COLLOQUIUM MATHEMATICUM
 VOL. $115 \quad 2009 \quad$ NO. 2

EUCLIDEAN COMPONENTS FOR A CLASS OF SELF-INJECTIVE ALGEBRAS

BY
SARAH SCHEROTZKE (Oxford)

Abstract

We determine the length of composition series of projective modules of G-transitive algebras with an Auslander-Reiten component of Euclidean tree class. We thereby correct and generalize a result of Farnsteiner [Math. Nachr. 202 (1999)]. Furthermore we show that modules with certain length of composition series are periodic. We apply these results to G-transitive blocks of the universal enveloping algebras of restricted p-Lie algebras and prove that G-transitive principal blocks only allow components with Euclidean tree class if $p=2$. Finally, we deduce conditions for a smash product of a local basic algebra Γ with a commutative semisimple group algebra to have components with Euclidean tree class, depending on the components of the Auslander-Reiten quiver of Γ.

1. Introduction. The stable Auslander-Reiten quiver of a finite-dimensional algebra can be viewed as part of a presentation of the stable module category, and it is an important invariant which has many applications. It is a locally finite graph, where the vertices correspond to the isomorphism classes of indecomposable modules. Each connected component is isomorphic to $\mathbb{Z}[T] / \Gamma$ where T is a tree, and Γ is an admissible group of automorphism. (See [Ben, 4.15.6] for details.)

For many self-injective algebras it is known that the possibilities for T are restricted: it can only be Dynkin, or Euclidean, or one of a few infinite trees (see [W], [E], [ES]). In this paper we study algebras with Euclidean components. Recently the study of self-injective algebras with Euclidean Auslander-Reiten components has attracted much attention, for example all self-injective algebras of Euclidean type have this property (see the survey article [Sk, Section 4]).

These have also been studied in the context of reduced enveloping algebras by Farnsteiner, and we discovered that [F2, 4.6] is not correct. In Theorem [F2, 4.6] Farnsteiner proves a necessary condition for certain blocks of universal enveloping algebras $u(L, \chi)$ of a restricted p-Lie algebra L with $p>2$ to have an Auslander-Reiten component with Euclidean tree class.

[^0]Unfortunately one crucial step in the proof is wrong. As all other results in the case of \tilde{D}_{n}-tree class depend on this step, we need a different proof and theorem.

In the first section we give a proof for the more general setup of G transitive blocks of Frobenius algebras in any characteristic.

In the second section we apply the main result of the first section to G transitive blocks of $u(L, \chi)$. We show that some of the results of Farnsteiner's paper remain true while others need additional assumptions. We can show that a G-transitive principal block of $u(L, \chi)$ does not have Auslander-Reiten components of Euclidean tree class if $p>2$.

In the last section we determine conditions for the smash product of a basic local algebra Γ and a semisimple commutative group algebra to have Auslander-Reiten components of Euclidean tree class depending on the tree class of components of Γ.

Let B be an indecomposable Frobenius algebra. We introduce for a group $G \subset \operatorname{Aut}(B)$ the G-transitive algebra B. This means that G acts transitively on the set of simple modules in B. We denote by $l(P)$ the length of an indecomposable projective module P. We show in 3.3, 3.11, 3.7 that the following holds for G-transitive algebras that have Auslander-Reiten components of Euclidean tree class:
(1) All non-periodic Auslander-Reiten components are isomorphic to either $\mathbb{Z}\left[\tilde{A}_{1,2}\right]$ or $\mathbb{Z}\left[\tilde{D}_{n}\right]$ for n odd and $n>5$.
(2) In the first case $l(P)=4$ and all indecomposable modules of length $0 \bmod l(P)$ and $2 \bmod l(P)$ are periodic.
(3) In the second case $l(P)=8$ and all indecomposable modules of length $4 \bmod l(P)$ are periodic.

In [F2] Farnsteiner introduces $G(L)$, the group of group-like elements of $u^{*}(L)$, and shows that it can be embedded into the automorphism group of $u(L, \chi)$. He proves for $G(L)$-transitive blocks over a field of characteristic $p>2$ (see $[\mathrm{F} 2,4.6])$ that:
(1) All non-periodic Auslander-Reiten components are isomorphic to either $\mathbb{Z}\left[\tilde{A}_{1,2}\right]$ or $\mathbb{Z}\left[\tilde{D}_{5}\right]$. All indecomposable modules of length 2 are periodic.
(2) In the first case $l(P)=4$.
(3) In the second case $l(P)=8$.

For his results in the case of tree class \tilde{D}_{n} he first shows that $n=5$. As this step is wrong, a different proof was needed for the more general setup. In the new proof we can show that $n>5$, which contradicts Farnsteiner's result.

Additionally we show that the number of non-periodic components is equal to the number of isomorphism types of simple modules in B.

In the second section we can verify Farnsteiner's statement that supersolvable algebras in characteristic $p>2$ do not have Auslander-Reiten components of Euclidean tree class. An example in [E, 2.3] shows that this statement is wrong for $p=2$. We also show in 4.2 that if B is a G-transitive block of $u(L, \chi)$ that has an Auslander-Reiten component of Euclidean tree class, then $p=2$ or the dimension of a simple module in B is divisible by 2 .

In the last section we introduce the smash product of a basic local algebra Γ and a semisimple group algebra $k G$, where $G \subset \operatorname{Aut}(\Gamma)$ is an abelian group. We show that the smash products are special cases of G-transitive algebras and describe how to construct the Gabriel quiver of the smash product from the Gabriel quiver of Γ.

For a finite-dimensional algebra A, we introduce $G(A)$, the free abelian group with basis the isomorphism types of indecomposable modules. We have a bilinear form $(-,-)_{A}$ induced by $\operatorname{dim}_{k} \operatorname{Hom}_{A}(-,-)$ defined on $G(A)$. We develop some properties of this bilinear form in 5.6, 5.7.

We use these general results to show in 5.15 that Auslander-Reiten sequences of the smash product restricted to Γ are sums of Auslander-Reiten sequences in Γ that are twists of each other. Using this result, we prove that the smash product has an Auslander-Reiten component of tree class \tilde{D}_{n} if and only if Γ has an Auslander-Reiten component of tree class \tilde{D}_{n}. If the smash product has an Auslander-Reiten component of tree class $\tilde{A}_{1,2}$, then so does Γ. The converse is not true, as we show by providing a counterexample. We can in this case restrict the component to $Z\left[\tilde{A}_{12}\right]$ and $\mathbb{Z}\left[\tilde{A}_{n}\right]$ for certain $n \in \mathbb{N}$ (see 5.17).
2. Euclidean components for G-transitive algebras. For general background on Auslander-Reiten theory we refer to [ASS] or [Ben]. Let F be a field, let B be an indecomposable Frobenius algebra over F with Nakayama automorphism ν and let P be a projective indecomposable B-module. We denote by τ the Auslander-Reiten translation of B. As B is a Frobenius algebra, we have $\tau \cong \Omega^{2} \nu$ by [Ben, 4.12.9]. Furthermore, we denote by B-mod the category of finite-dimensional left B-modules.

Let $\alpha \in \operatorname{Aut}(B)$ and $M, N \in B-\bmod$. Then we denote by M_{α} the module which is isomorphic to M as an abelian group and the action of B on M_{α} is given by $b . m:=\alpha(b) m$ for all $b \in B$ and $m \in M$. We denote by $l(M)$ the length of the composition series of M, by $c(M)$ its complexity and by $\operatorname{Irr}(M, N)$ the space of irreducible maps from M to N.

Let G be a subgroup of $\operatorname{Aut}(B)$. We call B a G-transitive block if for any two simple left B-modules V and W there is an element $g \in G$ such that $V_{g} \cong W$. We denote by $T_{s}(B)$ the stable Auslander-Reiten quiver of B.

From now on we assume that B is G-transitive.
We first prove a result on the length of the modules appearing at the end of an Auslander-Reiten sequence.

Lemma 2.1. Let M be an indecomposable, non-projective B-module. Then $l(\tau(M))=l(M)+n l(P)$ for some $n \in \mathbb{Z}$.

Proof. As B is G-transitive all projective indecomposable modules of B have the same length. Therefore the length of projective covers of left B modules are multiples of $l(P)$. It follows that for all $i \in \mathbb{N}$ there is an $n \in \mathbb{Z}$ such that $l\left(\Omega^{i}(M)\right)=l(M)+n l(P)$. Therefore $l(\tau(M))=l\left(\Omega^{2}\left(M_{\nu^{-1}}\right)\right)=$ $l\left(M_{\nu^{-1}}\right)+n l(P)=l(M)+n l(P)$ for some $n \in \mathbb{Z}$.

The next lemma proves a condition which ensures that all indecomposable length 2 modules of a block have complexity one.

Lemma 2.2. Suppose P has length 4. Then every indecomposable B module of length 2 has complexity one.

Proof. Let M be an indecomposable B-module of length 2 . The module M has a simple top and therefore an indecomposable projective cover. Then $\Omega(M)$ is also an indecomposable length 2 module and has therefore an indecomposable projective cover. It follows that $l\left(\Omega^{n}(M)\right)=2$ for all $n \in \mathbb{N}$. Therefore the complexity of M is one.

In general not every module of a Frobenius algebra with complexity one is periodic. In particular, the periodicity need not hold for an algebra with Auslander-Reiten component of Euclidean tree class, as is shown in the next

Example 2.3 ([SM]). Let $A_{q}:=F\langle x, y\rangle /\left(x^{2}, y^{2}, x y-q y x\right)$ where $q \neq 0$ and where q is not a root of unity. Let $M_{\gamma}=\operatorname{Span}\{v, x v\}$ be the twodimensional module with $y v=\gamma x v$ for $\gamma \in F^{*}$. The projective cover of M_{γ} is given by $\pi: A_{q} \rightarrow M_{\gamma}$ with $\pi(1)=v$. Then $\Omega\left(M_{\gamma}\right)=\operatorname{Span}\{x y, y-\gamma x\}$ $\cong M_{\gamma q}$. As q is not a root of unity we have $\Omega^{k}\left(M_{\gamma}\right) \not \neq M_{\gamma}$ for all $k \in \mathbb{N}$. Therefore M_{γ} is not periodic but has complexity one. Furthermore, the Auslander-Reiten component containing the simple module is isomorphic to $\mathbb{Z}\left[\tilde{A}_{12}\right]$.

In the case of Auslander-Reiten components of Euclidean tree class, we know that the simple modules are non-periodic.

Lemma 2.4. Suppose that $T_{s}(B)$ has a component θ of Euclidean tree class. Then all simple modules are non-periodic and lie in an AuslanderReiten component isomorphic to θ.

Proof. As θ has Euclidean tree class it is attached to a projective indecomposable module P by [W, 2.4] and [ASS, IV, 5.5]. If $l(P)<4$, then $l(P)$ is uniserial, which is a contradiction to the Euclidean tree class by
[Ben, 4.16.2]. As P is attached to θ the indecomposable module $P / \operatorname{soc} P$ lies in θ. The map induced by Ω restricted to θ is an isomorphism. Therefore $\Omega(P / \operatorname{soc} P)=\operatorname{soc} P$ is contained in a component isomorphic to θ. So $\operatorname{soc}(P)$ is not periodic. As B is G-transitive, all simple modules are non-periodic and lie in components isomorphic to θ.

We define certain stable graph automorphisms for G-transitive blocks with an Auslander-Reiten component θ of Euclidean tree class. Note that by [W, 2.4] and [ASS, IV, 5.5], there is at least one projective indecomposable module P attached to θ. Those maps have been defined in the proof of [F2, 4.6] similarly.

Definition 2.5. Suppose that the stable Auslander-Reiten quiver $T_{s}(B)$ has a component θ of Euclidean tree class. Define $\phi_{g}: T_{s}(B) \rightarrow T_{s}(B)$ by $M \mapsto \Omega\left(M_{g}\right)$. Then ϕ_{g} is a stable graph isomorphism. For any $g \in G$ define the $\operatorname{map} A_{g}: T_{s}(B) \rightarrow T_{s}(B)$ by $M \mapsto M_{g}$. We denote by θ_{g} the component of $T_{s}(B)$ which is the image of $A_{g}(\theta)$.

For the rest of the section we fix, for any component θ of Euclidean tree class, a projective indecomposable module P that is attached to θ and an element $g \in G$ such that $\phi:=\left.\phi_{g}\right|_{\theta}$ is an automorphism of θ. Furthermore, let $S:=\phi(P / \operatorname{soc} P)$.

Also $\left.\phi_{g}\right|_{\theta}$ is an automorphism of θ if and only if $P_{g^{-1}}$ is attached to $\Omega(\theta)$. We can see this as follows. If $P_{g^{-1}}$ is attached to $\Omega(\theta)$, then A_{g} induces an isomorphism from $\Omega(\theta)$ to θ and $\left.\phi_{g}\right|_{\theta}$ is an automorphism.

Suppose $\left.\phi_{g}\right|_{\theta}$ is an automorphism. Then $A_{g^{-1}}$ induces an isomorphism from θ to $\Omega(\theta)$. As P is attached to $\theta, P_{g^{-1}}$ is attached to $\Omega(\theta)$.

Note that S is a simple module that belongs to θ.
First we need to show that the twisting action of ν commutes with the twisting action of any automorphism of B.

Lemma 2.6. Let A be a Frobenius algebra. For all $g \in \operatorname{Aut}(A)$ and A modules M we have $M_{\nu g} \cong M_{g \nu}$.

Proof. Let $(-,-)$ and $\{-,-\}$ be two associative non-degenerate bilinear forms, ν and ν_{1} the corresponding Nakayama automorphisms, and let $f:=$ $(-, 1)$ and $f_{1}:=\{-, 1\}$ be the corresponding linear forms. Then $\pi: A \rightarrow A^{*}$, $a \mapsto a f$, and $\pi_{1}: A \rightarrow A^{*}, a \mapsto a f_{1}$, are B-module isomorphisms. Therefore there exist $x, y \in A$ such that $x f=f_{1}$ and $y f_{1}=f$. It follows that $x=y^{-1}$. Set $u:=\nu(x)$. Then

$$
\{a, b\}=(a b, x)=(a, b x)=(\nu(b) u, a)=\left\{\nu(b) u, a x^{-1}\right\}=\left\{u^{-1} \nu(b) u, a\right\}
$$

for all $a, b \in A$. Let $C_{u}: A \rightarrow A, a \mapsto u^{-1} a u$ for all $a \in A$. Then $\nu_{1}=C_{u} \circ \nu$.

Let $g \in \operatorname{Aut}(A)$. Then $\{-,-\}:=(-,-) \circ(g \times g)$ is an associative nondegenerate bilinear form. It has Nakayama automorphism $g^{-1} \circ \nu \circ g$ as

$$
\{a, b\}=(g(a), g(b))=(\nu(g(b)), g(a))=\left\{g^{-1}(\nu(g(b))), a\right\}
$$

for all $a, b \in A$. By the first part there exists an invertible element $u \in A$ such that $g^{-1} \circ \nu \circ g=C_{u} \circ \nu$. Therefore $M_{g \nu g^{-1}} \cong M_{C_{u} \circ \nu}$ for all left B-modules M. But $M_{\nu} \cong M_{C_{u} \circ \nu}$ via the automorphism $\phi: M_{\nu} \rightarrow M_{C_{u} \circ \nu}, m \mapsto u^{-1} m$, and therefore we conclude $M_{g \nu} \cong M_{\nu g}$.
3. Restrictions on tree classes. We say for the rest of the article that the algebra A satisfies (C) if
every module with complexity one is Ω-periodic.
We say the algebra satisfies (C^{\prime}) if
every module with complexity one is Ω-periodic and τ-periodic.
Note that if ν has finite order and (C) holds then $\left(\mathrm{C}^{\prime}\right)$ is also true. We introduce the following

Assumption 3.1. For B, we assume that all elements in G have finite order. Furthermore, we assume that B satisfies (C^{\prime}) and that $T_{s}(B)$ has a component θ of Euclidean tree class. Let P be a projective indecomposable module attached to θ.

We have the following condition for the existence of a non-periodic indecomposable module of length 3 .

Lemma 3.2. Suppose B satisfies (C). If all indecomposable modules of length 2 have complexity one, then all indecomposable modules of length 3 are non-periodic. Also there is no uniserial module of length 3 .

Proof. Every indecomposable module of length 3 has a simple top or a simple socle. Let M be an indecomposable module of length 3 with simple top. Such an element exists, because a factor module of P of length 3 has simple top and is therefore indecomposable. Then there exists an exact sequence $0 \rightarrow S \rightarrow M \rightarrow L \rightarrow 0$ such that L is an indecomposable module of length 2 and S is a simple module. Then $c(S) \leq \max \{c(M), c(L)\}$. By 2.4, S is non-periodic and therefore $c(S) \geq 2$. As $c(L)=1$, we have $c(M) \geq 2$ and therefore M has to be non-periodic. If M has a simple socle we can find an indecomposable module N of length 2 such that $0 \rightarrow N \rightarrow L \rightarrow S \rightarrow 0$ is an exact sequence. By the same argument as in the previous case, M has to be non-periodic.

We assume that there is a uniserial module M of length 3 with composition series S_{1}, S_{2}, S_{3}. Let $L=\operatorname{rad}(M)$ and $N=M / S_{3}$. Then an exact
sequence is given by $0 \rightarrow L \rightarrow S_{2} \oplus M \rightarrow N \rightarrow 0$. As L and N are indecomposable modules of length 2 they are periodic. Therefore $c(M) \leq 1$ and M is therefore periodic. This contradicts the first part.

The proof of the next theorem goes along the lines of the proof of [F2, 4.6]. As the setup here is more general and the author uses properties of the universal enveloping algebra of restricted p-Lie algebras, we give a proof for our setup.

Theorem 3.3. Let B be as in 3.1. Then the following statements hold:
(1) θ is isomorphic to $\mathbb{Z}\left[\tilde{A}_{12}\right]$ or $\mathbb{Z}\left[\tilde{D}_{n}\right]$ with n odd.
(2) The group G acts transitively on the non-periodic components.
(3) If $\theta \cong \mathbb{Z}\left[\tilde{A}_{12}\right]$, then all projective indecomposable left B-modules have length 4. Furthermore, all indecomposable modules of length $2 \bmod 4$ and all indecomposable non-projective modules of length $0 \bmod 4$ are periodic.

Proof. Let T be the tree class of θ. Then ϕ induces a graph automorphism $f: T \rightarrow T$. Suppose f has a fixed point. Then there is an indecomposable module M in θ such that $\Omega^{2 m}\left(M_{\nu^{-m}}\right) \cong \tau^{m}(M) \cong \Omega\left(M_{g}\right)$. Therefore M has complexity one and is by assumption τ-periodic, which is a contradiction. Therefore f does not have fixed points. The only Euclidean trees which admit an automorphism without fixed points are \tilde{A}_{12} and $\left(\tilde{D}_{n}\right)_{n \geq 4}$ with n odd. We have $\theta \cong \mathbb{Z}\left[\tilde{A}_{1,2}\right]$ or $\theta \cong \mathbb{Z}\left[\tilde{D}_{n}\right]$ by [F2, 2.1]. Furthermore, all indecomposable modules which do not lie in $\Psi:=\bigcup_{w \in G} \theta_{w}$ are periodic. This can be seen as follows: let Y be an indecomposable module which is not in Ψ. We have $\Omega(\Psi)=\Psi$. Therefore the function $d_{Y}: \Psi \rightarrow \mathbb{N}, M \mapsto \operatorname{dim}_{F} \operatorname{Ext}^{1}(Y, M)$, is additive by [ES, 3.2] and bounded by [W, 2.4]. Since all simple modules are contained in Ψ by 2.4 there exists an $m \in \mathbb{N}$ such that $\operatorname{dim}_{F} \operatorname{Ext}^{n}(Y, W) \leq m$ for all $n \geq 1$ and all simple modules W, so that Y has complexity one. Therefore Y is periodic.

To prove (3) we suppose that $T=\tilde{A}_{12}$. Then the proof is the same as in [F2, 4.6]. For the convenience of the reader we include a different proof. As S and $P / \operatorname{soc} P$ are in $\theta \cong \mathbb{Z}\left[\tilde{A}_{1,2}\right]$, all modules in θ have length -1 $\bmod l(P)$ or $1 \bmod l(P)$ and two modules connected by an arrow have a different length modulo $l(P)$. The length function $l \bmod l(P)$ is additive on Auslander-Reiten sequences. Therefore $-2 \bmod l(P)=2$ and it follows that $l(P)=4$. As no modules of length $2 \bmod l(P)$ and $0 \bmod l(P)$ occur in θ, we see by (2) that all indecomposable modules of length $2 \bmod l(P)$ and all indecomposable non-projective modules of length $0 \bmod l(P)$ are periodic.

Let $\mathbb{Z}\left[\tilde{D}_{n}\right]$ be indexed as follows: $(k, 1), \ldots,(k, n+1)$ denote the k th copy of \tilde{D}_{n} for any $k \in \mathbb{Z}$:

With this notation $\tau((k, i))=(k-1, i)$.
For an indecomposable non-projective module we denote by $\bar{\alpha}(M)$ the number of predecessors of M in $T_{s}(B)$.

In order to prove our second theorem, we need the following
Lemma 3.4. Assume $T_{s}(B)$ has a component θ which is isomorphic to $\mathbb{Z}\left[\tilde{D}_{n}\right]$ with n odd. Then
(a) $\operatorname{rad} P / \operatorname{soc} P$ is indecomposable.
(b) $l(P)$ is even.
(c) All M with $\bar{\alpha}(M)=2$ or 3 have even length.

Proof. (1) We assume that $l(P)$ is even and show that (c) holds in this case. Let M be a module with $\bar{\alpha}(M)=3$. Then there exist a module N such that M is its only non-projective predecessor. Let $l(N)=a$. Then $l(M)=$ $2 a \bmod l(P)$ by Lemma 2.1. By assumption $l(P)$ is even and therefore all modules with three predecessors have even length. Consider the following extract from $\mathbb{Z}\left[\tilde{D}_{n}\right]$ where $M_{3}:=(k, 3)$ and $M_{n-1}:=(k, n-1)$ denote the isomorphism type of modules with three predecessors and $M_{t}:=(k, t)$ for $3 \leq t \leq n-1$:

We assume (c) is false and let t be minimal such that M_{t} has odd length. Suppose $t>4$. Then M_{t-2} is of even length and $\bar{\alpha}\left(M_{t-1}\right)=2$. Hence
$2 l\left(M_{t-1}\right)=l\left(M_{t}\right)+l\left(M_{t-2}\right) \bmod l(P)$. This gives a contradiction as the left hand side is an even number and the right hand side is odd. Therefore $t=4$. Then M_{5} is of even length and M_{6} of odd length. We can show that M_{s} with s odd has even length and M_{s} with s even has odd length. As n is odd, the module M_{n-1} has to be of odd length, which is a contradiction.
(2) The Auslander-Reiten sequence ending in $P / \operatorname{soc} P$ is given by

$$
0 \rightarrow \operatorname{rad} P \rightarrow P \oplus \operatorname{rad} P / \operatorname{soc} P \rightarrow P / \operatorname{soc} P \rightarrow 0 .
$$

We assume that $\operatorname{rad} P / \operatorname{soc} P$ is decomposable.
Then $\bar{\alpha}(P / \operatorname{soc} P)>1$. There exists no module N such that $0 \rightarrow \tau(N) \rightarrow$ $S \rightarrow N \rightarrow 0$ is an Auslander-Reiten sequence. Any projective indecomposable module Q appears only as a summand of the middle term of an Auslander-Reiten sequence with middle term $Q \oplus \operatorname{rad} Q / \operatorname{soc} Q$ and $S \neq$ $\operatorname{rad} Q / \operatorname{soc} Q$ because $l(Q)>3$. So there exists no Auslander-Reiten sequence of the form $0 \rightarrow \tau(N) \rightarrow S \oplus Q \rightarrow N \rightarrow 0$ with Q non-zero. Therefore $\bar{\alpha}(S) \neq 3$. As ϕ maps $P / \operatorname{soc} P$ to S we have $\bar{\alpha}(S)=\bar{\alpha}(P / \operatorname{soc} P)$. Therefore $\bar{\alpha}(S)=\bar{\alpha}(P / \operatorname{soc} P)=2$. For $n=5$ all modules have either one or three predecessors, so that $n>5$. Suppose $l(P)$ is even. Then (1) shows that all modules with two or three predecessors in θ are of even length. As S is not of even length, this is a contradiction. Therefore $l(P)$ is odd. Let M_{1} be a module of length a with only one predecessor M_{3}. Then $l\left(M_{3}\right)=2 a \bmod l(P)$. For the other module M_{2} with the only predecessor M_{3} and length \bar{a} we have $2 \bar{a}=2 a \bmod l(P)$. As $l(P)$ is odd this gives us $\bar{a}=a \bmod l(P)$. We can deduce that $l\left(M_{4}\right)+2 a=4 a \bmod l(P)$ and therefore $l\left(M_{4}\right)=2 a \bmod l(P)$. It follows inductively that $l\left(M_{i}\right)=2 a \bmod l(P)$ for all modules with two predecessors. Therefore we have $-1=2 a \bmod l(P)$ and $1=2 a \bmod l(P)$ as $P / \operatorname{soc} P$ and S are modules with two predecessors. This is a contradiction as $l(P)$ is odd. This proves (a).
(3) The only predecessor of $P / \operatorname{soc} P$ is $\operatorname{rad} P / \operatorname{soc} P$. As $S=\phi(P / \operatorname{soc} P)$, we have $\bar{\alpha}(S)=1$. The predecessor of S has length $2 \bmod l(P)$ and the predecessor of $P / \operatorname{soc} P$ has length $-2 \bmod l(P)$ by the argument of (2).

Suppose that $l(P)$ is odd. If $n=5$ this is a contradiction. If $n>5$, then by (2) all modules with two predecessors have length $2 \bmod l(P)$ and $-2 \bmod l(P)$, which is a contradiction as $l(P)$ is odd. Therefore (b) holds. Then (1) proves (c).

We also need the following
Lemma 3.5. Suppose $T_{s}(B)$ has a component θ of tree class \tilde{D}_{n}. Then
(1) $l(P)>4$.
(2) $P / \operatorname{soc} P$ and S have one predecessor each, and the τ-orbits of their predecessors are different.

Proof. We set $l:=l(P)$. We know by Lemma 3.4 that $\operatorname{rad} P / \operatorname{soc} P$ is indecomposable.

It was shown in the proof of 2.4 that $l \geq 4$. Suppose now that $l=4$. Then by Lemma 2.2 all indecomposable modules of length 2 are periodic. By 3.4, $\operatorname{rad} P / \operatorname{soc} P$ is indecomposable and therefore periodic. As P is attached to θ, the module $\operatorname{rad} P / \operatorname{soc} P$ also belongs to θ, which is a contradiction by [Ben, 4.16.2]. Therefore $l>4$.

From (3) of the proof of 3.4 we know that S and $P / \operatorname{soc} P$ have only one predecessor of length $2 \bmod l$ and $-2 \bmod l$ respectively. As $l \neq 4$ and by 2.1 their predecessors do not lie in the same τ-orbit.

We can now deduce the length of projective indecomposable modules if the Auslander-Reiten quiver has components $\mathbb{Z}\left[\tilde{D}_{5}\right]$.

Proposition 3.6. Let B be as in 3.1. Suppose $T_{s}(B)$ has a component θ of tree class \tilde{D}_{5}. Then $l(P)=8$ and all indecomposable modules of length 2 and of length $4 \bmod l(P)$ are periodic.

Proof. We set $l:=l(P)$. Let x be the length modulo l of the module which has as only predecessor the module of length $-2 \bmod l$ and let y the length modulo l of the module which has as only predecessor the module of length $2 \bmod l$. We visualize this in the following diagram:

Then by comparing lengths in Auslander-Reiten sequences we get the following equations:
(1) $2 x+2=0 \bmod l$,
(2) $x+5=0 \bmod l$,
(3) $5-y=0 \bmod l$,
(4) $2 y-2=0 \bmod l$.

We can therefore deduce from (1) and (2) that l divides 8 . Therefore $l=8$ by $3.5(1)$.

Suppose now that there is an indecomposable module of length 2 which is not periodic. By transitivity there is an indecomposable non-periodic module M of length 2 in θ. Then by the equations (1)-(4), $\bar{\alpha}(M)=3$ and there is an indecomposable module N which has only M as predecessor. Therefore M appears in the Auslander-Reiten sequence $0 \rightarrow \tau(N) \rightarrow M \rightarrow N \rightarrow 0$.

This means that N and $\tau(N)$ have length 1 and are simple modules. By transitivity $\tau(Q)$ is a simple B-module for any simple B-module Q. Then N has to be periodic, which is a contradiction. By the equations (1)-(4), θ does not have an indecomposable module of length $4 \bmod l$. Therefore those modules are periodic by 3.3.

We can now exclude tree class \tilde{D}_{5} for certain algebras.
Theorem 3.7. Let B be as in 3.1. Then $T_{s}(B)$ does not have a component of tree class \tilde{D}_{5}.

Proof. We assume, for a contradiction, that $T_{s}(B)$ has a component θ of tree class \tilde{D}_{5}. Using 3.6 and 3.2 , we know that B does not have a uniserial module of length 3 , but has a non-periodic indecomposable module of length 3. Therefore x in the proof of 3.6 is 3 . By the proof of 3.6 there is an almost split sequence $0 \rightarrow \tau(X) \xrightarrow{f} H \xrightarrow{g} X \rightarrow 0$ with $H:=\operatorname{rad}(P) / \operatorname{soc}(P)$. Therefore $l(\tau(X))=l(X)=3$. Suppose $\tau(X)$ has an indecomposable submodule U of length 2. Then H also has an indecomposable submodule $V:=f(U)$ of length 2 . But then the preimage of V of the canonical surjection $\operatorname{rad}(P) \rightarrow H$ is a submodule of length 3 and is uniserial, which is a contradiction. Therefore $\tau(X)$ has a quotient W that is indecomposable of length 2. Let $h: \tau(X) \rightarrow W$ be the canonical surjection. Then by Auslander-Reiten theory h factors through f. Therefore there exists a surjective map $s: H \rightarrow W$. But then $P /$ ker s is a uniserial module of length 3, which is a contradiction. Therefore $T_{s}(B)$ does not have a component of tree class \tilde{D}_{5}.

We define the following automorphisms of $\mathbb{Z}\left[\tilde{D}_{n}\right]$ as in $[\mathrm{F} 2]$:

$$
\begin{aligned}
& \alpha(k, i)= \begin{cases}(k, 2), & i=1, \\
(k, 1), & i=2, \\
(k, i), & i \geq 3,\end{cases} \\
& \beta(k, i)= \begin{cases}(k, n+1), \quad i=n, \\
(k, n), & i=n+1, \\
(k, i), & i \leq n-1,\end{cases} \\
& \gamma(k, i)= \begin{cases}(k, n), & i=1, \\
(k, n+1), & i=2, \\
(k+i-3, n+2-i), & 3 \leq i \leq n-1, \\
(k+n-4,1), & i=n, \\
(k+n-4,2), & i=n+1\end{cases}
\end{aligned}
$$

LEMMA 3.8 ([F2, 2.1]). The automorphism group of $\mathbb{Z}\left[\tilde{D}_{n}\right]$ is given by

$$
\left\{\tau^{k} \circ \alpha^{i} \circ \beta^{j} \circ \gamma^{l} \mid k \in \mathbb{Z}, i, j, l \in\{0,1\}\right\}
$$

We describe the action of G on Euclidean components.
Lemma 3.9. Let B be as in 3.1. Let $h \in G$ and suppose h induces an automorphism $A_{h}: \theta \rightarrow \theta, M \mapsto M_{h}$. Suppose that B has an indecomposable non-periodic module of length 3 if θ has tree class \tilde{D}_{n} for $n>5$. Then A_{h} is the identity.

Proof. By 3.3 we know that $\theta \cong \mathbb{Z}\left[\tilde{D}_{n}\right]$ or $\theta \cong \mathbb{Z}\left[\tilde{A}_{1,2}\right]$. We assume first that $\theta \cong \mathbb{Z}\left[\tilde{D}_{n}\right]$ with $n>5$. Suppose A_{h} is not the identity. By 3.8 the automorphisms of finite order have the form $\tau^{k} \circ \alpha^{i} \circ \beta^{j} \circ \gamma$ for $k=n / 2-2$ or $\alpha^{i} \circ \beta^{j}$ with $i, j \in\{0,1\}$. As n is odd the first possibility cannot occur. Therefore A_{h} is equal to either α, β or $\alpha \circ \beta$.

Suppose $A_{h}=\alpha \circ \beta$. Then all modules with only one predecessor have length $\pm 1 \bmod l(P)$. There exists a non-periodic indecomposable module of length 3 and by transitivity there is an indecomposable length 3 module M in θ. As $l \neq 4$ by $3.5(1)$ we have $\bar{\alpha}(M)=3$ or $\bar{\alpha}(M)=2$. Therefore $M_{h} \cong M$. This is a contradiction because M has either a simple top or a simple radical, and the map A_{h} does not stabilize simple modules.

Assume that $A_{h}=\beta$. Then $A_{h}(P / \operatorname{soc} P)=P_{h} / \operatorname{soc} P_{h} \neq P / \operatorname{soc} P$. By definition of S and ϕ, we have $S=\operatorname{soc} P_{g}$. Then $S=\operatorname{soc} P_{g}=\phi(P / \operatorname{soc} P) \not \neq$ $\phi\left(P_{h} / \operatorname{soc} P_{h}\right)=\operatorname{soc} P_{h g}=S_{g^{-1} h g}$. Therefore $A_{g^{-1} h g}=\alpha$, as by the first case no automorphism induced by an element of G is equal to $\alpha \circ \beta$. But then $A_{h g^{-1} h g}=\alpha \circ \beta$, which is a contradiction.

Assume now that $A_{h}=\alpha$. Then $A_{h}(S)=S_{h} \neq S$. We have therefore $P / \operatorname{soc} P=\phi^{-1}(S) \not \not \phi^{-1}\left(S_{h}\right)=P_{g h g^{-1}} / \operatorname{soc} P_{g h g^{-1}}$. Therefore $A_{g h g^{-1}}=\beta$ and $A_{\text {hghg }^{-1}}=\alpha \circ \beta$, which is a contradiction.

In the case of $\mathbb{Z}\left[\tilde{A}_{1,2}\right]$ there are no finite order automorphisms unequal to the identity, so this gives a contradiction as well.

We describe the non-periodic components more precisely in the following
Corollary 3.10. Let B be as in 3.9. Then B has exactly as many nonperiodic Auslander-Reiten components as there are isomorphism classes of simple left B-modules.

Proof. By Theorem 3.3 all non-periodic components are isomorphic and for every non-periodic Auslander-Reiten component Δ there exists a $g \in G$ such that $\theta_{g}=\Delta$. The component θ contains a simple module by 2.4 and therefore every non-periodic Auslander-Reiten component contains a simple module. By transitivity there exists for any simple module V a non-periodic Auslander-Reiten component \mathcal{W} such that V belongs to \mathcal{W}. Suppose there is a non-periodic component which contains two simple modules V and V_{r} for some $r \in G$. Then r induces a non-identity automorphism of finite order on the component. This contradicts 3.9.

We can now prove some necessary conditions for a component of tree class \tilde{D}_{n} for $n>5$. Compare the following theorem to [F2, 4.6]. We have proved that $n \neq 5$. Farnsteiner first shows that $n=5$ and then deduces the other statements from this fact. As this step is wrong, we require a different proof.

Theorem 3.11. Let B be as in 3.1. Suppose $T_{s}(B)$ has a component θ of tree class $\tilde{D}_{n}, n>5$. Suppose B contains an indecomposable non-periodic module of length 3 . Then $l(P)=8$ and all modules of length $4 \bmod l(P)$ are periodic.

Proof. The proof is in two steps. Let $l:=l(P)$.
Step $1: l=8$. Let M be an indecomposable length 3 module in θ. By $3.4(\mathrm{c}), \bar{\alpha}(M)=1$. Suppose M shares a predecessor with the module of length $1 \bmod l$. Then the predecessor has length $2 \bmod l$ and $6 \bmod l=2 \bmod l$, which is a contradiction as $l \neq 4$. It must therefore share a predecessor with the module of length $-1 \bmod l$. This gives us $6=-2 \bmod l$ and therefore $l=8$.

We know from 3.5(2) that the modules with three predecessors have length $2 \bmod 8$ and $-2 \bmod 8$. The modules with one predecessor have therefore length $\pm 1 \bmod 8$ or $\pm 3 \bmod 8$.

Step 2: The indecomposable modules of length $4 \bmod 8$ are periodic. Let W be a module with one predecessor and length $1 \bmod 8$. We take W corresponding to $(k, 1)$ and use the notation of the proof of 3.4. Then $l\left(M_{3}\right)=$ $2 \bmod 8$. Let \bar{W} be the other module with only predecessor M_{3}. Then $l(\bar{W})=$ $4 x+1$. The module $l\left(M_{4}\right)$ satisfies $1+l(\bar{W})+l\left(M_{4}\right)=4 \bmod 8$. Therefore $l\left(M_{4}\right)=2(1-2 x) \bmod 8$. In the same way we obtain $l\left(M_{5}\right)=2 \bmod 8$, $l\left(M_{6}\right)=2(1+2 x) \bmod 8, l\left(M_{7}\right)=2 \bmod l, l\left(M_{8}\right)=2(1-2 x) \bmod 8$. The calculation shows that $l\left(M_{t}\right)=2 \bmod 8$ if t is odd, $l\left(M_{t}\right)=2(1+2 x) \bmod 8$ if $t=4 m+2$ and $l\left(M_{t}\right)=2(1-2 x) \bmod 8$ if $t=4 m$ for any $m \in \mathbb{N}$.

Thus modules of length $4 \bmod 8$ in θ do not have two predecessors. By the remark before Step 2 they do not have one or three predecessors. Therefore no module of length $4 \bmod 8$ belongs to θ. As no module of length $4 \bmod 8$ appears in θ, they have to be periodic by $3.3(2)$.

Note also that by the proof of $3.7, B$ has a uniserial module of length 3 .

4. Application to Auslander-Reiten components of enveloping

 algebras of restricted p-Lie algebras. Let L be a finite-dimensional restricted p-Lie algebra and χ a linear form on L. We denote by $u(L, \chi)$ the universal enveloping algebra of (L, χ). If $\chi=0$ we set $u(L, \chi)=u(L)$.We denote by $G(L)$ the set of group-like elements of the dual Hopf algebra $u(L)^{*}$. The group-like elements are the homomorphisms of $u(L)$. The
comultiplication on $u(L)$ induces an algebra homomorphism $\Delta: u(L, \chi)$ $\rightarrow u(L) \otimes u(L, \chi), x \mapsto x \otimes 1+1 \otimes x$ for all $x \in L$. We write $\Delta(u)=u_{1} \otimes u_{2}$ for $u \in u(L, \chi)$. This defines a left $u(L)$-comodule algebra structure and right $u(L)^{*}$-module algebra structure on $u(L, \chi)$. Therefore $G(L)$ acts on the automorphism group of $u(L, \chi)$ via $(g \cdot \psi)(u)=\psi(u \cdot g)=g\left(u_{1}\right) \psi\left(u_{2}\right)$ for all $\psi \in$ $\operatorname{Aut}(u(L, \chi)), g \in G(L)$ and $u \in u(L, \chi)$. We embed $G(L)$ into $\operatorname{Aut}(u(L, \chi))$ via the injective group homomorphism $f: G(L) \rightarrow \operatorname{Aut}(u(L, \chi)), w \mapsto$ $w \cdot \operatorname{id}_{u(L, \chi)}$. For an $u(L, \chi)$-module M and $w \in G(L)$ we denote by M_{w} the twisted module $M_{f(w)}$. Note that every element of $G(L) \backslash\{1\}$ has order p.

By [FS2, 1.2] the Nakayama automorphism of $u(L, \chi)$ has order 1 or p and all modules of complexity one are 2-periodic by [F1, 2.5]. Furthermore, $u(L, \chi)$ has a non-periodic indecomposable module of order 3 by [F2, 4.5]. Therefore the assumptions of 3.1 are satisfied for $G(L)$-transitive blocks or G-transitive blocks, where G is a finite subgroup of $\operatorname{Aut}(u(L, \chi))$. The next corollary follows directly from 3.7.

Corollary 4.1. Let $B \subset u(L, \chi)$ be a G-transitive block. Then $T_{s}(B)$ does not have a component of tree class \tilde{D}_{5}.

More generally, we have
Lemma 4.2. Let $B \subset u(L, \chi)$ be a G-transitive block and let S be a simple module in B. Then $T_{s}(B)$ admits a Euclidean component only if $p=2$ or $\operatorname{dim} S=0 \bmod p$.

Proof. By 3.3 and 3.11 all indecomposable modules of length 2 or 4 are periodic. By [F1, 2.5] all periodic indecomposable modules have dimension 0 $\bmod p$. As B is G-transitive all simple modules in B have the same dimension. Therefore $2 \operatorname{dim} S=0 \bmod p$.

As a G-transitive principal block of $u(L, \chi)$ has only one-dimensional simples, we get the following corollary immediately from the preceding lemma.

Corollary 4.3. Let $B \subset u(L, \chi)$ be the principal block, and assume B is G-transitive. Then $T_{s}(B)$ admits a Euclidean component only if $p=2$.

We call a block B primary if it only contains one isomorphism type of simple modules. Note that [F2, 4.7] remains true for primary blocks of $u(L, \chi)$ under the additional assumption that all indecomposable modules of length 2 are periodic.

We recall the definition of supersolvable Lie algebras:
Definition 4.4 ([FS2, I]). Let $\left(L^{i}\right)_{i \in \mathbb{N}}$ with $L^{i}=\left[L^{i-1}, L\right]$ and $L^{0}=L$ be a sequence of ideals in L. Then L is nilpotent if there is an $n \in \mathbb{N}$ such that $L^{n}=0$. The sequence $\left(L^{(i)}\right)_{i \in \mathbb{N}}$ with $L^{(i)}=\left[L^{(i-1)}, L^{(i-1)}\right]$ and $L^{(0)}=L$ is the derived series. We call L solvable if there is an $n \in \mathbb{N}$ such that $L^{(n)}=0$, and supersolvable if L^{1} is nilpotent.

Since projective modules of restricted universal enveloping algebras of supersolvable Lie algebras have p-power length by [F3, 2.10], the result of [F2, 4.1] remains true by applying 3.11.

Lemma 4.5. Let L be a supersolvable finite-dimensional restricted p-Lie algebra and $p>2$. Then $T_{s}(u(L, \chi))$ does not have a component of Euclidean tree class.

This result cannot be extended to $p=2$ as the following example shows.
Example 4.6. Let $A=k[x, y] /\left(x^{2}, y^{2}\right)$ be the Kronecker algebra. Then $A \cong u(L)$ where $L=\operatorname{Span}\{x, y\}$ is the restricted 2 -Lie algebra given by $[x, y]=0$ and $x^{[2]}=y^{[2]}=0$. Then L is supersolvable and the component containing the trivial module k is isomorphic to $\mathbb{Z}\left[\tilde{A}_{1,2}\right]$. This is well known: see for example [E, 2.3].
5. Euclidean components of smash products. The goal of this section is to determine conditions so that the smash product of a basic simple algebra and a semisimple commutative group algebra have an AuslanderReiten component of Euclidean tree class. We assume that k is algebraically closed.

We start by describing the simple and indecomposable projective modules of certain smash products.

Lemma 5.1. Let Γ be a local and basic algebra with simple module S and let G be a finite group such that $G<\operatorname{Aut}(\Gamma)$. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a full set of primitive orthogonal idempotents in $k G$, let $\bigoplus_{i=1}^{m} P_{i}$ be a decomposition of $k G$ into projective indecomposable $k G$-modules $P_{i}:=k G e_{i}$ and let $S_{i}:=$ $\operatorname{soc} P_{i}$ for $1 \leq i \leq m$. Then for every simple $\Gamma \rtimes k G$-module V there exists an $1 \leq i \leq m$ such that $V \cong S \otimes S_{i}$. A complete set of primitive orthogonal idempotents of $\Gamma \rtimes k G$ is given by $\left\{1 \rtimes e_{i} \mid 1 \leq i \leq m\right\}$, and $\Gamma \rtimes k G$ has a decomposition $\bigoplus_{i=1}^{m} \Gamma \rtimes P_{i}$ into projective indecomposable modules $\Gamma \rtimes P_{i}$.

Proof. As g induces an automorphism on Γ for all $g \in G$, we have $G(J(\Gamma))=J(\Gamma)$ and $J(k G) \Gamma \subset J(\Gamma)$. Therefore $J(\Gamma) \rtimes k G+\Gamma \rtimes J(k G) \subset$ $J(\Gamma \rtimes k G)$. Furthermore, $\Gamma \rtimes k G /(J(\Gamma) \rtimes k G+\Gamma \rtimes J(k G)) \cong \Gamma / J(\Gamma) \otimes$ $k G / J(k G) \cong \bigoplus_{i=1}^{m} S \otimes S_{i}$, which is semisimple. This proves $J(\Gamma) \rtimes k G+$ $\Gamma \rtimes J(k G)=J(\Gamma \rtimes k G)$ and all simples are given by $S \otimes S_{i}$. Clearly $\left\{1 \rtimes e_{i} \mid\right.$ $1 \leq i \leq m\}$ is a set of orthogonal idempotents and $\bigoplus_{i=1}^{m} \Gamma \rtimes P_{i}$ is a decomposition of $\Gamma \rtimes k G$ into projective modules $\Gamma \rtimes P_{i}=(\Gamma \rtimes k G)\left(1 \rtimes e_{i}\right)$. The projective modules are indecomposable as $\operatorname{soc}\left(\Gamma \rtimes P_{i}\right)=S \otimes S_{i}$ is simple and therefore $\left\{1 \rtimes e_{i} \mid 1 \leq i \leq m\right\}$ is a complete set of primitive idempotents.

From now on let Γ be a basic local algebra with simple module S. Let G be an abelian group such $k G$ is semisimple, and G is a subgroup of $\operatorname{Aut}(\Gamma)$. Then the smash product $R:=\Gamma \rtimes k G$ is well defined.

By Gabriel's lemma [Ben, 4.1.7], there exists a quiver Q such that $\Gamma \cong$ $k Q / I$ for an admissible ideal $I \subset k Q$. As G is abelian and $k G$ semisimple, the set of irreducible characters of $k G$ forms a multiplicative group isomorphic to G. We index the characters by elements of G via a fixed isomorphism and index the primitive orthogonal idempotents by the same group element as its corresponding character. So let $\left\{\chi_{g} \mid g \in G\right\}$ be the set of irreducible characters and $\left\{e_{g} \mid g \in G\right\}$ the set of primitive orthogonal idempotents such that $h e_{g}=\chi_{g}(h) e_{g}$ for all $g, h \in G$. Suppose $G \leq \operatorname{Aut}(\Gamma)$. Then $k G$ acts on $J(\Gamma)$ and $J^{2}(\Gamma)$. As $k G$ is semisimple, $J(\Gamma) / J^{2}(\Gamma)$ splits as a direct sum of one-dimensional $k G$-modules. Let $\alpha_{1}, \ldots, \alpha_{m}$ be the simultaneous eigenvectors of the action of G on $J(\Gamma) / J^{2}(\Gamma)$. Let $\chi_{n_{i}}, n_{i} \in G, i=1, \ldots, m$, be the corresponding irreducible characters. By 5.1 we know that $\Gamma \rtimes k G$ is a basic algebra with projective indecomposable modules $\Gamma \rtimes k e_{g}$ for $g \in G$ which have simple quotients $S \rtimes k e_{g}$. We have the following presentation of $\Gamma \rtimes k G$. Take the quiver where vertices are labelled by $1 \rtimes e_{g}$ and where arrows are $\alpha_{i} \rtimes e_{g}$. Note that

$$
\left(\alpha_{i} \rtimes e_{h}\right)\left(\alpha_{j} \rtimes e_{g}\right)=\left(\alpha_{i} \alpha_{j}\right) \rtimes \chi_{n_{j} g}\left(e_{h}\right) e_{g}=\left(\chi_{n_{j} g}, \chi_{h}\right)\left(\alpha_{i} \alpha_{j} \rtimes e_{g}\right)
$$

where $(-,-)$ is the usual inner product of characters. Therefore the arrow $\alpha_{i} \rtimes e_{g}$ ends in $1 \rtimes e_{g}$ and starts in $1 \rtimes e_{q}$ with $q=g n_{i}$. We can obtain the relations that generate T via the relations that generate I in Γ.

Note that the construction of W coincides with the Mc Kay quiver (see [SSS, 2] for the definition) where $V:=J(\Gamma) / J^{2}(\Gamma)$.

We will illustrate this construction on a small example.
Example 5.2. Let $\Gamma=k[x, y] /\left\langle x^{2}, y^{2}\right\rangle$ the Kronecker algebra and let $G=\langle g\rangle$ be a cyclic group of order 3 . Then $\Gamma \cong k Q / I$ with

$$
Q=x \biguplus \bullet y
$$

and $I=\left\langle x^{2}, y^{2}, x y-y x\right\rangle$. The algebra Γ is a $k G$-module algebra via the action $g x=q^{-1} x, g y=q y$ and $g x y=x y$ for a primitive third root of unity q. We label the character χ with $\chi(g)=q$ as $\chi=\chi_{g}$. Then $n_{x}=g^{2}$ and $n_{y}=g$. Let e_{1}, e_{g} and $e_{g^{2}}$ denote the primitive idempotents in G such that $g e_{1}=e_{1}, g e_{g}=q e_{g}$ and $g e_{g^{2}}=q^{-1} e_{g^{2}}$. Then the primitive idempotents are given by $1 \rtimes e_{i}$. We construct the quiver W as described in the previous example.

The relations are given by

$$
\begin{array}{r}
T:=\left\langle\left(y \rtimes e_{i}\right)\left(y \rtimes e_{j}\right),\left(x \rtimes e_{i}\right)\left(x \rtimes e_{j}\right),\left(x \rtimes e_{g j}\right)\left(y \rtimes e_{j}\right)-\left(y \rtimes e_{g^{2} j}\right)\left(x \rtimes e_{j}\right)\right| \\
\left.i, j \in\left\{1, g, g^{2}\right\}\right\rangle .
\end{array}
$$

By the previous example, $\Gamma \rtimes k G \cong k W / T$.
We see that R is G-transitive via $g(a \rtimes h)=a \rtimes \chi_{g^{-1}}(h) h$ or $g\left(a \rtimes e_{h}\right)=$ $a \rtimes e_{g h}$ for all $a \in \Gamma$ and $g, h \in G$. With this action, G is a subgroup of $\operatorname{Aut}(R)$. Note that $1 \rtimes G \cong G$ is a subgroup of R and $k \rtimes G \cong k G$ is a subalgebra of R. We first define the following notation. Let C be an R-module. Then C is a $k G$-module via $g \cdot c:=(1 \rtimes g) c$ for all $c \in C$ and $g \in G$. We denote by C_{g} the R-module with $(a \rtimes h) * c:=\chi_{g^{-1}}(h)(a \rtimes h) c$ for all $c \in C, g, h \in G$ and $a \in \Gamma$. If C is a Γ-module, we denote by C_{g} the module with $t * c:=g(t) c$ for all $c \in C$ and $t \in \Gamma$.

If C is a Γ-module or an R-module, then we set $S(C):=\left\{g \in G \mid C_{g} \cong C\right\}$ with the respective actions of G on Γ-modules and on R-modules. Let $T(C)$ be a transversal of $G / S(C)$.

We determine how R-modules or Γ-modules decompose if restricted to Γ or respectively lifted to R.

Lemma 5.3.
(1) Let M be an R-module. Then $M_{\Gamma}^{R} \cong \bigoplus_{g \in G} M_{g}$.
(2) Let N be a Γ-module. Then $N_{\Gamma}^{R} \cong \bigoplus_{g \in G} N_{g}$ where N_{g} denotes the twist of N by the element $g \in \operatorname{Aut}(\Gamma)$.
(3) Let M be an indecomposable R-module and N an indecomposable Γ-module such that $N \mid M_{\Gamma}$. Then $M_{\Gamma}=q \bigoplus_{g \in T(N)} N_{g}, N^{R}=$ $n \bigoplus_{g \in T(M)} M_{g}$ and $q n|T(N)||T(M)|=|G|$ for some $n, m \in \mathbb{N}$.
Proof. (1) Let $\psi_{g}: M_{g} \rightarrow M_{\Gamma}^{R}, m \mapsto|G|^{-1} \sum_{l \in G} \chi_{g}(l)\left(1 \rtimes l \otimes l^{-1} m\right)$ and let $\phi_{g}: M_{\Gamma}^{R} \rightarrow M_{g}, r \otimes m \mapsto g(r) m$ for all $r \in R, m \in M$ and $g \in G$. Let $a \in \Gamma$ and $h \in G$. Then

$$
\begin{aligned}
\psi_{g}((a \rtimes h) * m) & =\psi_{g}\left(\chi_{g^{-1}}(h)(a \rtimes h) m\right) \\
& =|G|^{-1} \sum_{l \in G} \chi_{g^{-1}}(h) \chi_{g}(l)\left(1 \rtimes l \otimes l^{-1}(a \rtimes h) m\right) \\
& =|G|^{-1} \sum_{l \in G} \chi_{g^{-1}}(h) \chi_{g}(l)(1 \rtimes l)\left(l^{-1}(a) \rtimes 1 \otimes l^{-1} h m\right) \\
& =|G|^{-1}(a \rtimes 1) \sum_{l \in G} \chi_{g^{-1}}(h) \chi_{g}(l)\left(1 \rtimes l \otimes l^{-1} h m\right) \\
& =(a \rtimes h)|G|^{-1} \sum_{s \in G} \chi_{g}(s)\left(1 \rtimes s \otimes s^{-1} m\right)=(a \rtimes h) \psi_{g}(m)
\end{aligned}
$$

by substituting $l^{-1} h=s^{-1}$, and therefore ψ_{g} is an R-module homomorphism.

It is clear that ϕ_{g} is an R-module homomorphism and $\phi_{g} \circ \psi_{g}=\mathrm{id}_{M_{g}}$. Let $\left\{m_{1}, \ldots, m_{n}\right\}$ be a k-basis of M. A basis of M_{Γ}^{R} is given by

$$
\left\{(1 \rtimes l) \otimes m_{i} \mid 1 \leq i \leq n \text { and } l \in G\right\} .
$$

Using this basis we have $\psi_{g}(m)=\psi_{h}(\bar{m})$ for some $m, \bar{m} \in M$ if and only if $\chi_{g}(l) m=\chi_{h}(l) \bar{m}$ for all $l \in G$. Therefore $\psi_{g}\left(M_{g}\right) \cap \psi_{h}\left(M_{h}\right)=0$ for $g \neq h$. Finally, by comparing dimensions we have $M_{\Gamma}^{R} \cong \bigoplus_{g \in G} M_{g}$.
(2) We have $N_{\Gamma}^{R}=\bigoplus_{g \in G} 1 \rtimes g \otimes N$. Furthermore, $1 \rtimes g \otimes N \cong N_{g^{-1}}$ as Γ-module, which proves the statement.
(3) Suppose Q is an indecomposable module with $Q \mid M_{\Gamma}$. Then Q^{R} and N^{R} are direct summands of $M_{\Gamma}^{R}=\bigoplus_{g \in G} M_{g}$. As $\left(M_{g}\right)_{\Gamma} \cong M_{\Gamma}$ for all $g \in G$, we deduce that $N \mid Q_{\Gamma}^{R}=\bigoplus_{g \in G} Q_{g}$. Therefore $Q \cong N_{g}$ for some $g \in G$. Furthermore, $\left(M_{\Gamma}\right)_{g} \cong M_{\Gamma}$ via the Γ-module isomorphism $\psi: M_{\Gamma} \rightarrow$ $\left(M_{\Gamma}\right)_{g}, m \mapsto g m$ for all $m \in M$ and $g \in G$. Therefore M_{Γ} is G-invariant. This proves the first identity.

By the first identity, we know that all indecomposable direct summands of N^{R} are isomorphic to M_{g} for some $g \in G$. Note that N^{R} is G-invariant via the R-module isomorphism $\phi: N^{R} \rightarrow N_{g}^{R}, r \otimes n \mapsto g(r) \otimes n$ for all $g \in G$, $r \in R$ and $n \in N$. This map is well defined as G acts on $\Gamma \rtimes 1 \subset R$ as the identity. Therefore the second identity holds.

Finally, we compare the multiplicity of N as a direct summand of N_{Γ}^{R}. The first and second identities of (3) give a multiplicity of $n|T(M)| q$ and (2) gives multiplicity $|S(N)|$.

By standard arguments we deduce the next two lemmas.
Lemma 5.4. Every R-module M is relatively Γ-projective.
Proof. Suppose A, B are R-modules and $h: A \rightarrow B, f: M \rightarrow B$ are R-module homomorphisms. Suppose there is a Γ-module homomorphism v : $M_{\Gamma} \rightarrow A$ such that $h \circ v=f$. Then $\bar{v}: M \rightarrow A, m \mapsto|G|^{-1} \sum_{g \in G} g v\left(g^{-1} m\right)$, is an R-module homomorphism. This can be seen as follows: let $t \in \Gamma, h \in G$; then

$$
\begin{aligned}
\bar{v}((t \rtimes h) m) & =|G|^{-1} \sum_{g \in G} g v\left(g^{-1}(t \rtimes h) m\right) \\
& \left.=|G|^{-1} \sum_{g \in G} g v\left(g^{-1}(t) \rtimes g^{-1} h\right) m\right) \\
& =|G|^{-1}(t \rtimes 1) \sum_{g \in G} g v\left(g^{-1} h m\right) \\
& =(t \rtimes h)|G|^{-1} \sum_{s \in G} s v\left(s^{-1} m\right)=(t \rtimes h) \bar{v}(m)
\end{aligned}
$$

if we substitute $s^{-1}=g^{-1} h$. Furthermore, \bar{v} satisfies $h \circ \bar{v}=f$.

Lemma 5.5 (Frobenius reciprocity). Let V be a Γ-module and M an R-module. Then there is a bijection of vector spaces between $\operatorname{Hom}_{\Gamma}\left(V, M_{\Gamma}\right)$ and $\operatorname{Hom}_{R}\left(V^{R}, M\right)$.

Proof. The bijection is given by $\psi: \operatorname{Hom}_{\Gamma}\left(V, M_{\Gamma}\right) \rightarrow \operatorname{Hom}_{R}\left(V^{R}, M\right)$ where $\psi(f)(r \otimes v)=r f(v)$ and $\phi: \operatorname{Hom}_{R}\left(V^{R}, M\right) \rightarrow \operatorname{Hom}_{\Gamma}\left(V, M_{\Gamma}\right)$ with $\phi(g)(v)=g(1 \otimes v)$ for all $r \in R, v \in V, f \in \operatorname{Hom}_{\Gamma}\left(V, M_{\Gamma}\right)$ and $g \in$ $\operatorname{Hom}_{R}\left(V^{R}, M\right)$.

Let $G(A)$ denote the free abelian group of an algebra A with free generators $\left[V_{i}\right]$, the representatives of the isomorphism classes of all indecomposable A-modules V_{i}. If $M=\bigoplus a_{i} V_{i}$ where the $a_{i} \geq 0$ then we write $[M]:=\sum a_{i}\left[V_{i}\right]$. We denote by $(-,-)_{A}: G(A) \times G(A) \rightarrow k$ the bilinear form $\operatorname{dim}_{k} \operatorname{Hom}_{A}(-,-)$.

Let $Q: 0 \rightarrow B \rightarrow C \rightarrow D \rightarrow 0$ be an exact sequence. Then we set $[[Q]]:=$ $[B]+[D]-[C] \in G(A)$. Let $A\left(V_{i}\right)$ denote the Auslander-Reiten sequence starting in V_{i} for V_{i} non-projective. Furthermore, we set $X_{i}:=\left[\left[A\left(V_{i}\right)\right]\right]$ for V_{i} non-projective and $X_{i}:=\left[V_{i}\right]-\left[\operatorname{rad}\left(V_{i}\right)\right]$ if V_{i} is projective.

The first part of the next theorem is the general version of [BP, 3.4], which was only proven for group algebras.

TheOrem 5.6. Let A be a finite-dimensional algebra over an algebraically closed field k.
(1) We have $\left(\left[V_{i}\right], X_{j}\right)=\delta_{i, j}$. Therefore $(-,-)_{A}$ is non-degenerate. Furthermore, $\left(\left[V_{i}\right],[[E]]\right) \geq 0$ for any exact sequence E.
(2) Suppose $Q:=0 \rightarrow C \rightarrow B \rightarrow V_{j} \rightarrow 0$ is an exact non-split sequence with $[[Q]] \neq X_{j}$. Then there is a V_{i} with $i \neq j$ such that $\left(\left[V_{i}\right],[[Q]]\right)$ ≥ 1.

Proof. (1) Take the almost split sequence

$$
0 \rightarrow \tau\left(V_{j}\right) \xrightarrow{l} M_{j} \xrightarrow{s} V_{j} \rightarrow 0
$$

This gives an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(V_{i}, \tau V_{j}\right) \rightarrow \operatorname{Hom}_{A}\left(V_{i}, M_{j}\right) \xrightarrow{\psi} \operatorname{Hom}_{A}\left(V_{i}, V_{j}\right)
$$

If $i \neq j$ then by the Auslander-Reiten property, the map ψ is onto and it follows that $\left(\left[V_{i}\right], X_{j}\right)=0$. If $i=j$ then by the Auslander-Reiten property, $\operatorname{Im}(\psi)$ is the radical of $\operatorname{End}\left(V_{i}\right)$. Therefore

$$
\begin{aligned}
\left(\left[V_{i}\right], X_{i}\right) & =\left(V_{i}, \tau\left(V_{i}\right)\right)+\left(V_{i}, V_{i}\right)-\left(V_{i}, M_{i}\right)=\left(V_{i}, V_{i}\right)-\operatorname{dim} \operatorname{Im}(\psi) \\
& =\operatorname{dim} \operatorname{End}\left(V_{i}\right) / \operatorname{rad}\left(\operatorname{End}\left(V_{i}\right)\right)
\end{aligned}
$$

Since k is algebraically closed and V_{i} is indecomposable, this number is equal to 1.

Let $E:=0 \rightarrow S \rightarrow T \rightarrow U \rightarrow 0$ be an exact sequence. Then $0 \rightarrow$ $\operatorname{Hom}_{A}\left(V_{i}, S\right) \rightarrow \operatorname{Hom}_{A}\left(V_{i}, T\right) \rightarrow \operatorname{Hom}_{A}\left(V_{i}, U\right)$ is exact. Therefore $\left(\left[V_{i}\right],[[E]]\right)$ ≥ 0.
(2) Let $Q:=0 \rightarrow C \xrightarrow{\delta} B \xrightarrow{\sigma} V_{j} \rightarrow 0$ be an exact sequence. Suppose that $[[Q]] \neq\left[\left[A\left(V_{j}\right)\right]\right]$. Then we get the following commutative diagram

where the existence of h follows from the Auslander-Reiten property since the map $\sigma: B \rightarrow V_{j}$ is non-split; and g is the restriction of h to C.

This diagram induces a short exact sequence

$$
Z:=0 \rightarrow C \xrightarrow{\binom{\delta}{g}} B \oplus \tau\left(V_{j}\right) \xrightarrow{(h, l)} M_{j} \rightarrow 0 .
$$

Suppose that this sequence is split. Then there is a map $\binom{f_{1}}{f_{2}}: M_{j} \rightarrow B \oplus \tau\left(V_{i}\right)$ such that $h \circ f_{1}+l \circ f_{2}=\operatorname{id}_{M_{j}}$. Then $s \circ h f_{1}=s$. As s is minimal right almost split, $h f_{1}$ is an automorphism. Moreover, $\sigma f_{1}=s$, so let $g_{1}: \tau\left(V_{j}\right) \rightarrow C$ be such that $\delta g_{1}=f_{1} l$. Then also $g g_{1}$ is an automorphism. So $B=M_{j} \oplus$ $\operatorname{Ker}(h)$ and $C=\tau\left(V_{j}\right) \oplus \operatorname{Ker}(g)$. By the Snake Lemma, $\operatorname{Ker}(g) \cong \operatorname{Ker}(h)$. But then $[[Q]]=\left[\left[A\left(V_{j}\right)\right]\right]$. So we have a contradiction, therefore Z is nonsplit. Then, working in $G(A)$, we have $[[Q]]=[[Z]]+\left[\left[A\left(V_{j}\right)\right]\right]$ and hence $\left(\left[M_{j}\right],[[Q]]\right)=\left(\left[M_{j}\right],[[Z]]+\left[\left[A\left(V_{j}\right)\right]\right]\right)=\left(\left[M_{j}\right],[[Z]]\right) \geq 1$ as the image of the map $\operatorname{Hom}\left(M_{j}, M_{j}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{j}, C\right)$ induced by Z contains the non-split sequence Z. As $(-,-)_{A}$ is biadditive and V_{j} is not a summand of M_{j}, the second statement is proven.

We can write the element $[[Q]] \in G(A)$ for any exact sequence Q ending in W as a sum in $G(A)$ of $\left[\left[Q_{1}\right]\right]$ and $\left[\left[Q_{2}\right]\right]$ for two short exact sequences Q_{1} and Q_{2} ending in direct summands of W.

Lemma 5.7. Suppose that $Q:=0 \rightarrow U \rightarrow V \xrightarrow{\pi} W \rightarrow 0$ is an exact sequence and $W=W_{1} \oplus W_{2}$ for two non-trivial A-modules W_{1} and W_{2}. Then there is an exact sequence Q_{1} ending in W_{1} and an exact sequence Q_{2} ending in W_{2} such that $[[Q]]=\left[\left[Q_{1}\right]\right]+\left[\left[Q_{2}\right]\right]$.

Proof. Let $p_{i}: W \rightarrow W_{i}$ be the natural projection for $i=1,2$. Then

$$
Q_{1}:=0 \rightarrow \pi^{-1}\left(W_{1}\right) \rightarrow V \xrightarrow{p_{2} \pi} W_{2} \rightarrow 0
$$

and

$$
Q_{2}:=0 \rightarrow U \rightarrow \pi^{-1}\left(W_{1}\right) \xrightarrow{p_{1} \pi} W_{1} \rightarrow 0
$$

are exact sequences and $[[Q]]=\left[\left[Q_{1}\right]\right]+\left[\left[Q_{2}\right]\right]$ in $G(A)$.

Furthermore, we have $([V],[[Q]]) \geq\left([V],\left[\left[Q_{1}\right]\right]\right)$ for any module V, as $([V],[[E]]) \geq 0$ for any exact sequence E by 5.6(1).

We can prove the next result.
Theorem 5.8. Let M be an indecomposable R-module and C an indecomposable Γ-module such that M is a direct summand of C^{R} with multiplicity n. Then $\left[\left[A(M)_{\Gamma}\right]\right]=n \sum_{g \in T(C)}\left[\left[A\left(C_{g}\right)\right]\right]$.

Proof. We first show that $\left([V],\left[\left[A(M)_{\Gamma}\right]\right]\right)-n \sum_{g \in T(C)}\left([V],\left[\left[A\left(C_{g}\right)\right]\right]\right)=$ 0 for all indecomposable Γ-modules V. Using Frobenius reciprocity 5.5, we have $\left([V],\left[\left[A(M)_{\Gamma}\right]\right]\right)=\left(\left[V^{R}\right],[[A(M)]]\right)$ which is equal to the multiplicity of M as a direct summand in V^{R}. By 5.3 we know that $M_{\Gamma} \mid C_{\Gamma}^{R}=\bigoplus_{g \in G} C_{g}$. Therefore M is a direct summand of V^{R} if and only if $V \cong C_{g}$ for some $g \in G$. But in this case $V^{R}=C^{R}$ and therefore the multiplicity of M as a direct summand of V^{R} is n.

It remains to show that $\left[\left[A(M)_{\Gamma}\right]\right]$ is a linear combination of AuslanderReiten sequences X_{i}. We have $M_{\Gamma}=q \sum_{g \in T(C)} C_{g}$. By 5.7 we know that $\left[\left[A(M)_{\Gamma}\right]\right]$ can be written as the sum of $\left[\left[Q_{g}^{i}\right]\right]$ where the Q_{g}^{i} are exact sequences starting in C_{g} for $g \in G$ for $1 \leq i \leq q$. Suppose one of them is non-split and not an Auslander-Reiten sequence X_{i}. By 5.6(2) there exists an indecomposable direct summand L of the middle term of some $A\left(C_{g}\right)$ such that $\left([L],\left[\left[A(M)_{\Gamma}\right]\right]\right) \geq 1$. There is no irreducible map from C_{l} to C_{h} for any $l, h \in G$, as both modules have the same dimension. Therefore $L \not \approx C_{l}$ for all $l \in G$. By 5.6 we have $\left([L],\left[\left[A\left(C_{l}\right)\right]\right]\right)=0$ for all $l \in G$, which contradicts the first part.

Clearly if $A(M)$ is an Auslander-Reiten sequence and M a non-projective indecomposable module, then $\tau(M), M$ and the middle term of $A(M)$ have no direct summand in common. The same is true for the restriction of the Auslander-Reiten sequence to Γ.

Lemma 5.9. Let M be an indecomposable R-module and $A(M):=0 \rightarrow$ $\tau(M) \rightarrow X \rightarrow M \rightarrow 0$. Then the pair $\tau(M)_{\Gamma}, X_{\Gamma}$ and the pair M_{Γ}, X_{Γ} each have no direct summand in common. If $M_{g} \not \not 二 \tau(M)$, then $\tau(M)_{\Gamma}$ and M_{Γ} have no direct summand in common.

Proof. Suppose there is an indecomposable Γ-module Q such that $Q \mid M_{\Gamma}$ and $Q \mid X_{\Gamma}$. By 5.3 there exists an indecomposable direct summand E of X and a $g \in G$ such that $E \cong M_{g}$. As M and M_{g} have the same dimension there is no irreducible map from E to M, which is a contradiction. By an analogous argument it is clear that $\tau(M)_{\Gamma}$ and X_{Γ} have no direct summand in common. Suppose now that M_{Γ} and $\tau(M)_{\Gamma}$ have a common direct summand. Then there exists a $g \in G$ such that $\tau(M) \cong M_{g}$, which is a contradiction.

This gives the next
Corollary 5.10. Let M be an indecomposable, non-projective R-module. Let C be an indecomposable direct summand of M_{Γ} with multiplicity n. Then M is a direct summand of C^{R} with multiplicity n. Furthermore, if N is the middle term of $A(M)$ and Q the middle term of $A(C)$, then

$$
N_{\Gamma}=n \bigoplus_{g \in T(C)} Q_{g} \quad \text { and } \quad \tau(M)_{\Gamma}=n \bigoplus_{g \in T(C)} \tau(C)_{g}
$$

Proof. Let

$$
\begin{aligned}
& A(M):=0 \rightarrow \tau(M) \rightarrow \bigoplus_{1 \leq i \leq t} d_{i} N_{i} \rightarrow M \rightarrow 0, \\
& A(C):=0 \rightarrow \tau(C) \rightarrow \bigoplus_{1 \leq i \leq s} f_{i} Q_{i} \rightarrow C \rightarrow 0
\end{aligned}
$$

for Q_{i}, N_{i} indecomposable and $d_{i}, f_{i} \in \mathbb{N}$. We set $Q:=\bigoplus_{1 \leq i \leq s} f_{i} Q_{i}$ and $N:=\bigoplus_{1 \leq i \leq t} d_{i} N_{i}$. Then $d_{i} N_{\Gamma}^{i}=b_{i} \sum_{g \in T\left(E^{i}\right)} E_{g}^{i}, \tau(M)_{\Gamma}=a \sum_{g \in T(L)} L_{g}$ and $M_{\Gamma}=q \sum_{g \in T(C)} C_{g}$ for some indecomposable $L, E^{i} \in \Gamma-\bmod$ and $a, q, b_{i} \in \mathbb{N}$. Then

$$
\left[\left[A(M)_{\Gamma}\right]\right]=q \sum_{g \in T(C)}\left[C_{g}\right]+a \sum_{g \in T(L)}\left[L_{g}\right]-\sum_{1 \leq i \leq t} b_{i} \sum_{g \in T\left(E^{i}\right)}\left[E_{g}^{i}\right] .
$$

By 5.8 we also have

$$
\left[\left[A(M)_{\Gamma}\right]\right]=n \sum_{g \in T(C)}\left[C_{g}\right]+n \sum_{g \in T(C)}\left[\tau(C)_{g}\right]-n \sum_{1 \leq i \leq s} f_{i} \sum_{g \in T(C)}\left[Q_{g}^{i}\right] .
$$

We assume that $M_{g} \not \approx \tau(M)$. Then by 5.9 the set

$$
\left\{\left[C_{g}\right] \mid g \in T(C)\right\} \cup \bigcup_{1 \leq i \leq t}\left\{\left[E_{g}^{i}\right] \mid g \in T\left(E^{i}\right)\right\} \cup\left\{\left[L_{g}\right] \mid g \in T(L)\right\}
$$

is linearly independent. Similarly the set

$$
\left\{\left[C_{g}\right] \mid g \in T(C)\right\} \cup \bigcup_{1 \leq i \leq s}\left\{\left[Q_{g}^{i}\right] \mid g \in T\left(Q^{i}\right)\right\} \cup\left\{\left[\tau(C)_{g}\right] \mid g \in T(\tau(C))\right\}
$$

is linearly independent. We can see this as follows: if $\tau(C) \cong C_{h}$ for some $h \in G$, then $\sum_{g \in T(C)} \tau(C)_{g}=\sum_{g \in T(C)} C_{g}$, which is a contradiction, as [L] would not appear as a summand of $\left[\left[A(M)_{\Gamma}\right]\right]$ in the second presentation. Also $Q_{h}^{i} \neq \tau(C)$ and $Q_{h}^{i} \neq C$ for some $h \in G$ because there is no irreducible map between elements of the same dimension. We now compare the two presentations and use the linear independence of the indecomposable Γ modules in $G(\Gamma)$. Then

$$
\begin{equation*}
q=n, \quad \tau(M)_{\Gamma}=n \sum_{g \in T(C)} \tau(C)_{g}, \quad N_{\Gamma}=n \sum_{g \in T(C)} Q_{g} . \tag{*}
\end{equation*}
$$

Assume now that $M_{g} \cong \tau(M)$. Then $\tau(M)_{\Gamma}=q \sum_{g \in T(C)} C_{g}$. Therefore

$$
\left[\left[A(M)_{\Gamma}\right]\right]=2 q \sum_{g \in T(C)}\left[C_{g}\right]-\sum_{1 \leq i \leq t} b_{i} \sum_{g \in T\left(E^{i}\right)}\left[E_{g}^{i}\right]
$$

By 5.9 we see that the set

$$
\left\{\left[C_{g}\right] \mid g \in T(C)\right\} \cup \bigcup_{1 \leq i \leq t}\left\{\left[E_{g}^{i}\right] \mid g \in T\left(E^{i}\right)\right\}
$$

is linearly independent in $G(\Gamma)$. We have $\tau(C)=C_{h}$ for some $h \in G$ by comparing summands in the two presentations of $\left[\left[A(M)_{\Gamma}\right]\right]$. Then $\sum_{g \in T(C)} \tau(C)_{g}$ $=\sum_{g \in T(C)} C_{g}$. Therefore we have (*) again.

We can now investigate the relation between periodic R-modules and periodic Γ-modules.

Lemma 5.11 (periodic modules). The indecomposable R-module M is periodic if and only if M_{Γ} contains a periodic direct summand.

Proof. Let Q be an indecomposable direct summand of M_{Γ}. Then $M_{\Gamma}=$ $n \bigoplus_{g \in T(Q)} Q_{g}$ and $\tau(M)_{\Gamma}=n \bigoplus_{g \in T(Q)} \tau(Q)_{g}$ by 5.10. Suppose now that Q is τ-periodic with period m. Then Q_{g} is τ-periodic with period m and $\tau^{m}(M)_{\Gamma} \cong M_{\Gamma}$, as by $5.10, \tau$ and the restriction to Γ commute. This implies that $M^{g} \cong \tau^{m}(M)$. As G has finite order, M is periodic. Similarly, if M is τ-periodic with period m, we have $n \bigoplus_{g \in T(Q)} Q_{g}=M_{\Gamma}=\tau^{m}(M)_{\Gamma}=$ $n \bigoplus_{g \in T(Q)} \tau^{m}(Q)_{g}$. Therefore $\tau^{m}(Q) \cong Q_{g}$ for some $g \in G$. As G has finite order, Q is τ-periodic.

Next, we summarize the properties that we need for the following theorems.

Assumption 5.12. In the following we assume that Γ and R are Frobenius algebras that satisfy $\left(\mathrm{C}^{\prime}\right)$.

The following lemma shows that this could be slightly weakened.
Lemma 5.13. The algebra R satisfies $\left(\mathrm{C}^{\prime}\right)$ if and only if the algebra Γ satisfies $\left(\mathrm{C}^{\prime}\right)$.

Proof. The proof is analogous to 5.11.
We also have
Lemma 5.14. Suppose $\Gamma \neq S$. Let E be a non-projective Γ-module and

Proof. We consider the map which maps S to soc E. This map does not factor through Γ. Therefore $\operatorname{Hom}(S, E) \neq 0$. We have $\operatorname{Hom}\left(N, E^{R}\right) \cong$ $\operatorname{Hom}\left(N_{\Gamma}, E\right) \cong \operatorname{Hom}(S, E)$ by 5.5. As the restriction to Γ and lifting to R preserve projectivity, we have $\underline{\operatorname{Hom}}\left(N, E^{R}\right)=\underline{\operatorname{Hom}}(S, E) \neq 0$.

We can now investigate the relation between the Auslander-Reiten components of $T_{s}(\Gamma)$ and of $T_{s}(R)$. We assume for the next two theorems that 5.12 is satisfied. We denote by $\operatorname{Obj}(\theta)$ the set of all indecomposable modules in an Auslander-Reiten component θ.

Theorem 5.15.
(1) $T_{s}(\Gamma)$ has a component of tree class \tilde{D}_{n} if and only if $T_{s}(R)$ does.
(2) If $T_{s}(R)$ has a component of tree class $\tilde{A}_{1,2}$, then so does $T_{s}(\Gamma)$.

Proof. (a) Let $\theta \cong \mathbb{Z}\left[\tilde{D}_{n}\right]$ or $\theta \cong \mathbb{Z}\left[\tilde{A}_{1,2}\right]$ be a component of $T_{s}(R)$. We denote the tree class of θ by \mathcal{T}. Then by $2.4, \theta$ contains a simple module M, and a projective module P is attached to θ. Let Δ be the component in $T_{s}(\Gamma)$ containing the simple module $S=M_{\Gamma}$. Then by 5.8 we have $\operatorname{Obj}\left(\theta_{\Gamma}\right) \subset$ $\bigcup_{g \in G} \operatorname{Obj}\left(\Delta_{g}\right)$; this is proved by induction on the distance of a module in θ to M.

As S is contained in Δ and G acts trivially on S, we have $\Delta_{g}=\Delta$ for all $g \in G$ and therefore $\operatorname{Obj}\left(\theta_{\Gamma}\right) \subset \operatorname{Obj}(\Delta)$. As P is attached to θ, Γ is attached to Δ. Then Ω induces a fixed point free automorphism on the tree class T of Δ.

By 3.3 and $3.11, \bmod R$ has a periodic module that does not lie in θ, and therefore by $5.11, \bmod \Gamma$ also contains a periodic module that does not lie in Δ. Using 5.14 we can define a subbaditive, non-zero function on the component Δ as in [ES, 3.2]. The tree class of Δ is therefore in the HPR-list (a list of trees in [HPR, p. 286]).

As we have a fixed point free automorphism operating on T, this gives either $T=A_{\infty}^{\infty}, T=\tilde{D}_{m}$ for m odd, or $T=\tilde{A}_{1,2}$.

Note that S and Γ / S do not lie in the same τ-orbit, because otherwise by 2.1 we would have $2=l(\Gamma)$; but then S would be periodic, contrary to the fact that M is not periodic.

Twisting with $g \in G$ also induces an automorphism of finite order on Δ that fixes S and Γ / S. If $T=\tilde{D}_{m}$, then S and Γ / S have only one predecessor, and their predecessors do not lie in the same τ-orbit by 3.5 . Therefore g acts as the identity and there are no modules contained in Δ that are twists of each other.

This means that we can embed Δ into θ using induction on the distance of a module in Δ to S. We give a sketch of how to construct this injection: We map S to M. Let $W \in \operatorname{Obj}(\Delta)$ and suppose that there is an arrow from W to S in Δ. Then by 5.10 there exists an R-module J such that J is a summand of the middle term of $A(M)$ and $W \mid J_{\Gamma}$. We map W to J. This gives an injection, as for two indecomposable Γ-modules W^{1} and W^{2} with $W^{1} \mid Z_{\Gamma}$ and $W^{2} \mid Z_{\Gamma}$ for an indecomposable R-module Z, we have $W^{1} \cong\left(W^{2}\right)_{g}$ for some $g \in G$. So if W^{1} and W^{2} lie in Δ we have $W^{1} \cong W^{2}$.

As this embedding respects τ, it induces an embedding $T \subset \mathcal{T}$. Therefore $T=\mathcal{T}$. This proves the first direction of (1), and also (2).
(b) Suppose now that $\Delta \cong \mathbb{Z}\left[\tilde{D}_{n}\right]$. Then $S \in \Delta$ and Γ is attached to Δ. Let θ be a component of $T_{s}(R)$ that contains a simple module M. As in (a), we have $\operatorname{Obj}\left(\theta_{\Gamma}\right) \subset \bigcup_{g \in G} \operatorname{Obj}\left(\Delta_{g}\right)$.

By $3.11, \bmod \Gamma$ contains a periodic module E that is not in Δ, and by 5.11 all direct summands of E^{R} are periodic and do not lie in θ. As in the first part of the proof, this shows that the tree class T of θ is in the HPR-list.

As $\bar{\alpha}(S)=\bar{\alpha}(\Gamma / S)=1$ by 3.5, and do not have the same predecessor, g acts as the identity on Δ. That means $\operatorname{Obj}\left(\theta_{\Gamma}\right) \subset \operatorname{Obj}(\Delta)$.

As in (a), we can embed Δ into θ. As τ and the restriction to Γ commute by 5.10 , this gives an embedding of \tilde{D}_{n} into T. Therefore $T=\tilde{D}_{n}$.

Note that the embedding of Δ into θ does not respect labels of arrows. The next example shows that the converse of part (2) of the previous theorem does not hold.

EXAMPLE 5.16. Let k be a field of characteristic $2, \Gamma=k V_{4}$ and $R=$ $k A_{4} \cong k V_{4} \rtimes k C_{3}$. Then Γ has a component with tree class $\tilde{A}_{1,2}$ and R has a component with reduced graph \tilde{A}_{5} which corresponds to a tree class A_{∞}^{∞}. By 3.3, $T_{s}(R)$ has no component of Euclidean tree class.

We can also show the following
Theorem 5.17. Suppose $T_{s}(\Gamma)$ has a component Δ of tree class $\tilde{A}_{1,2}$. Then $T_{s}(R)$ also has a component θ of tree class $T=\tilde{A}_{1,2}$ or $T=A_{\infty}^{\infty}$. In the second case $\theta \cong \mathbb{Z}\left[\tilde{A}_{n}\right]$, where $(n+1) / 2$ divides the order of G.

Proof. Let M be a simple R-module and let θ be the component that contains M. As in the proof of the previous theorem, the tree class T of θ is from the HPR-list and θ is not a periodic component. Let Q be the middle term of $A(M)$. Then $Q_{\Gamma}=N \oplus N$ for some indecomposable Γ-module N.

Suppose first that $Q \cong L \oplus L_{g}$ for L an indecomposable R-module and $g \in G$ such that $L_{\Gamma} \cong N$ and $L_{g} \not \approx L$. Then $\bar{\alpha}(M)=2$ and g acts as a graph automorphism on T of finite order and is not the identity. Also this automorphism commutes with τ. Furthermore, the middle term of $A\left(\tau^{-1}(L)\right)$ is $M \oplus M_{g^{-1}}$. As $M \not \not M_{g^{-1}}$ we have $\theta \cong \mathbb{Z}\left[\tilde{A}_{n}\right]$, where $n=2|g|-1$.

Suppose now that Q is indecomposable. Then either $M \oplus M$ or $M \oplus M_{g}$ is the non-projective summand in the middle term of $A\left(\tau^{-1}(Q)\right)$. In the first case, we have $\bar{\alpha}(M)=\bar{\alpha}(Q)=1$. Therefore $T=Q \xrightarrow{(1,2)} M$. This contradicts the HPR-list. In the second case we have $\bar{\alpha}(Q)=2$ and $\bar{\alpha}(M)=\bar{\alpha}\left(M_{g}\right)=1$. As all three are in different τ-orbits, we have $T=M \rightarrow Q \leftarrow M_{g}$, which is also a contradiction, as Δ is not of finite type.

Suppose now that $Q \cong L \oplus L$. Then either $M \oplus M$ or $M \oplus M_{g}$ is the non-projective summand in the middle term of $A\left(\tau^{-1}(L)\right)$. The first case gives $\theta \cong \mathbb{Z}\left[A_{1,2}\right]$. In the second case we have $T=\tilde{B}_{2}$, which we can exclude using 3.3.

Acknowledgements. I would like to thank my supervisor Karin Erdmann for her comments which have improved this paper considerably. I would also like to thank the referee and the editor Andrzej Skowroński for their useful suggestions.

REFERENCES

[ASS] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.
[Ben] D. Benson, Representations and Cohomology 1: Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Stud. Adv. Math. 30, Cambridge Univ. Press, Cambridge, 1998.
[BP] D. Benson and R. Parker, The Green ring of a finite group, J. Algebra 87 (1984), 290-331.
[BR] M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145-179.
[E] K. Erdmann, The Auslander-Reiten quiver of restricted enveloping algebras, in: Representation Theory of Algebras, CMS Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1996, 201-214.
[ES] K. Erdmann and A. Skowroński, On Auslander-Reiten components of blocks and self-injective biserial algebras, Trans. Amer. Math. Soc. 330 (1992), 165-189.
[F1] R. Farnsteiner, Periodicity and representation type of modular Lie algebras, J. Reine Angew. Math. 464 (1995), 47-65.
[F2] -, On Auslander-Reiten quivers of enveloping algebras of restricted Lie algebras, Math. Nachr. 202 (1999), 43-66.
[F3] -, Representations of blocks associated to induced modules of restricted Lie algebras, ibid. 179 (1996), 57-88.
[FS1] R. Farnsteiner and H. Strade, Modular Lie Algebras and Their Representations, Monographs Textbooks Pure Appl. Math. 116, Dekker, New York, 1988.
[FS2] —,—, Shapiro's lemma and its consequences in the cohomology theory of modular Lie algebras, Math. Z. 206 (1991), 153-168.
[HPR] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, Berlin, 1980, 280-294.
[SSS] M. Schaps, D. Shapira and O. Shlomo, Quivers of blocks with normal defect group, in: Proc. Sympos. Pure Math. 63, Amer. Math. Soc., Providence, RI, 1998, 497-510.
[Sk] A. Skowroński, Selfinjective algebras: finite and tame type, in: Trends in Represantation Theory of Algebras and Related Topics, Contemp. Math. 406, Amer. Math. Soc., Providence, RI, 2006, 169-238.
[SM] S. O. Smalø, Local limitations of the Ext functor do not exist, Bull. London Math. Soc. 38 (2006), 97-98.
[W] P. Webb, The Auslander-Reiten quiver of a finite group, Math. Z. 179 (1982), 97-121.

Mathematical Institute University of Oxford
24-29 St. Giles
Oxford OX1 3LB, United Kingdom
E-mail: scherotz@maths.ox.ac.uk

[^0]: 2000 Mathematics Subject Classification: 16G70, 16G10, 16S40, 16E20.
 Key words and phrases: Auslander-Reiten theory, G-transitive algebras, Euclidean components, self-injective algebras.

