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SOME REMARKS ABOUT STRONG PROXIMALITY OF
COMPACT FLOWS
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Abstract. This note aims at providing some information about the concept of a
strongly proximal compact transformation semigroup. In the affine case, a unified approach
to some known results is given. It is also pointed out that a compact flow (X,S) is strongly
proximal if (and only if) it is proximal and every point of X has an S-strongly proximal
neighborhood in X. An essential ingredient, in the affine as well as in the nonaffine case,
turns out to be the existence of a unique minimal subset.

1. Introduction. A compact flow (or transformation semigroup) (X,S)
consists here of a nonempty compact (Hausdorff) space X, a semigroup S,
and a mapping (s, x) 7→ sx of S ×X into X (called the action of S on X)
that satisfies the following conditions:

(i) for every s ∈ S, the mapping x 7→ sx of X into itself is continuous,
(ii) (st)x = s(tx) for every s, t ∈ S and x ∈ X.

Let (X,S) be a compact flow, and let (M1(X),S) be the compact affine
flow of all regular Borel probability measures on X which is induced by
(X,S); then the compact flow (X,S) is said to be strongly proximal if
(M1(X),S) is proximal [4]. (The origin of this notion lies in Furstenberg’s
theory of boundaries of Lie groups.) The aim of this note is to provide some
new information about this concept.

It has been known for a long time that irreducible compact affine trans-
formation groups are strongly proximal [4]; on the other hand, the main re-
sult in [10] asserts that if the compact flow (X,S) is metrizable and strongly
proximal, then (M1(X),S) is strongly proximal; in Section 3, it is shown
(without the hypothesis of metrizability) that these two facts are special
cases of the same general property (Theorem 3.4).

The concept of S-strong proximality extends in a natural way to any
(closed) subset of X; in Section 4, it is shown that if the compact flow (X,S)
is proximal and if every point of X has an S-strongly proximal neighbor-
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hood, then (X,S) is strongly proximal. Strongly proximal minimal compact
transformation groups were characterized in [3] (cf. also [5]) by Glasner with-
out any reference to measures; a characterization of the same sort is given
in Section 5 for closed S-strongly proximal subsets of X.

2. Preliminaries. In this section, we recall some of the basic notions
of topological dynamics used in this paper. More detailed information can
be found in [1], [3] and [13].

Let us consider a compact flow (X,S). Let XX be the semigroup of all
(not necessarily continuous) mappings of X into itself. (For every p, q ∈ XX ,
the mapping pq ∈ XX is given by (pq)x = p(qx), qx being the value of q
at x ∈ X.) Let us assume that XX is provided with the product topology;
by Tikhonov’s theorem, XX is compact. For every q ∈ XX and every con-
tinuous r ∈ XX , the mappings p 7→ pq and p 7→ rp of XX into itself are
continuous. The closure in XX of the semigroup of all mappings x 7→ sx of
X into itself (s ∈ S) is a subsemigroup of XX . This semigroup is denoted
by E(X,S) and is called the enveloping semigroup of (X,S).

A subset A of X is said to be S-stable (or stable in (X,S)) if sA ⊂ A for
every s ∈ S. Let Y be a nonempty compact S-stable subset of X. The com-
pact subflow (Y,S) of (X,S) consists of Y , S and the mapping (s, x) 7→ sx
of S × Y into Y ; its enveloping semigroup E(Y,S) coincides with the set of
all mappings of Y into itself induced by those of E(X,S) (note that pY ⊂ Y
for every p ∈ E(X,S)).

For each x ∈ X, let Sx = {sx | s ∈ S} be the orbit of x; then the closure
Sx of Sx in X is S-stable, and the equality Sx = {px | p ∈ E(X,S)} holds.
An S-minimal subset of X is a nonempty subset M of X such that Sx = M
for each x ∈ M . Obviously, an S-minimal subset of X can equivalently be
defined as a closed, nonempty and S-stable subset of X which has no proper
subsets with these properties. By Zorn’s lemma, every closed nonempty and
S-stable subset of X contains an S-minimal subset of X. The compact flow
(X,S) is said to be minimal if X is an S-minimal subset of X.

The compact flow (X,S) is said to be proximal if for every (x, y) ∈ X×X
there is a net (sα) in S and z ∈ X such that lim sαx = z and lim sαy = z; it
is equivalent to say that for every (x, y) ∈ X ×X, there is p ∈ E(X,S) such
that px = py; it is also equivalent to say that for every (x, y) ∈ X ×X and
every entourage V (in the unique uniformity) of X, there is s ∈ S such that
(sx, sy) ∈ V . It is well known (and easy to prove) that if (X,S) is proximal,
then (X,S) has a unique minimal subset.

A compact flow (K,S) is said to be affine if K is a convex subspace of
a locally convex Hausdorff topological vector space and, for each s ∈ S, the
mapping x 7→ sx of K into itself is affine. If (K,S) is a compact affine flow,
then each member of E(K,S) is an affine mapping. Let (X,S) be a compact
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flow, C(X) the Banach space of all continuous real-valued functions on X
with the supremum norm, and C∗(X) the topological dual of C(X) equipped
with the weak∗ topology. Let M1(X) be the compact convex subspace of
C∗(X) formed by all regular Borel probability measures on X; then the
compact affine flow (M1(X),S) consists of M1(X), S and the mapping
(s, µ) 7→ sµ of S×M1(X) intoM1(X), sµ being defined by (sµ)(f) = µ(sf),
and (sf)(x) = f(sx) for every f ∈ C(X) and every x ∈ X. For every x ∈ X
and A ⊂ X, let δx ∈M1(X) be the point mass at x and δA = {δx | x ∈ A};
then x 7→ δx is a homeomorphism of X onto the set δX of extreme points of
M1(X), and δsx = sδx for (s, x) ∈ S ×X (therefore, we may regard (X,S)
as a compact subflow of (M1(X),S) via x 7→ δx).

The standard notions of functional analysis used here can be found for
instance in [2]. As in [2], if A is a subset of a locally convex Hausdorff
topological vector space, coA (respectively coA) denotes the convex (re-
spectively closed convex) hull of A. If A is convex, the set of all extreme
points of A is denoted by extA.

3. Strong proximality of affine flows. First, let us recall the follow-
ing basic concept (introduced by Glasner in [4]).

Definition 3.1. A compact flow (X,S) is said to be strongly proximal
if the compact affine flow (M1(X),S) is proximal.

Characterization 3.2 below of strong proximality is proved in [4]. (In [4],
S is assumed to be a group; however, the proof works for any semigroup.)

Lemma 3.2. Let (X,S) be a compact flow. Then (X,S) is strongly prox-
imal if and only if for every µ ∈ M1(X) the closure Sµ of Sµ in M1(X)
meets δX (that is, there is a net (sα) in S and x ∈ X such that lim sαµ = δx).

In connection with Section 4, the following equivalences should be pointed
out.

Lemma 3.3. Let (X,S) be a compact flow and M = {x ∈ X | ∀µ ∈
M1(X), δx ∈ Sµ}. Then the following conditions are equivalent.

(1) (X,S) is strongly proximal.
(2) M is the unique minimal subset of (X,S).
(3) M is nonempty.

Proof. (1)⇒(2): Since (M1(X),S) is proximal, it has a unique minimal
subset M ′. Since every nonempty closed and S-stable subset of M1(X)
contains a minimal subset of (M1(X),S), M ′ is contained in X and in Sµ
(µ ∈ M1(X)); in other words, M ′ ⊂ M . To conclude that M = M ′, it
suffices to remark that if x ∈M ′, then M ′ = Sx ⊃M .

(2)⇒(3): Obvious.
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(3)⇒(1): If M 6= ∅, then Sµ ∩ X 6= ∅ for every µ ∈ M1(X), and by
Lemma 3.2, (X,S) is strongly proximal.

Recall that if (K,S) is a compact affine flow, X a compact S-stable
subset of K such that coX = K, and β : M1(X) → K the barycenter
mapping, then β is surjective, affine and continuous [9]. Moreover, β(sµ) =
sβ(µ) for all s ∈ S and µ ∈M(X), as is pointed out for instance in [3].

Statements 3.5 and 3.6 below are closely related. The first one, which
dates back to 1975, is ascribed by Glasner [4] to Furstenberg; the second
one has recently been stated by Raja [10] under the assumption that X is
metrizable. In fact, they are two special cases of the following theorem.

Theorem 3.4. Let (K,S) be a compact affine flow. Suppose that K has
a unique minimal subset M under S and that M contains an extreme point
of K. Then (K,S) is strongly proximal.

Proof. Let z ∈ M ∩ extK. Let µ ∈ M1(K), and let us show that Sµ
contains the point mass δz; it will follow from Lemma 3.2 that (K,S) is
strongly proximal. Let β : M1(K) → K be the barycenter mapping. The
subset Sβ(µ) of K being nonempty closed and S-stable, and M being the
unique minimal subset of K, M is contained in Sβ(µ) and there exists a
net (sα) in S such that (sαβ(µ)) converges in K to z. Because M1(K) is
compact, we may suppose that (sαµ) converges in M1(K), and then

β(lim sαµ) = limβ(sαµ) = lim sαβ(µ) = z.

Since z ∈ extK, β−1({z}) is the singleton {δz} through a basic result by
Bauer [9]; consequently, lim sαµ = δz, which proves the theorem.

Let us recall that a compact affine flow is called irreducible if it contains
no nonempty proper closed convex stable set.

Corollary 3.5. Every irreducible compact affine flow is strongly prox-
imal.

Proof. Let (K,S) be an irreducible compact affine flow, and let z be an
extreme point of K. Let M be a minimal subset of (K,S). Since (K,S) is
irreducible, coM = K, and by Milman’s theorem, z ∈M ; as a consequence,
M is the unique minimal subset of (K,S). By Theorem 3.4, (K,S) is strongly
proximal.

Corollary 3.6. Let (X,S) be a strongly proximal compact flow. Then
the compact affine flow (M1(X),S) is strongly proximal.

Proof. Let M be the unique minimal subset of (X,S). The set δX of
all extreme points of M1(X) being nonempty closed and S-stable, it con-
tains the unique minimal subset δM of (M1(X),S), and by Theorem 3.4,
(M1(X),S) is strongly proximal.
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Statement 3.8 below is both a consequence and a generalization of Corol-
lary 3.6. In order to obtain it, let us recall the following property from [4]
(with a simple proof).

Lemma 3.7. Let (X,S) and (Y,S) be two compact flows and let φ :
(X,S) → (Y,S) be a homomorphism (i.e. φ is a continuous mapping of X
into Y , and φ(sx) = sφ(x) for all s ∈ S and x ∈ X). Suppose that (X,S) is
strongly proximal and φ is surjective. Then (Y,S) is strongly proximal.

Proof. Let ν ∈M1(Y ). Since φ(M1(X)) =φ(coX) = coφ(X) =M1(Y ),
there is µ ∈M1(X) such that φ(µ) = ν. By Lemma 3.2, there is x ∈ X such
that δx ∈ Sµ, and since δφ(x) = φ(δx) ∈ φ(Sµ) = S(φ(µ)) = Sν, we can see
that (Y,S) is strongly proximal.

Corollary 3.8. Let (K,S) be a compact affine flow and let X be a
compact S-stable subset of K such that coX = K. If (X,S) is strongly
proximal , then (K,S) is strongly proximal.

Proof. (M1(X),S) is strongly proximal by Corollary 3.6; therefore, since
the barycenter mapping β : (M1(X),S) → (K,S) is a surjective (affine)
homomorphism, (K,S) is also strongly proximal by Lemma 3.7.

If in Theorem 3.4 it is not assumed that M contains an extreme point
of K, then (K,S) is not necessarily strongly proximal. Let us verify that
(K,S) remains proximal, which is probably known. We begin with a lemma.

Lemma 3.9. Let (X,S) be a compact flow and let (Y,S) be a compact
subflow of (X,S). Then the following conditions are equivalent.

(1) (X,S) is proximal.
(2) (Y,S) is proximal and Sx ∩ Y 6= ∅ for every x ∈ X.

Proof. (1)⇒(2): First, since (X,S) is proximal, the subflow (Y,S) of
(X,S) is proximal. Next, the sets Y and Sx being nonempty, closed in X
and S-stable, they contain the unique minimal subset of X and consequently
Sx ∩ Y 6= ∅ (x ∈ X).

(2)⇒(1): Let (x, y) ∈ X ×X. By hypothesis, there is p ∈ E(X,S) such
that p(x) ∈ Y . In the same way, there is q ∈ E(X,S) such that q(py) ∈ Y .
Since q(px) and q(py) belong to Y , there is r ∈ E(X,S) such that r(q(px)) =
r(q(py)). Since rqp ∈ E(X,S), the pair (x, y) is proximal.

Proposition 3.10. Let (K,S) be a compact affine flow. Then (K,S) is
proximal if and only if K has a unique minimal subset under S.

Proof. If (K,S) is proximal, then (K,S) has a unique minimal subset.
Let us suppose that (K,S) has a unique minimal subset M , and let us show
that (M,S) is proximal; since Sx ∩M = M 6= ∅ for every x ∈ K, this will
imply, by Lemma 3.9, that (K,S) is proximal. Let (x, y) ∈M×M ; the subset
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coS(1
2x+ 1

2y) of K being nonempty closed and S-stable, and M being the
unique minimal subset of K, M is contained in coS(1

2x+ 1
2y); consequently,

x, y ∈ coS(1
2x+ 1

2y). Let z be an extreme point of coS(1
2x+ 1

2y); by Milman’s
theorem, z ∈ S(1

2x + 1
2y). Let (sα) be a net in S such that (sα(1

2x + 1
2y))

converges to z. By compactness, we may assume that the nets (sαx) and
(sαy) converge, so that

z = lim sα

(
1
2
x+

1
2
y

)
=

1
2

lim sαx+
1
2

lim sαy,

and since z is an extreme point of coS(1
2x + 1

2y), lim sαx = lim sαy = z.
Hence the flow (M,S) is proximal.

4. Local versus global strong proximality. The main result of this
section is Theorem 4.5. It reduces questions of strong proximality to proxi-
mality and a local strong proximality condition. Obviously, in order to de-
scribe such a phenomenon, a “local” concept of strong proximality is needed.
Bearing in mind that if (X,S) is a compact flow, then the S-proximality of
a set A ⊂ X means that Sµ ∩ δX 6= ∅ for every µ ∈ M1(X) supported by
a finite subset of A [1], and that the S-strong proximality of (X,S) means
that Sµ∩δX 6= ∅ for every µ ∈M1(X), we naturally lay down the following
definition.

Definition 4.1. Let (X,S) be a compact flow.

(1) We shall say that a closed subset A of X is S-strongly proximal if
Sµ ∩ δX 6= ∅ for every µ ∈ M1

A(X), with M1
A(X) = {µ ∈ M1(X) |

µ(A) = 1}.
(2) For convenience’s sake, we shall say that a subset A ofX is S-strongly

proximal if every compact subset of A is S-strongly proximal. Obvi-
ously, if A is S-strongly proximal, then so is any subset of A.

Lemma 4.2 (which is closely related to the above Lemma 3.3) usefully
completes Definition 4.1(1). It will be involved in the proof of Theorem 4.5.

Lemma 4.2. Let (X,S) be a compact flow and let A be a closed subset
of X. Set N = {x ∈ X | ∀µ ∈M1

A(X), δx ∈ Sµ}. Then:

(1) N is a closed and S-stable subset of X.
(2) A is S-strongly proximal if and only if N is nonempty.

Proof. (1) N =
⋂
{Sµ ∩ X | µ ∈ M1

A(X)}, and Sµ ∩ X is a closed
and S-stable subset of X for all µ ∈ M1

A(X); therefore N is a closed and
S-stable subset of X.

(2) Since N ⊂ Sµ ∩ X (µ ∈ M1
A(X)), if N is nonempty then A is

S-strongly proximal. Conversely, let us suppose that A is S-strongly proxi-
mal. If µ1, . . . , µn ∈M1

A(X), then n−1
∑n

i=1 µi ∈M1
A(X) and consequently



STRONG PROXIMALITY OF COMPACT FLOWS 165

S(n−1
∑n

i=1 µi)∩X 6= ∅. Let (sα) be a net in S such that (sα(n−1
∑n

i=1 µi))
converges in M1(X) to a point x ∈ X. By compactness, we may assume
that the nets (sαµi) (i = 1, . . . , n) converge in M1(X), so that

x = lim sα

(
1
n

n∑
i=1

µi

)
=

1
n

n∑
i=1

lim sαµi,

and since x is an extreme point of M1(X), lim sαµi = x (i = 1, . . . , n). It
follows that the collection {Sµ ∩ X | µ ∈ M1

A(X)} of closed subsets of X
has the finite intersection property; X being compact, its intersection N is
nonempty.

The proof of Theorem 4.5 essentially rests on the following two lemmas.
(The second of these will be used again in the proof of Lemma 5.3.)

Lemma 4.3. Let (X,S) be a proximal compact flow. Let A be an S-
strongly proximal closed subset of X and x ∈ X. Then A∪{x} is S-strongly
proximal.

Proof. Let µ ∈ M1(X) be such that µ(A ∪ {x}) = 1. Let α ∈ [0, 1]
and ν ∈ M1

A(X) be such that µ = αν + (1 − α)δx. As A is S-strongly
proximal, there is p ∈ E(M1(X),S) such that pν ∈ δX , and as (X,S) is
proximal, there is q ∈ E(M1(X),S) such that q(pν) = q(pδx). Let r = qp;
then r ∈ E(M1(X),S) and rν = rδx. The mapping r being affine, rµ =
αrν + (1 − α)rδx = rδx. The conditions rµ ∈ Sµ, rδx ∈ δX and rµ = rδx
imply Sµ ∩ δX 6= ∅; consequently, A ∪ {x} is S-strongly proximal.

Lemma 4.4. Let (X,S) be a compact flow and let µ ∈ M1(X). Let A
be an S-strongly proximal closed subset of X and let N = {x ∈ X | ∀ν ∈
M1

A(X), δx ∈ Sν}. Then µ(A) ≤ sup{ν({x}) | ν ∈ Sµ} for every x ∈ N .

Proof. Let x ∈ N . Let us suppose that µ(A) > 0 and define µ′ ∈M1(X)
by µ′(B) = µ(A ∩B)/µ(A) for every B ∈ B(X). Since µ′(A) = 1, we have
δx ∈ Sµ′. Let (sα) be a net in S such that lim sαµ

′ = δx, and let θ be a cluster
point of the net (sαµ) in Sµ. For every open subset U of X containing x and
every ε > 0, there is α0 such that (sαµ′)(U) > 1− ε for α ≥ α0; that implies
(sαµ)(U) > (1− ε)µ(A) for α ≥ α0, and since the mapping ν 7→ ν(U) of Sµ
into R is upper semicontinuous [12], θ(U) ≥ (1− ε)µ(A). The regularity of
θ implies that θ({x}) ≥ (1 − ε)µ(A), and as this holds for every ε > 0, we
obtain µ(A) ≤ θ({x}) ≤ sup{ν({x}) | ν ∈ Sµ}.

Theorem 4.5. A compact flow (X,S) is strongly proximal if and only if
it is proximal and every point of X has an S-strongly proximal neighborhood
in X.

Proof. Of course, if (X,S) is strongly proximal, then (X,S) is proximal
and every point of X has an S-strongly proximal neighborhood. Let us
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prove the converse. For every y ∈ X, let us choose an S-strongly proximal
open neighborhood Uy of y in X. Let M be the unique minimal subset
of (X,S) and let x ∈ M . Let µ ∈ M1(X). The subset {x} of X being
closed, the mapping ν ′ 7→ ν ′({x}) of Sµ into R is upper semicontinuous;
consequently, since Sµ is a compact space, there exists ν ∈ Sµ such that
ν({x}) = sup{ν ′({x}) | ν ′ ∈ Sµ}.

Let us show that δx = ν, which will imply δx ∈ Sµ and prove the
theorem. Let us suppose that this is not the case; then ν(X \ {x}) > 0 and
since the open covering {Uy | y ∈ X} of the compact X has a finite subcover,
we can choose z ∈ X such that ν(Uz \ {x}) > 0. Let K be a compact
subset of Uz \ {x} such that ν(K) > 0; then K is S-strongly proximal
and by Lemma 4.3, so is K ∪ {x}. By Lemmas 4.2 and 4.4, ν(K ∪ {x}) ≤
sup{ν ′({x}) | ν ′ ∈ Sν}; moreover, sup{ν ′({x}) | ν ′ ∈ Sν} ≤ ν({x}) because
Sν ⊂ Sµ; therefore ν(K ∪ {x}) ≤ ν({x}), which contradicts ν(K ∪ {x}) =
ν(K) + ν({x}) > ν({x}).

Remark 4.6. (1) Let (X,S) be a compact flow with a unique minimal
subset M . If there exists in M a point x which has an S-strongly proximal
neighborhood V in X, then every point of X has an S-strongly proximal
neighborhood in X. Indeed, let y ∈ X and choose s ∈ S such that sy
belongs to the interior of V in X; then s−1(V ) is an S-strongly proximal
neighborhood of y in X. (Let K be a compact subset of s−1(V ) and let
µ ∈ M1

K(X). The mapping s being continuous, s(K) is a compact subset
of V . Since (sµ)(s(K)) = 1 and s(K) is S-strongly proximal, δy ∈ S(sµ)
for some y ∈ X; consequently, as S(sµ) = (Ss)µ ⊂ Sµ, K is S-strongly
proximal.)

(2) Let (X,S) be a compact flow. A subset A of X is said to be S-
contractible to a point x ∈ X if for every neighborhood V of x in X there is
s ∈ S such that s(A) ⊂ V . If A is S-contractible to at least one point of X,
then A is said to be S-contractible. It has been proved by Margulis [8] that
if (X,S) is proximal and if every point of X has an S-contractible neighbor-
hood in X, then (X,S) is strongly proximal. (In [8], (X,S) is assumed to
be a compact metrizable transformation group, but with minor changes, the
proof works for any semigroup S and any compact X.) Lemma 5.1 below
shows, in an obvious way, that any S-contractible subset of X is S-strongly
proximal; consequently, Margulis’s result follows from Theorem 4.5.

5. Strong proximality without measures. In view of Theorem 4.5,
looking for a criterion for strong proximality of subsets of a given compact
flow (X,S) naturally comes to mind. The above Definition 4.1 involves the
members of M1(X); in this section, a criterion for S-strong proximality of
closed subsets of X is given without any reference to measures (Proposition
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5.2). The special case of Proposition 5.2 when (X,S) is a minimal compact
transformation group and A0 = A = X is due to Glasner [3] (cf. also [5]).

Lemma 5.1. Let (X,S) be a compact flow. Let A be a closed subset of X,
let A0 be a dense subset of A and let x ∈ X. Then the following conditions
are equivalent.

(1) δx ∈ Sµ for all µ ∈M1
A(X).

(2) For every neighborhood V of δx inM1(X), there exists a finite subset
F of S such that {µ ∈M1

A(X) | ∃s ∈ F , sµ ∈ V } =M1
A(X).

(3) For every neighborhood V of δx inM1(X), there exists a finite subset
F of S such that {µ ∈ M1

A(X) | ∃s ∈ F , sµ ∈ V } is dense in
M1

A(X).
(4) For every neighborhood V of x in X and every ε > 0, there is a

finite subset F of S such that if (x1, . . . , xn) is any finite sequence
of points in A0, then for some s ∈ F all sxi are in V except for at
most [nε] indices i ∈ {1, . . . , n}.

Proof. (1)⇒(2): Let V(δx) denote the set of all neighborhoods of δx in
M1(X). Let V ∈ V(δx) and let U be its interior inM1(X). For every s ∈ S,
the subset Ωs of M1

A(X) defined by Ωs = {µ ∈ M1
A(X) | sµ ∈ U} is open

[12], and by (1),
⋃
s∈S Ωs = M1

A(X). Since the space M1
A(X) is compact,

there exists a finite subset F of S such that
⋃
s∈F Ωs =M1

A(X), and since
U ⊂ V , {µ ∈M1

A(X) | ∃s ∈ F , sµ ∈ V } is equal to M1
A(X).

(2)⇒(3) is obvious.
(3)⇒(1): Let V ∈ V(δx). Let us choose a finite subset F of S such that

the set B = {µ ∈ M1
A(X) | ∃s ∈ F , sµ ∈ V } is dense in M1

A(X). The
inclusion B ⊂

⋃
s∈F s

−1(V ) implies

M1
A(X) = B ⊂

⋃
s∈F

s−1(V ) =
⋃
s∈F

s−1(V ).

If µ ∈ M1
A(X), then there is s ∈ F such that µ ∈ s−1(V ), and since s is

continuous,
sµ ∈ s(s−1(V )) ⊂ s(s−1(V )) ⊂ V ;

consequently, Fµ ∩ V 6= ∅. It follows that for each fixed µ in M1
A(X), the

collection {Sµ ∩ V | V ∈ V(δx)} of closed subsets of M1(X) has the finite
intersection property. The space M1(X) being compact, the intersection of
this collection is nonempty, and since

⋂
V ∈V(δx) V = {δx}, we conclude that

δx ∈ Sµ.
(3)⇔(4): For every open subset G of X and for every ε > 0, let ΩG,ε =

{µ ∈ M1(X) | µ(G) > 1 − ε}. It is well known that the collection of
all those ΩG,ε which contain δx is a fundamental system of neighborhoods
of x in M1(X) [12]. Consequently, the equivalence between (3) and (4) is



168 A. BOUZIAD AND J.-P. TROALLIC

established if we observe that {n−1
∑n

i=1 δxi | x1, . . . , xn ∈ A0, n ≥ 1} is
dense in M1

A(X), and that for every x1, . . . , xn ∈ A0 and every s ∈ S,
s(n−1

∑n
i=1 δxi) belongs to ΩG,ε if and only if all sxi are in G except for at

most [nε] indices i ∈ {1, . . . , n}.

Proposition 5.2. Let (X,S) be a compact flow which has a unique
minimal subset M , and let x ∈ M . Let A be a closed subset of X, and
let A0 be a dense subset of A. Then the following conditions are equiva-
lent.

(1) A is an S-strongly proximal subset of X.
(2) δx ∈ Sµ for every µ ∈M1

A(X).
(3) For every neighborhood V of x in X and every ε > 0, there is a

finite subset F of S such that if (x1, . . . , xn) is any finite sequence
of points in A0, then for some s ∈ F all sxi are in V except for at
most [nε] indices i ∈ {1, . . . , n}.

Proof. Let N = {y ∈ X | ∀µ ∈ M1
A(X), δy ∈ Sµ}. By Lemma 4.2, A is

S-strongly proximal if and only if N 6= ∅. The closed and S-stable subset N
of X being nonempty if and only if M ⊂ N , and M being contained in N
if and only if x ∈ N , conditions (1) and (2) are equivalent. By Lemma 5.1,
(2)⇔(3).

To see whether a subset A of a compact flow (X,S) is S-strongly proxi-
mal, we have to check whether the compact subsets of A are (by Definition
4.1(2)). Proposition 5.4 below provides us with a description of the S-strong
proximality of arbitrary subsets of X in the spirit of the definition given in
4.1(1) for closed subsets.

Lemma 5.3. Let (X,S) be a compact flow and let µ ∈M1(X). Suppose
that there exists a collection K of S-strongly proximal closed subsets of X
which is stable under finite unions and satisfies sup{µ(A) | A ∈ K} = 1.
Then Sµ ∩ δX 6= ∅.

Proof. For every A ∈ K, let NA = {x ∈ X | ∀ν ∈ M1
A(X), δx ∈ Sν}.

As K is stable under finite unions, Lemma 4.2 shows that the collection
{NA | A ∈ K} of closed subsets of X has the finite intersection property;
therefore, X being compact,

⋂
A∈KNA is nonempty and we can choose a

point x in this intersection. As in the proof of Theorem 4.5, there is ν ∈ Sµ
such that ν({x}) = sup{ν ′({x}) | ν ′ ∈ Sµ}. By Lemma 4.4, sup{ν ′({x}) |
ν ′ ∈ Sµ} = 1; consequently, ν = δx and since ν ∈ Sµ, δx belongs to
Sµ ∩ δX .

Proposition 5.4. Let (X,S) be a compact flow and let A be any subset
of X. Then the following conditions are equivalent.
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(1) A is an S-strongly proximal subset of X.
(2) Sµ∩δX 6= ∅ for every µ ∈M1(X) such that µ∗(A) = 1 (µ∗(A) being

the inner measure of A relative to µ).

Proof. (1)⇒(2): Let B(X) be the Borel σ-algebra of X; by definition,
µ∗(A) = sup{µ(B) | A ⊃ B ∈ B(X)} for every µ ∈ M1(X). Let K be the
collection of all compact subsets of A. Then K is stable under finite unions,
and µ∗(A) = sup{µ(K) | K ∈ K} (by regularity of µ). Consequently, by
Lemma 5.3, if µ∗(A) = 1 and if A is S-strongly proximal (i.e. if any K ∈ K
is S-strongly proximal), then Sµ ∩ δX 6= ∅.

(2)⇒(1): Let K be any compact subset of A and let µ ∈M1(X) be such
that µ(K) = 1. Since µ∗(A) = 1, Sµ ∩ δX 6= ∅ by hypothesis. Consequently,
K is S-strongly proximal, and by definition, so is A.

As noted by Margulis [8], if (M,G) is a proximal compact metrizable
transformation group and if µ is a discrete Borel probability on M , then
Gµ ∩ δM 6= ∅. Our concluding remark is closely related to that of Margulis.

Remark 5.5. A topological space is said to be scattered if each of its
nonempty subsets contains an isolated point. It is called σ-scattered if it is
a countable union of scattered subspaces. If (X,S) is a proximal compact
flow and if A is a σ-scattered subspace of X, then A is S-strongly proximal.
Indeed, if A is finite, this follows from Lemma 4.3; if A is countable, it follows
from the finite case and from Lemma 5.3; if A is compact and scattered, it
follows from the countable case and from the fact that every µ ∈M1(A) is
discrete (i.e., there is a countable subset of A with full measure) [11]; finally,
the general case follows from the fact, proved in [7], that every compact
subspace of a σ-scattered space is scattered.
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