is best understood in the context of metric spaces,
we discuss it first in this context. The corresponding generalization will be
carried out in Section 3.

Definition 2.1. Let (X, d) be a metric space. For any P,A ∈ P∗(X),
the dominance region dom(P,A) of P with respect to A is the set of all
x ∈ X which are closer to P than to A, i.e.,

dom(P,A) = {x ∈ X : d(x, P ) ≤ d(x,A)}.
The function dom : P∗(X)× P∗(X)→ P∗(X) is called the dom mapping.

For example, if a and p are two different points in a Hilbert space X,
and if P = {p} and A = {a}, then dom(P,A) is the half-space containing P
determined by the hyperplane passing through the middle of the line segment
[p, a] and perpendicular to it; dom(A,P ) is the other half-space.

Definition 2.2. Let (X, d) be a metric space and let K be a set of
at least two elements (indices), possibly infinite. Given a tuple (Pk)k∈K of
nonempty subsets Pk ⊆ X, a zone diagram of order n = |K| with respect to
that tuple is a tuple R = (Rk)k∈K of nonempty subsets Rk ⊆ X such that

Rk = dom
(
Pk,

⋃
j 6=k

Rj

)
∀k ∈ K.

In other words, if we define Xk = P∗(X), then a zone diagram is a fixed
point of the mapping Dom :×k∈K Xk →×k∈K Xk defined by

(1) Dom(R) =
(
dom

(
Pk,

⋃
j 6=k

Rj

))
k∈K

.

If the second iteration Dom2 = Dom ◦Dom has a fixed point R, we say that
R is a double zone diagram in X.

If we interpret each Rk as an ancient kingdom, and each Pk as a site or
a collection of sites in Rk (cities, army camps, islands, etc.), then a zone di-
agram is a configuration in which each kingdom Rk consists of all the points
x ∈ X which are closer to Pk than to the other kingdoms. This can be re-
garded as a state of equilibrium between the kingdoms in the following sense.
Suppose the kingdoms are mutually hostile. In particular, each kingdom has
to defend its borders against attacks from the other kingdoms. Due to var-
ious considerations (resources, field conditions, etc.), the defending army is
usually situated only in (part of) the sites Pk (unless the kingdom moves
forces to attack another kingdom), and each Pk remains unchanged. Hence,
if (Rk)k∈K is a zone diagram, then each point in each kingdom can be de-
fended at least as fast as it takes to attack it from any other kingdom, and
no kingdom can enlarge its territory without violating this condition. (But
see Examples 2.3 and 2.5 for some non-realistic counterexamples.)
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A double zone diagram R is a different state of equilibrium between the
kingdoms: now each kingdom Rk consists of all points x ∈ X which are closer
to Pk than to the union

⋃
j 6=k(DomR)j . We note that any zone diagram R is

obviously a double zone diagram since Dom2R = Dom(DomR) = DomR =
R, but the converse is not necessarily true as the following example shows.

Example 2.3. LetX = {−1, 0, 1} be a subset of R with the usual metric,
and let P1 = {−1}, , P2 = {1}. If we let R1 = P1 and R2 = {0, 1}, then −1
is the only point in X closer to P1 than to R2, and 0, 1 are all the points in
X closer to P2 than to R1, so

dom(P1, R2) = {−1} = R1 and dom(P2, R1) = {0, 1} = R2,

i.e., R = (R1, R2) is a zone diagram in X. Similarly, S = ({−1, 0}, {1}) is a
different zone diagram in X, and this shows that uniqueness does not hold
in general. However, if we replace the point 0 with a point a ∈ (0, 1), then
the modified R is still a zone diagram, and it is unique. Indeed, suppose
Z = (Z1, Z2) is another zone diagram. Obviously, P1 ⊆ dom(P1, Z2) and
P2 ⊆ dom(P2, Z1), so any x 6= −1 is closer to P2, and hence to Z2, than
to Z1. Thus Z1 must be P1, but then Z2 = dom(P2, Z1) = {a, 1}, so Z = R.

Already in the original example, where X = {−1, 0, 1}, it can be seen
that a double zone diagram is not necessarily a zone diagram, since

dom2(P1, P2) = (dom(P1,dom(P2, P1)), dom(P2, dom(P1, P2)))
= (dom({−1}, {0, 1}),dom({1}, {−1, 0}))
= ({−1}, {1}) = (P1, P2),

but (P1, P2) is not a zone diagram because P1 6= {−1, 0} = dom(P1, P2).
However, if we replace the point 0 with a point a ∈ (0, 1), then the double
zone diagram and the zone diagram coincide.

Example 2.4. Let X = R2 with the max norm |x| = |(x1, x2)| =
max{|x1|, |x2|}, and let P1 = {(0, 3)}, P2 = {(0,−3)}. Suppose f : R→ R is
the function defined by

f(x1) =


−x1 − 1, x1 ≤ −2,
1, x1 ∈ [−2, 2],
x1 − 1, x1 ≥ 2.

If R1 and R2 are the domains above and below the graphs of f and −f
respectively, i.e., R1 = {(x1, x2) : x2 ≥ f(x1)} and R2 = {(x1, x2) : x2 ≤
−f(x1)}, then R = (R1, R2) is a zone diagram in X; see Figure 1.

Indeed, if x=(x1, x2) is in R1, then there are three possibilities: x1≤−2,
x1 ∈ [−2, 2] and x1 ≥ 2. The third case is treated in the same way as the first,
so it suffices to consider the first two cases. In the first case, an elementary
calculation shows that d(x,R2) = d(x, (−2,−1)). Hence d(x,R2) ≥ d(x, P1),
because d(x, (−2,−1)) ≥ x2 + 1 ≥ max{−x1, |x2 − 3|} = d(x, P1). In the
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Fig. 1. Example 2.4

second case, either x2 ∈ [1, 5] and then d(x, P1) ≤ 2 ≤ x2 + 1 = d(x,R2), or
x2 > 5 and then d(x, P1) = x2 − 3 < x2 + 1 = d(x,R2). Thus, in every case
d(x, P1) ≤ d(x,R2), i.e., R1 ⊆ dom(P1, R2).

On the other hand, suppose d(x, P1) ≤ d(x,R2) and assume to the con-
trary that x /∈ R1. Then x2 ≥ 0, for otherwise d(x,R2) ≤ d(x,R1) < d(x, P1).
In addition, |x1| ≤ 2, because otherwise, if, for example, x1 < −2, then
using the fact that x /∈ R1 implies x2 < −x1 − 1, we arrive at the inequal-
ity d(x,R2) ≤ d(x, (−2,−1)) = max{−x1 − 2, x2 + 1} < |x1| ≤ d(x, P1).
So |x1| ≤ 2, but then d(x,R2) ≤ 2, and since x /∈ R1, we have, in fact,
d(x,R2) < 2 < d(x, P1), a contradiction. Therefore dom(P1, R2) ⊆ R1 and
we get equality. In the same way, R2 = dom(P2, R1).

A reader familiar with the concept of a trisector (see [1]), may have al-
ready noticed that the boundaries of R1 and R2 (denoted by C1 and C2,
respectively) represent the components of a trisector, i.e., they satisfy the
equations C1 = {x ∈ X : d(x, P1) = d(x,C2)} and C2 = {x ∈ X : d(x, P2) =
d(x,C1)}. The sets C1 and C2 are indeed the graphs of convex/concave
functions, but in contrast with the Euclidean case ([1, Theorem 2] and the
discussion following it), these functions have a simple form and they are not
analytic.

In our next example the two sites P1 and P2 have a nonempty intersection.

Example 2.5. X = R2 with the Euclidean norm, P1 = Q × {0} and
P2 = (N∪(R\Q))×{0}. At first sight it seems that either a zone diagram may
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not exist at all, or that it may be pathological if it does exist. Nevertheless,
a simple check shows that (R × {0},R2) is a zone diagram, as also is (R2,
R × {0}). It is interesting to note that if we consider the infinite family
Px = {(x, 0)}, x ∈ R, then it is not clear at all whether there exists a zone
diagram R = (Rx)x. If it does, then it is probably pathological.

The above example can be generalized: if (X, d) is any metric space, and if
the tuple P = (Pk)k∈K has the property that P j = P k for all k, j ∈ K, then
for any i ∈ K and any tuple R = (Rk)k∈K with the property that Rk = P k

for all k 6= i and Ri = X, the tuple R is a zone diagram in X. Hence, some
restrictions on P have to be imposed in order to obtain uniqueness. (For
instance, inf{d(P k, P j) : j 6= k} > 0 for all k ∈ K is necessary; it is not
clear, however, when this condition is sufficient; see Example 2.3.)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

P1 =  

P2 =  

R1 =  

R2 =  

Fig. 2. Example 2.6

Example 2.6. Let (X, | · |) be any normed space, and let

P1 =
∞⋃

k=0

{x ∈ X : |x| = 6k + 1}, P2 =
∞⋃

k=0

{x ∈ X : |x| = 6k + 4}.

It can easily be checked that R = (R1, R2) is a zone diagram in X, where

R1 =
∞⋃

k=0

{x ∈ X : 6k ≤ |x| ≤ 6k + 2},

R2 =
∞⋃

k=0

{x ∈ X : 6k + 3 ≤ |x| ≤ 6k + 5}.

See Figure 2. The zone diagram in this case is unique; see Section 6. Suppose
now that we modify this example by letting Pk = {x ∈ X : |x| = 3k+1}, k ∈
N ∪ {0}. The resulting zone diagram is R = (Rk)∞k=0, where Rk = {x ∈ X :
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3k ≤ |x| ≤ 3k + 2}. We obtain the same array of rings as before, but now
each ring represents one and only one Rk.

3. Generalization to m-spaces

Definition 3.1. An m-space is a pair (X, d) of a nonempty set X and
a function d : X2 → [−∞,∞] with the property that

(2) d(x, x) ≤ d(x, y) ∀x, y ∈ X.

We call d the distance function, although it is usually not a true distance
since it is not assumed to be either symmetric, positive or to satisfy the
triangle inequality (take, for example, X = R and d(x, y) = max{x+ 1, y}).
Given x ∈ X and A ∈ P∗(X), we define

d(x,A) = inf{d(x, y) : y ∈ A},

and call it the distance between the point x and the set A. All the relevant
concepts (the dom mapping, zone diagrams, etc.) are defined exactly as in
the metric case, but now, however, the interpretations are less clear.

We see that the only constraints on d are condition (2), which implies
that the natural property P ⊆ dom(P,A) will be satisfied, and that its range
is [−∞,∞]. These requirements alone suffice for ensuring the existence of
zone diagrams of order 2, and actually the concept of an m-space has its
origin in an examination of an earlier proof we had of the existence of a zone
diagram in the case n = |K| = 2. We also remark that instead of taking
[−∞,∞] as the range of d, one can take any totally ordered set which has
the greatest lower bound property, but we will confine ourselves to the above
definition.

We now provide several examples in order to illustrate the concepts of
m-spaces and zone diagrams in this general setting.

Example 3.2. LetX be any nonempty set and let a < b be real numbers.
Suppose d : X2 → R is defined by d(x, x) = a < b = d(x, y) for all x 6= y.
The function d is usually not a metric. If (Pk)k∈K is any tuple of nonempty
and pairwise disjoint subsets of X, then any tuple (Rk)k∈K of nonempty and
pairwise disjoint subsets of X for which Pk ⊆ Rk and

⋃
k∈K Rk = X is a

zone diagram in X of order |K|.

Example 3.3. Let X =
⋃3

i=1Xi where X1 = R× {0}, X2 = {−1} × R,
X3 = {1}×R. Define d : X2 → [−∞,∞] by d(x, y) = |x− y| if x, y ∈ Xi for
some i, and d(x, y) =∞ otherwise. The function d completely isolates each
component Xi of X in the sense that a point x ∈ X “feels” (or “is affected
by”) only points from the component to which it belongs. Let P1 = {(−1, 0)},
P2 = {(−1, 3)}, P3 = {(1, 4)}. Then R = (Rk)3k=1 is a zone diagram in X,
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where R1 = (R × {0}) ∪ ({−1} × (−∞, 1]), R2 = {−1} × [2,∞), R3 =
{1} × [2,∞). See Figure 3.

Example 3.4. Let G = (V,E) be a directed graph, and suppose d :
V 2 → [0,∞] assigns to (x, y) ∈ V 2 the length of the minimal finite directed
path starting from x and ending in y (with d(x, x) = 0), including∞ if there
is no such finite path. Let G be the graph in Figure 4, and let P1 = {x1, x2}
and P2 = {x2, x3}. Then R = (V1∪{x2}, V2∪V3) and S = (V1∪V2, {x2}∪V3)
are zone diagrams in V .

4. A combinatorial interpretation. In this section (which is not
needed for later sections) we describe a second interpretation of the con-
cept of a zone diagram as a certain combinatorial game of one player.

The player is given a set of points X, a metric d : X2 → [0,∞) and
a tuple (Pk)k∈K of nonempty subsets of X. For simplicity we assume that
these sets are pairwise disjoint, and that X and K are finite. The set K is
interpreted as a set of different colors, and each point x ∈ X can be colored
by one of the colors in K, or by an additional neutral color. In the initial
position each set Pk is colored by the color k, and all other points are colored
by the neutral color. Let Rk := Pk and Q := X \

⋃
k∈K Pk.

Now the game starts. The player chooses a point x ∈ Q and checks its
position. By this we mean that the player checks whether x belongs to one
of the sets dom(Pk,

⋃
j 6=k Rj). If x does not belong to any dom(Pk,

⋃
j 6=k Rj),

then x is colored by the neutral color. If it does, then it may happen that x
belongs to several different such sets, corresponding to a subset K ′ ⊆ K. In
this case, if the current color of x is in K ′, then the player does not change
this color. Otherwise, the player arbitrarily picks a color k ∈ K ′, colors x
with it, and adds x to Rk, i.e., the player defines Rk := Rk ∪ {x}. If the
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Fig. 5. Illustration of the game

color of x was changed, this means that before the change either x had the
neutral color or it was in some Rj , but now it does not belong to those Rj

any more. In this case the player removes x from them, i.e., the player defines
Rj := Rj \ {x} for all such j. The game continues in the same manner with
the other points in Q; see Figure 5 in which (X, d) is a finite subset of the
Euclidean plane and |K| = 3.

The goal is to reach a stable configuration (Rk)k∈K , i.e., a configuration
in which nothing has to be done: for each x ∈ Q, the player does not need to
color it by a new color after its position is checked. A stable configuration is
exactly a zone diagram, because it means that both dom(Pk,

⋃
j 6=k Rj) ⊆ Rk

and Rk ⊆ dom(Pk,
⋃

j 6=k Rj) for each k. (If x ∈ dom(Pk,
⋃

j 6=k Rj) \ Rk for
a subset of indices K ′ ⊆ K, then its color is not in K ′, but it has to be
changed to some k ∈ K ′, and if x ∈ Rk \ dom(Pk,

⋃
j 6=k Rj), then either

x ∈ dom(Pi,
⋃

j 6=iRj) for some i ∈ K ′ ⊆ K \ {k} and then its color has to
be changed to some i ∈ K ′, or x /∈ dom(Pi,

⋃
j 6=iRj) for all i and then its

color should be changed from k to the neutral color.)
It is definitely not clear in advance that a stable configuration can be

obtained, because of the dynamical character of the game: when changing
one Rk, adding/removing a point to/from it may affect the other Ri, since
now dom(Pi,

⋃
j 6=iRj) becomes smaller/larger. Hence, even if a point x has

already been colored, now it is possible that its color is not correct any more
and it will have to be updated. Hence, passing over all of Q once will usually
not suffice and it is not clear at all that even infinitely many passes will
indeed suffice.



138 D. REEM AND S. REICH

Theorem 5.6 ensures the existence of a stable configuration in the case
where |K| = 2 and X,P1, P2 are arbitrary. Using the algorithm described
in Section 7, such a configuration can be explicitly constructed. We note,
however, that the algorithm does not show whether the player has a win-
ning strategy, i.e., if and how the player can obtain a stable configuration
according to the rules of the game.

5. Existence. Our main tool for establishing the existence of a zone
diagram of order 2, and of a double zone diagram of any order, in any
m-space (no matter how bizarre the space (X, d) or the sets Pk are) is the
Knaster–Tarski fixed point theorem [4, 6] which will be stated below. We
need two definitions before formulating it.

Definition 5.1. Let Y be a nonempty set and suppose ≤ is a partial
order on Y . A mapping g : Y → Y is called monotone (or isotone, or
increasing) if for any A and B in Y the condition A ≤ B implies g(A) ≤
g(B). The mapping is called antimonotone if A ≤ B implies g(B) ≤ g(A).

Definition 5.2. Let Y be a nonempty set and suppose ≤ is a partial
order on Y . The pair (Y,≤) is called a complete lattice if any subset Z of Y
has a least upper bound

∨
Z ∈ Y and a greatest lower bound

∧
Z ∈ Y .

Theorem 5.3 (Knaster–Tarski, [6, Theorem 1]). Let (Y,≤) be a complete
lattice and let g : Y → Y be monotone. Then the set F of fixed points of g
is nonempty and (F,≤) is a complete lattice. In particular , g has two fixed
pointsm andM with the property thatm ≤ µ ≤M for any µ ∈ F . Moreover ,
m =

∧
{y ∈ Y : g(y) ≤ y} and M =

∨
{y ∈ Y : y ≤ g(y)}.

Both of the sets {y ∈ Y : g(y) ≤ y} and {y ∈ Y : y ≤ g(y)} are nonempty
because

∨
Y belongs to the first and

∧
Y to the second. It is interesting to

note that the proof of Theorem 5.3 is elementary and is not based on the
axiom of choice. In order to apply Theorem 5.3 we need the following lemma.
We note that its part (a) generalizes [1, Lemma 3(ii)].

Lemma 5.4. Let (X, d) be an m-space. Partially order P∗(X) by inclu-
sion and let (Pk)k∈K be a tuple of nonempty subsets in X.

(a) Given P ∈ P∗(X), the mapping A 7→ dom(P,A) is antimonotone.
(b) The Dom mapping is antimonotone with respect to componentwise

inclusion. The mapping Dom2 is monotone.
(c) Given P ∈ P∗(X), the mapping A 7→ dom(A,P ) is monotone.
(d) P ⊆ dom(P,A) ⊆ X for all A,P ∈ P∗(X).
(e) Let Yk = {A ∈ P∗(X) : Pk ⊆ A} and Y =×k∈K Yk. Then Dom

maps Y into Y , i.e., Dom(W ) ∈ Y for any W ∈ Y .
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(f) Let Y be as above and define on Y the natural partial order ⊆ as
follows:

(Ak)k∈K ⊆ (Bk)k∈K ⇔ Ak ⊆ Bk for each k ∈ K.
Then (Y,⊆) is a complete lattice.

Proof. (a) If A ⊆ B, then d(x,B) = inf{d(x, y) : y ∈ B} ≤ inf{d(x, y) :
y ∈ A} = d(x,A), so x ∈ dom(P,B) implies d(x, P ) ≤ d(x,B) ≤ d(x,A),
i.e., x ∈ dom(P,A).

(b) If R ⊆ S, then
⋃

j 6=k Rj ⊆
⋃

j 6=k Sj for all k ∈ K, so dom(Pk,
⋃

j 6=k Sj)
⊆ dom(Pk,

⋃
j 6=iRj) by part (a), and hence Dom(S) ⊆ Dom(R). The second

assertion follows from the first, since a composition of two antimonotone
mappings is monotone.

(c) Suppose A ⊆ B. Then d(x,B) ≤ d(x,A) for all x ∈ X. Hence, if
x ∈ dom(A,P ), then d(x,B) ≤ d(x,A) ≤ d(x, P ), i.e., x ∈ dom(B,P ).

(d) The second inclusion is obvious and the first one follows immediately
from d(x, P ) ≤ d(x, x) ≤ d(x, y) for all x ∈ P and y ∈ A by (2).

(e) The kth component of Dom(W ) contains Pk by part (d).
(f) Let J 6= ∅ be a subset of Y . Then the componentwise intersection⋂

R∈J R is in Y , and it is the greatest lower bound of J , and
⋃

R∈J R is the
least upper bound of J . In addition,

∧
∅ = (X)k∈K and

∨
∅ = (Pk)k∈K .

Theorem 5.5. Let (X, d) be an m-space and suppose that (Pk)k∈K is
a tuple of nonempty subsets of X. Then there is a double zone diagram of
order |K| in X with respect to (Pk)k∈K . Furthermore, there are double zone
diagrams m and M with the property that m ⊆ µ ⊆M for any other double
zone diagram µ.

Proof. Because of Lemma 5.4, the conditions of Theorem 5.3 are satisfied
with (Y,⊆) and g = Dom2. Hence Dom2 has two (not necessarily different)
fixed points m and M which are double zone diagrams by definition, and
they have the required property.

Theorem 5.6. Let (X, d) be an m-space and let P1, P2 ∈ P∗(X). Then
there exists a zone diagram of order 2 in X with respect to (P1, P2).

Proof. Let S = (S1, S2) be a fixed point of Dom2; its existence is ensured
by Theorem 5.5. We have

(S1, S2) = Dom2(S1, S2) = (dom(P1,dom(P2, S1)),dom(P2, dom(P1, S2))).

Let R1 := S1, R2 := dom(P2, R1). Then R1 = S1 = dom(P1, dom(P2, S1)) =
dom(P1, R2), and hence R = (R1, R2) is a zone diagram in X.

Remark 5.7. By a simple argument (repeating word by word the proof
of [1, Lemma 3(i),(iii)] and using the fact that the distance between a point
and a nonempty, closed and convex subset of a Hilbert space is attained), it
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can be shown that if pk, k ∈ K = {1, 2}, are two different points in a Hilbert
space X and if (R1, R2) is a zone diagram in X, then the boundaries Ck of
Rk represent the components of a trisector with respect to Pk = {pk}, i.e.,
Ck = {x ∈ X : d(x, Pk) = d(x,Cj)} for k 6= j ∈ K. This conclusion extends
the existence part of [1, Theorem 1]. Actually, by different arguments this
fact can be generalized to other spaces and to more general sets Pk. This
issue will be treated in another paper which is in preparation.

6. Uniqueness. As the examples given in Sections 2 and 3 show, a zone
diagram is not unique in general. In spite of this, it is possible to formulate
several necessary and sufficient conditions for uniqueness. We first state and
prove a general uniqueness theorem for antimonotone mappings.

Theorem 6.1. Let (Y,≤) be a partially ordered set , and let T : Y → Y
be antimonotone. If T 2 has fixed points m and M with the property that
m ≤ µ ≤M for any other fixed point µ of T 2, then the following conditions
are equivalent and each of them suffices for T to have exactly one fixed point.

(a) m = M .
(b) T 2 has a unique fixed point.
(c) Any fixed point of T 2 is a fixed point of T .
(d) The fixed point sets of T and T 2 coincide.
(e) Either m or M is a fixed point of T .

If , in addition, (Y,≤) is a complete lattice, then all these conditions are
equivalent to the following one:

(f) A ≤ B for any A,B ∈ Y which satisfy T 2(B) ≤ B and A ≤ T 2(A).

Proof. (a)⇒(b): If µ = T 2µ, then by assumption m ≤ µ ≤M = m, i.e.,
µ = m = M is the unique fixed point of T 2.

(b)⇒(c): If µ = T 2µ, then Tµ = T 3µ = T 2(Tµ), i.e., Tµ is a fixed point
of T 2, so by uniqueness, Tµ = µ.

(c)⇒(d): One inclusion holds by assumption, and the other holds in gen-
eral, since if µ = Tµ, then µ = Tµ = T 2µ, so µ is also a fixed point of T 2.

(d)⇒(e): Obvious.
(e)⇒(a): Suppose, for example, that TM = M . Since m ≤M , the anti-

monotonicity of T implies that Tm ≥ TM = M . Since Tm is a fixed point of
T 2, it follows that Tm = M . Hence m = T 2m = TM = M , that is, m = M .

(b),(d) ⇒ “T has a unique fixed point”: obvious.
(f)⇒(a): Since M ≤ T 2M and T 2m ≤ m, it follows that M ≤ m; but

m ≤M and hence there is equality.
(a)⇒(f): Suppose A,B ∈ Y satisfy T 2(B) ≤ B and A ≤ T 2(A). Since

the pair (Y,≤) is a complete lattice, the Knaster–Tarski fixed point theorem
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implies that m =
∧
{y ∈ Y : T 2(y) ≤ y} and M =

∨
{y ∈ Y : y ≤ T 2(y)}.

Hence A ≤M = m ≤ B.

Since by Theorem 5.5 the Dom mapping satisfies the conditions of Theo-
rem 6.1, we obtain several equivalent sufficient conditions for the uniqueness
of zone diagrams. This again shows the importance of the concept of a double
zone diagram. In fact, because of the special structure of the Dom mapping
we can get a stronger result which will be formulated as a special corollary
below. Before formulating this corollary, we note that, in fact, the implica-
tion (b) ⇒ “T has a unique fixed point” is true without any assumption on
T and X and without the partial order.

Corollary 6.2. Let (X, d) be an m-space, P = (Pk)k∈K a tuple of
nonempty sets in X, and let T = Dom. Then each one of the six conditions
in Theorem 6.1 suffices for X to have exactly one zone diagram with respect
to P . If , in addition, K = {1, 2}, then these conditions are also necessary.

Proof. In view of Theorem 6.1 and the above discussion, only the last
assertion remains to be proven. So suppose that K = {1, 2} and that T has
a unique fixed point. We will show that part (c) of Theorem 6.1 holds. To
this end, let Z = (Z1, Z2) be any fixed point of T 2. Then

Z1 = dom(P1, dom(P2, Z1)) = g(Z1),
Z2 = dom(P2, dom(P1, Z2)) = h(Z2),

where Tk(A) = dom(Pk, A), k = 1, 2, g = T1 ◦ T2 and h = T2 ◦ T1. Let
Y1 = {A ∈ P∗(X) : P1 ⊆ A}. By Lemma 5.4, g is a monotone mapping
which maps Y1 into itself and Y1 is a complete lattice. Therefore Theorem 5.3
implies that g has a least and a greatest fixed pointsm1 andM1, respectively.
By defining m2 := T2m1 and M2 := T2M1, we find that (m1,m2) and
(M1,M2) are fixed points of T (since, for instance,m1 = T1(T2m1) = T1m2),
so by uniqueness m1 = M1. This implies that g has a unique fixed point
in Y1, so Z1 = m1 = M1. In the same way, h has a unique fixed point,
and since both Z2 and m2 are fixed points of h, they must coincide, i.e.,
Z = (Z1, Z2) = (m1,m2) is a fixed point of T .

To illustrate an application of this corollary, let X = [−3, 3] with d(x, y)
= |x − y|, and let P = (P1, P2) = ({−3}, {3}). For t ∈ N define Rt =
Domt(P ). A short calculation shows that Dom2(X,X) = Dom(P ) =
([−3, 0], [0, 3]). More generally, we obtain Domt(P ) = ([−3, at], [bt, 3]), where
a0 = −3, b0 = 3 and at+1 = (bt − 3)/2, bt+1 = (at + 3)/2. By elemen-
tary considerations, {a2t} increases to −1, {b2t} decreases to 1, {a2t+1} de-
creases to −1 and {b2t+1} increases to 1. Hence

⋃∞
t=0 Dom2t(P ) increases to

([−3,−1), (1, 3]), and
⋂∞

t=0 Dom2t+1(P ) decreases to ([−3,−1], [1, 3]). Since
by Lemma 5.4(e), a double zone diagram R = (R1, R2) satisfies P ⊆ R ⊆ X,
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by repeated iterations we obtain
⋃∞

t=0 Dom2t(P ) ⊆ R ⊆
⋂∞

t=0 Dom2t(X,X)
=
⋂∞

t=0 Dom2t+1(P ), and using the fact that R1, R2 are obviously closed
we deduce that R = ([−3,−1], [1, 3]). This indeed proves the uniqueness
of the double zone diagram, and hence, by Corollary 6.2, of the zone di-
agram. Similar considerations show the uniqueness of the zone diagram in
Example 2.6.

7. The finite case. In this short section we describe a practical way of
constructing a double zone diagram of arbitrary order and a zone diagram
of order 2 in the particular case where X is a finite set. In both cases the
construction is by iteration, and we give some estimates on the number of
iterations required.

Theorem 7.1. Let (X, d) be a finite m-space and let (P1, P2) ∈ P∗(X)×
P∗(X). Let g1 = T1 ◦T2 and g2 = T2 ◦T1, where Tk(A) = dom(Pk, A). Then
there are nonnegative integers n1, N1 ≤ |X| − |P1| and n2, N2 ≤ |X| − |P2|
such that

R = (gn1
1 (P1), T2(gn1

1 (P1)), S = (gN1
1 (X), T2(gN1

1 (X))),
Z = (T1(gn2

2 (P2)), gn2
2 (P2)), W = (T1(gN2

2 (X)), gN2
2 (X))

are all zone diagrams in X.

Proof. We will show this for the first case. The other cases are proved
similarly. Since g1 is monotone and P1 ⊆ g1(P1), it follows that the sequence
at = gt

1(P1), t ∈ N ∪ {0}, is increasing. Since P∗(X) is finite, the sequence
becomes constant starting from some index n1. One can give the following
linear estimate instead of the “default” exponential one by observing that the
sequence bt = |X|−|gt

1(P1)| is a decreasing sequence of nonnegative integers,
and hence also becomes constant starting from n1 ≤ b0. At this point {at}t
becomes constant. Let R1 := an1 . Then R1 = an1 = an1+1 = g1(R1), and
hence R1 is a fixed point of g1, i.e., R1 = dom(P1,dom(P2, R1)). Letting
R2 := T2(R1) = dom(P2, R1), we find that (R1, R2) is a zone diagram inX.

Theorem 7.2. Let (X, d) be a finite m-space and let P = (Pk)k∈K , K
finite, be a given tuple of nonempty sets in X. Then there are nonnegative
integers n1, N1 ≤

∑
k∈K(|X| − |Pk|) such that

R = Dom2n1(P ), S = Dom2N1((X)k∈K)

are double zone diagrams in X.

Proof. Take Y from Lemma 5.4(e). Then Dom2(P ),Dom2((X)k∈K) ∈ Y ,
so P ⊆ Dom2(P ) and Dom2((X)k∈K) ⊆ (X)k∈K . Since the mapping Dom2

is monotone, the sequence {Dom2t(P )}∞t=1 is increasing and the sequence
{Dom2t((X)k∈K)}∞t=1 is decreasing. Since Y is finite, these sequences are
eventually constant, and this constant must be a fixed point of Dom2. As
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for the estimate, by defining the sequence at =
∑

k∈K |(Dom2t(P ))k|, we see
that {at}∞t=0 is increasing and can take integer values between

∑
k∈K |Pk|

and
∑

k∈K |X|, and when it becomes constant, so does {Dom2t(P )}∞t=1.

The above algorithm may be applied to the (approximate) construction
of zone diagrams in normed spaces, by considering a large finite set of points
(grid) there, and constructing the zone diagram as above. However, it should
be checked in what sense the resulting zone diagram is close (perhaps with
respect to the Hausdorff distance) to the real one(s). This algorithm can
also be used for finding a stable configuration of the combinatorial game
described in Section 4.

8. Concluding remarks and open problems. The most interesting
open problem is whether existence holds for a general cardinal n. Our method
of proof for the case n = 2 cannot be carried over to the general case. This
can be clearly illustrated already in the case n = 3. By Theorem 5.5, we
know that a double zone diagram R = (R1, R2, R3) exists, and by definition
it satisfies the following system of equations:

R1 = dom(P1,dom(P2, R3 ∪R1) ∪ dom(P3, R1 ∪R2)),
R2 = dom(P2,dom(P3, R1 ∪R2) ∪ dom(P1, R2 ∪R3)),
R3 = dom(P3, dom(P1, R2 ∪R3) ∪ dom(P2, R3 ∪R1)).

Unfortunately, in contrast with the case n = 2, the above system is coupled,
and it is not clear how to obtain a zone diagram Z = (Z1, Z2, Z3) from R.
We will, however, describe several possible ways to construct a zone diagram
and point out the difficulties we have encountered.

The first way is to use the double zone diagram R in a similar way
to the proof of Theorem 5.6, by defining Z1 := R1, Z2 := R2 and Z3 :=
dom(P3, Z1∪Z2). However, it is not clear why (Z1, Z2, Z3) is a zone diagram
because it is not clear from the above system why Z1 = dom(P1, Z2 ∪ Z3)
and Z2 = dom(P2, Z3 ∪ Z1).

The second way again uses the double zone diagram R. We define Z1

:= R1, plug R1 in the second and third equations, and then define Z2, Z3 as
solutions of the resulting system:

Z2 = dom(P2,dom(P3, R1 ∪ Z2) ∪ dom(P1, Z2 ∪ Z3)),
Z3 = dom(P3,dom(P1, Z2 ∪ Z3) ∪ dom(P2, Z3 ∪R1)).

This system does have a solution because the mapping on the right hand
side is monotone. However, it is not clear why (Z1, Z2, Z3) will be a zone
diagram. A similar phenomenon occurs if one takes Z1 := R1, Z2 := R2 and
defines Z3 as (one of) the solution(s) of the resulting equation.
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The third way is to look at the system defining the zone diagram:

R1 = dom(P1, R2∪, R3), R2 = dom(P2, R3∪R1), R3 = dom(P3, R1∪R2).

(Now R is no longer the above double zone diagram.) We eliminate one of
the unknowns, say R1, and arrive at the system

R2 = dom(P2, R3 ∪ dom(P1, R2 ∪R3)),
R3 = dom(P3, R2 ∪ dom(P1, R2 ∪R3)).

If we could show that the above system has a solution (R2, R3), then by
defining R1 := dom(P1, R2 ∪R3) we would indeed see that R = (R1, R2, R3)
is a zone diagram in X. Unfortunately, the mapping on the right hand side
is no longer monotone, so it is not clear why there exists a solution.

Therefore, in order to prove existence for general n one has to adopt
other strategies, or to somehow modify the above ones. At the moment we
have several partial results in specific cases (a class of normed spaces) which
are in preparation, but the general case of m-spaces is open, and even in the
case where X is a finite metric space the situation is not clear (but we feel
that the combinatorial interpretation may help here). Anyway, we conjecture
that existence holds in any m-space, at least for finite n. The infinite case
may be problematic as the remark in Example 2.5 shows, but we conjecture
that existence holds in any metric space for any cardinal if the sets Pk are
“nice” and “far enough” from each other.

The question of uniqueness is also interesting. We conjecture that unique-
ness holds at least in finite-dimensional normed spaces, under the assumption
that the sets Pk are “nice” and “far enough” from each other. It is also of
interest to determine whether the second assertion in Corollary 6.2 holds for
general n. Theorem 6.1 shows that uniqueness arguments may be a strat-
egy for proving existence. A related question is to what extent uniqueness is
probable, at least for finite metric spaces embedded in normed spaces. For
instance, Example 2.3 shows that if X is embedded in the interval [−1, 1],
then uniqueness holds with the exception of one case (a = 0), so it holds
with probability 1. The cases where it does not hold may be analogous in
some sense to eigenvalues of a linear operator, and it would be of interest to
investigate them.

Finally, it would be interesting to find some applications of zone diagrams
to other parts of mathematics and elsewhere. We think that zone diagrams
do have this potential, say in optimization theory and computer science, and
even in the natural sciences (see [2, p. 1183] or [1, p. 341]), including the
general case of m-spaces. A reader familiar with Voronoi diagrams might
have noticed that given a tuple P = (Pk)k∈K , Dom(P ) is none other than
the Voronoi diagram induced by P . Hence Voronoi diagrams are related to
zone diagrams, and since they have many applications, including the case
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of generalized distances (see [5] and the references therein), this may also
be true for zone diagrams. The half-spaces Eq+(x, y) and Eq−(x, y) in the
Hilbert ball with the hyperbolic metric, which appear in [3, pp. 112–115],
provide another example of a dominance region, and thus may be related
to zone diagrams. We also note that the combinatorial interpretation and
the examples given at the beginning of the paper may also point to some
applications.
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