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LIMITS OF TILTING MODULES

BY

CLEZIO A. BRAGA (Cascavel) and FLÁVIO U. COELHO (São Paulo)

Abstract. We study the problem of when a direct limit of tilting modules is still a
tilting module.

Tilting theory first appeared in the context of finitely generated modules
over artin algebras [12, 18] (see also [5]). Due to its success in this setting,
several generalizations were considered. In this work we shall investigate
when a direct limit of tilting modules is still a tilting module.

The motivation for the construction of such direct limits was inspired
by the work of Buan and Solberg [13] who established conditions for an
inverse limit of finitely generated cotilting modules to be still a cotilting
module. Unfortunately, their proof cannot be dualized to tilting modules.
In this paper, we shall use the notion of special preenvelope to prove a similar
result for tilting modules (see 1.4 for definitions).

Let R be a ring with unity. We say that a (not necessarily finitely gener-
ated) R-module T is tilting provided: pdT <∞; ExtiR(T, T (I)) = 0 for each
i ≥ 1 and all sets I; and there exists an exact sequence

0→ R
f0−→ T0

f1−→ · · · fr−→ Tr → 0

with Ti ∈ AddT for each 0 ≤ i ≤ r (see [1, 2]). Our main result is as follows
(see Section 1 for further definitions).

Theorem. Let R be a ring and {T i}i∈N be a sequence of tilting modules
such that AddT i 6= AddT j if i 6= j, T i+1 ∈ (T i)⊥ and pdT i ≤ n. Then there
exists another sequence {T i}i∈N of tilting modules with AddT i = AddT i,
T i+1 ∈ (T i)⊥ and pdT i ≤ n for some n ≥ 1. This latter sequence is a direct
system of monomorphisms such that T = lim−→i∈N T

i is a tilting module in
ModR and pdT ≤ n+ 1.

In [11], we apply this result to the class of tilted algebras to construct
infinitely generated tilting modules. The paper is organized as follows. After
some preliminaries in Sections 1 and 2, we prove the above result in Section 3.
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1. Preliminaries

1.1. Throughout this work, R will denote a ring with unity. We shall de-
note by ModR (modR) the category of all (finitely generated, respectively)
left R-modules, while FP∞(R) will denote the (full) subcategory of modR
generated by the modules which admit countable projective resolutions in
modR.

Given M ∈ ModR and i ∈ N, denote by Ωi(M) the class of all ith
syzygy modules occurring in a projective resolution of M . Set Ω0 = {M}
and Ω(M) =

⋃
i∈NΩ

i(M). Analogously, denote by Ω−i(M) the class of all
ith cosyzygy modules occurring in an injective coresolution of M .

1.2. Let C ⊆ ModR be a class of modules. We say that C is resolving (or
coresolving) provided: (i) C contains all projective (injective, respectively)
modules; (ii) C is closed under direct summands and extensions; and (iii)
C is closed under kernels of epimorphisms (cokernels of monomorphisms,
respectively).

Define, for each i ≥ 1,

C⊥i = Ker Exti(C, ), ⊥iC = Ker Exti( , C),

and
C⊥ =

⋂
i≥1

Ker Exti(C, ), ⊥C =
⋂
i≥1

Ker Exti( , C).

Clearly, ⊥C is a resolving subcategory. Observe also that ⊥C ∩ modR ⊆
FP∞(R) (see [3, Lemma 1.1]).

1.3. We shall now recall the notions of preenvelope and precover intro-
duced by Enochs [15] and independently by Auslander and Smalø [8] under
the names of left and right approximations.

Let C ⊆ ModR be a class of modules and X ∈ ModR. A C-preenvelope
of X is a morphism f : X → M with M ∈ C such that the induced mor-
phism Hom(M,Y )

f∗−→ Hom(X,Y ) is surjective for all Y in C. If, moreover,
such an f is a monomorphism and Coker(f) ∈ ⊥1C, then we say that f is
a special C-preenvelope, and denote it also by (M,f). Finally, C is said to
be a preenveloping class provided each X ∈ ModR has a special preenve-
lope.

Dually, we can define (special) precovers and precovering class (see [4]
for details).

1.4. Let C = (A,B) be a pair of classes of modules in ModR. We say
that C is a cotorsion pair provided A = ⊥1B and B = A⊥1 , and we say that
C is generated by a class (or by a set) S if B = S⊥1 .
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If S ⊆ ModR is closed under syzygies, then S⊥1 = S⊥ and since S⊥ is
coresolving, it is easy to see that ⊥1(S⊥) = ⊥(S⊥). Therefore, (⊥(S⊥),S⊥)
is a cotorsion pair generated by S. Observe also that if M ∈ ModR, then
(⊥(M⊥),M⊥) is a cotorsion pair generated by the set Ω(M).

We say that a cotorsion pair (A,B) is complete provided B is a preen-
veloping class and A is a precovering class. Observe that any cotorsion pair
(A,B) which is generated by a set of modules is complete (see [14, Theo-
rem 10]).

We say that a class B of ModR is of finite type provided there exists a
class of modules S ⊆ FP∞(R) such that B = S⊥1 .

1.5. The next result will be important in our considerations. We observe
that this result was proved for i = 1 in [14, Lemma 17].

Lemma 1.1. Let C ∈ ModR and i ∈ N. Let (Aα | α ≤ µ) be a sequence
of modules and (fαβ | α ≤ β ≤ µ) be a sequence of monomorphisms such
that {(Aα, fαβ) | α ≤ β ≤ µ} is a continuous direct system. If

Exti(Aα+1/fα,α+1(Aα), C) = 0 for each α+ 1 ≤ µ,
then Exti(Aµ, C) = 0.

Proof. Consider the exact sequence obtained from an injective coresolu-
tion of C,

0→ C → I0 → I1 → · · · → Ii−1 → Qi−1 → 0.

By dimension shifting we get

0 = Exti+1(Aα+1/fα,α+1(Aα), C) ∼= Ext1(Aα+1/fα,α+1(Aα), Qi−1).

Now, by [14, Lemma 17], Ext1(Aµ, Qi−1) = 0. Using again dimension shift-
ing, we finally have Exti(Aµ, C) = 0.

1.6. Let n be a positive integer and T ∈ ModR. Following [1] (see also
[2], we say that T is n-tilting provided:

(T1) pdT ≤ n;
(T2) ExtiR(T, T (I)) = 0 for each i ≥ 1 and all sets I;
(T3) there exists an exact sequence

0→ R
f0−→ T0

f1−→ · · · fr−→ Tr → 0

with Ti ∈ AddT for each 0 ≤ i ≤ r.
A class of modules T is called n-tilting if there exists an n-tilting module

T such that T = T⊥. Observe that an n-tilting module T is of finite type
(that is, T⊥ is a finite type class; see [9, 10]). Moreover, since each cotor-
sion pair generated by a set is complete, the cotorsion pair C = (⊥T , T ) is
complete.

Dually, one defines n-cotilting modules and classes.
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2. Tilting theory

2.1. We initially present some generalizations on tilting theory from
finitely to infinitely generated tilting modules. For later reference, we men-
tion the following result and its dual. The proofs can be found in [1, p. 247].

Proposition 2.1. Let T be an r-tilting module. Then there exists an
exact sequence

0→ R
f0−→ T0

f1−→ · · · fk−→ Tk → 0

with Ti ∈ AddT for each i and such that

(a) k ≤ r,
(b) each fi is the composition of coker(fi−1) with a special T⊥-preenve-

lope of coker(fi−1),
(c) Add(

∐k
i=0 Ti) = AddT .

We will call a sequence as in the above proposition a T -coresolution
of R. If the Ti’s are finitely generated, we refer to it as a finitely generated
T -coresolution for R.

Corollary 2.2 ([13, Lemma 1]). Let R be an artin algebra and T ∈
modR be a tilting module. Then there exists a T -coresolution of R

0→ R
f0−→ T0

f1−→ · · · fr−1−−−→ Tr−1 → Tr → 0

with Ti ∈ addT and addT = add(
∐r
i=0 Ti).

2.2. We shall now present some results which will help us to relate the
orthogonal classes of two tilting (or cotilting) modules T and N and to
associate a T -coresolution of R to an N -coresolution of R (or T - and N -
resolutions of an injective cogenerator Q in the cotilting case).

Lemma 2.3. Let U and T be two tilting modules in ModR such that
U ∈ T⊥. Then U⊥ ⊆ T⊥ and pdT ≤ pdU .

Proof. Let X ∈ U⊥. Then, by [17, 5.1.9], there exists an exact sequence

(1) · · · → U1
f1−→ U0

f0−→ X → 0

with Ui ∈ AddU for each i.
Let Ki = Ker(fi). If pdT = r, it follows from the above sequence that

Exti(T,X) ∼= Extr+i(T,Kr) = 0, and so X ∈ T⊥. Hence U⊥ ⊆ T⊥ and
⊥(U⊥) ⊇ ⊥(T⊥). Therefore X ∈ ⊥(T⊥) implies that X ∈ ⊥(U⊥). So pdX ≤
pdU . In particular, pdT ≤ pdU .

The above result still holds for the category of finitely generated modules
over an artin algebra Λ since T⊥∩modΛ is a preenveloping class and ⊥(T⊥)
∩modΛ is a precover class in modΛ. For more details, see [6].
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Lemma 2.4. Let U and T be two tilting modules in ModR such that
U ∈ T⊥. Assume pdU = r for some r ∈ N. Let

0→ R
γ−→ T0

f0−→ T1
f1−→ · · · fs−1−−−→ Ts → 0

be a T -coresolution of the regular module R. Then s ≤ r and there is a
U -coresolution

0→ R
δ−→ U0

g0−→ U1
g1−→ · · · gr−1−−−→ Ur → 0

of R such that the diagram

0 // R
γ // T0

//

��

. . . // Ts //

��

0

��
0 // R

δ // U0
g0 // . . . // Us

gs // Us+1
// . . . // Ur // 0

commutes and each vertical map is a special U⊥-preenvelope or zero.

Proof. Let

0→ R
λ−→ Ũ0

z1−→ Ũ1
z2−→ Ũ2 → · · ·

zr−→ Ũr → 0

be a U -coresolution of R, which exists by Lemma 2.1, and set K0 =Coker(λ).
Then there exists a commutative diagram

0 // R
γ // T0

//

s0
��

L0
//

s0
��

0

0 // R
λ // Ũ0

p0 // K0
// 0

Indeed, since Ũ0 ∈ T⊥, there is an s0 : T0 → Ũ0 such that λ = s0 ◦ γ. By
cokernel properties, the morphism s0 : L0 → K0 makes the above diagram
commutative.

Let Li = Coker(fi) and Ki = Coker(zi) for each i > 0. Using induction,
we get, for each i > 0, the commutative diagram

0 // Li−1
γi //

si−1

��

Ti //

si

��

Li //

si

��

0

0 // Ki−1
λi // Ũi

// Ki
// 0

As before, for each i > 0, the pair (Ti, γi) is a special T⊥-preenvelope of
Li−1, and since Ũi ∈ T⊥, there exists si : Ti → Ũi such that λisi−1 = si ◦ γi.

By Lemma 2.3 and the definition of T -coresolution we obtain s ≤ pdT
≤ r.
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Iterating the above process, we obtain a commutative diagram

0 // R // T0
//

��

T1
//

��

. . . // Ts //

��

0

0 // R
λ // Ũ0

z1 // Ũ1

z2 //// . . . // Ũs
// . . . // Ũr

// 0

It remains to show that the vertical maps are special U⊥-preenvelopes or
zeros.

Let j0 : L0 → U0 be a special U⊥-preenvelope of L0. First we observe
that L0 ∈ ⊥(T⊥) ⊂ ⊥(U⊥).

Since Coker(j0) ∈ ⊥(U⊥), then U0 ∈ U⊥ ∩ ⊥(U⊥) = AddU . So, we get
a commutative diagram

0 // R
γ // T0

//

(s0,j0◦coker(γ))
��

L0

(s0,j0)
��

// 0

0 // R
(λ,0) // Ũ0 q U0“

p0 0
0 id

”// K0 q U0
// 0.

Since j0 is a monomorphism, so is (s, j0). It now follows from the five lemma
that (s0, j0 ◦ coker(γ)) is a monomorphism.

An easy calculation shows that (Ũ0 q U0, (s0, j0 ◦ coker(γ))) is a special
U⊥-preenvelope of T0.

Observe now that Coker(λ, 0) ∼= Coker(λ) q U0 is in ⊥(U⊥), and so
(Ũ0 q U0, (λ, 0)) is also a special U⊥-preenvelope of R.

By induction, we have

0 // Li−1

(si−1,ji−1)
��

// Ti

(si,γi)
��

// Li

(si,ji)

��

// 0

0 // Ki−1 q U i−1
// Ũi−1 q U i−1 q U i // Ki q U i // 0

with (Ũi−1qU i−1qU i, (si, γi)) a special U⊥-preenvelope of Ti, as required.

3. Tilting limits. In [1], Angeleri-Hügel and Coelho presented an ex-
ample of an infinitely generated n-tilting module constructed from a direct
sum of copies of a finitely generated n-tilting module M (see [1, 2.1]). Based
on this idea, Buan and Solberg built in [13] a dual example for n-cotilting
modules. They used a sequence of finitely generated n-cotilting modules and
built an inverse system of n-cotilting modules (not exactly the same as in the
first sequence) which has as inverse limit an infinitely generated n-cotilting
module.
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Our aim here is to use this process for a general direct limit of n-tilting
modules to get a new infinitely generated (n+ 1)-tilting module.

3.1. A direct system of tilting modules. This section is devoted to con-
structing a direct system of tilting modules. The procedure we describe
below is dual to that used by Buan and Solberg in [13], but the modules we
consider do not need to be finitely generated.

Let R be a ring and {T 0, T 1, . . .} be a sequence of tilting modules such
that AddT i 6= AddT j if i 6= j. Suppose that T i+1 ∈ (T i)⊥ and there exists
an n such that pdT i ≤ n for each i ∈ N.

It then follows, by Lemma 2.3, that (T i+1)⊥ ⊆ (T i)⊥ for each i ∈ N.
Now, using induction and Lemma 2.4, we get a commutative diagram

(2)

0 // R // T 0
1

//

f0
1

��

T 0
2

//

f0
2

��

T 0
3

//

f0
3

��

. . . // T 0
n

//

��

0

0 // R // T 1
1

//

f1
1

��

T 1
2

//

f1
2

��

T 1
3

//

f1
3

��

. . . // T 1
n

//

��

0

0 // R // T 2
1

//

f2
1

��

T 2
2

//

f2
2

��

T 2
3

//

f2
3

��

. . . // T 2
n

//

��

0

...
...

...
...

...
...

where some T ij may be zeros, and each nonzero morphism f ij : T ij → T i+1
j is

a special (T i+1)⊥-preenvelope of T ij .
These morphisms form a direct system in each column of diagram (2).
Consider now, for j = 1, . . . , n, the direct limit lim−→i∈N T

i
j and denote it

by Tj . Clearly, N is a directed set and so the direct limit is an exact functor.
So we have the exact sequence

0→ R→ T1 → T2 → · · · → Tn → 0.

Adding the morphisms f ij in each line, we get a direct system {T i, f i}i∈N,
where f i =

∐n
j=1 f

i
j and T i =

∐n
j=1 T

i
j . Set T =

∐n
j=1 Tj . Then

T =
n∐
j=1

Tj =
n∐
j=1

lim−→
i∈N

T ij
∼= lim−→

i∈N

n∐
j=1

T ij = lim−→
i∈N

T i.

Since (T i)⊥ ⊆ (T l)⊥ if i ≥ l, we have Extm(T l, T i) = 0 for all m > 0 and
i ≥ l.

This is the dual diagram to that obtained in [13] for the inverse system
of finitely generated cotilting modules.
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3.2. Direct limits of tilting modules. We now prove our main result, that
is, that the module lim−→i∈N T i, constructed as above, is an infinitely generated
(n+ 1)-tilting module.

Theorem 3.1. Let R be a ring and {T i}i∈N be a sequence of tilting
modules such that AddT i 6= AddT j if i 6= j, T i+1 ∈ (T i)⊥ and pdT i ≤ n.
Then there exists another sequence of tilting modules {T i}i∈N with AddT i =
AddT i, T i+1 ∈ (T i)⊥ and pdT i ≤ n. This latter sequence consists of a
direct system of monomorphisms such that T = lim−→i∈N T

iis a tilting module
in ModR and pdT ≤ n+ 1.

Proof. First, consider the sequence {T i}i∈N obtained from the original
sequence {T i}i∈N from diagram (2).

We know that T i is a tilting R-module and that AddT i = AddT i by
Proposition 2.1, so (T i)⊥ = (T i)⊥. Hence T i+1 ∈ (T i)⊥ = (T i)⊥.

It remains to show that T is an (n + 1)-tilting module. Condition (T3)
is clear by the above construction.

In order to prove (T2), we first observe that since Extm(T l, T i) = 0 for
m > 0 and i ≥ l, and since (T l)⊥ is closed under direct limits, it follows
that T (I) belongs to (T l)⊥ for any index set I.

Let C l+1
k be the cokernel of f lk for each l ≥ 0, and set C0

k = T 0
k . Hence,

there exists for each k ∈ {1, . . . , n} an exact sequence

0→ T lk
f l

k−→ T l+1
k → C l+1

k → 0.

Taking the coproducts of these sequences we get another exact sequence

(3) 0→ T l
f l

−→ T l+1 →
n∐
k=1

C l+1
k → 0.

Observe that f l is a special (T l+1)⊥-preenvelope. Since T (I) ∈ (T l)⊥ for all
l ≤ 0, applying the functor Hom( , T (I)) to this sequence, we obtain

Hom(T l+1, T (I))
(f l)∗−−−→ Hom(T l, T (I))→ Ext1

( n∐
k=1

C l+1
k , T (I)

)
→ 0.

It then follows, using the fact that f l is a special (T l+1)⊥-preenvelope, that
Ext1(

∐n
k=1C

l+1
k , T (I)) = 0. Using a similar argument we can deduce from

the exact sequence in (3) that

Extm
( n∐
k=1

C0
k , T

(I)
)

= 0 and Extm
( n∐
k=1

C l+1
k , T (I)

)
= 0,

for all m > 1. Condition (T2) now follows from Lemma 1.1.
Now, since pdT i ≤ n by construction, we deduce from sequence (3) that

pd(
∐n
k=1C

l+1
k ) ≤ n + 1. Hence Extm(

∐n
k=1C

l+1
k , A) = 0 for all m > n + 1
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and all modules A. By 1.1, we deduce that Extm(T,A) = 0 for all m > n+1
and all modules A. Hence pdT ≤ n+ 1 and condition (T1) is also proved.

Proposition 3.2. Let T = lim−→i∈N T
i be as in Theorem 3.1. Then

T⊥ =
⋂
i∈N

(T i)⊥.

Proof. By the proof of Theorem 3.1, T = lim−→i∈N T
i ∈ (T i)⊥ for all i ∈ N.

Then T ∈
⋂
i∈N(T i)⊥. Since each T i is a tilting module, Lemma 2.3 yields

T⊥ ⊂
⋂
i∈N(T i)⊥. Conversely, let X ∈

⋂
i∈N(T i)⊥. Then

Extm
( n∐
k=1

C lk, X
)

= 0

for all l ≥ 0, and so Extm(lim−→i∈N T
i, X) = 0, by Lemma 1.1. Therefore

X ∈ T⊥. Hence T⊥ =
⋂
i∈N(T i)⊥.

For completeness, we state the similar result proved by Buan and Solberg
[13] on inverse limits of cotilting modules.

Theorem 3.3. Let {Ci}i∈N be a sequence of cotilting modules with idCi
≤ n for some n > 0, such that Ci ∈ ⊥Ci−1 for each i > 0. Then the inverse
limit X = lim←−i∈NCi is an infinitely generated cotilting module with idX ≤ n.

We finish this work by exhibiting an example to illustrate the above
construction. Recall that an artin algebra Λ is hereditary if each submodule
of a projective Λ-module is also projective, or equivalently, if gldimΛ ≤ 1.

Example. Let Λ be a representation-infinite, basic and indecomposable
hereditary artin algebra. Consider the decomposition T0 = Λ =

∐n
i=1 Pi of Λ

into indecomposable projective Λ-modules. For each j ∈ N, we define Tj =∐n
i=1 τ

−jPi, where τ denotes the Auslander–Reiten translation (see [7]).
Then the sequence {Ti}i∈N satisfies the conditions of Theorem 3.1.

In fact, since Λ is hereditary, we have pdTi ≤ 1 for each i ∈ N.
Let now j, l satisfy 1 ≤ j ≤ l ≤ n. Then

Ext1(Tj , Tl) ∼=
∐
i,k

Ext1(τ−jPi, τ−lPk) ∼=
∐
i,k

DHom(τ−lPk, τ−j+1Pi) = 0.

by the Auslander–Reiten formula. Therefore Tj is selforthogonal and Tl ∈ T⊥j
for j ≤ l. Since all Tj decompose into sums of the same number of noniso-
morphic simple Λ-modules, each Ti is a finitely generated 1-tilting module.
Moreover, addTj+1 6= addTj if i 6= j. By Azumaya decomposition ([16,
Theorem 21.6]) we have AddTi 6= AddTj if i 6= j. Hence, there exists an
infinitely generated tilting module as that in 3.1 over hereditary algebras.
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Let H be the finite-dimensional hereditary algebra given by the quiver

The picture below shows a sequence of tilting modules constructed as above
in the postprojective component of the Auslander–Reiten quiver of H.

Fig. 1. Tilting sequence for the hereditary algebra H
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