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REGION OF VARIABILITY FOR SPIRAL-LIKE FUNCTIONS
WITH RESPECT TO A BOUNDARY POINT
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Abstract. For µ ∈ C such that Reµ > 0 let Fµ denote the class of all non-vanishing
analytic functions f in the unit disk D with f(0) = 1 and

Re

„
2π

µ

zf ′(z)

f(z)
+

1 + z

1− z

«
> 0 in D.

For any fixed z0 in the unit disk, a ∈ C with |a| ≤ 1 and λ ∈ D, we shall determine the
region of variability V (z0, λ) for log f(z0) when f ranges over the class

Fµ(λ) =


f ∈ Fµ : f ′(0) =

µ

π
(λ− 1) and

f ′′(0) =
µ

π

„
a(1− |λ|2) +

µ

π
(λ− 1)2 − (1− λ2)

«ff
.

In the final section we graphically illustrate the region of variability for several sets of
parameters.

1. Introduction. We denote by H(D) the class of analytic functions in
the unit disk D = {z ∈ C : |z| < 1}, and we think of H(D) as a topological
vector space endowed with the topology of uniform convergence over com-
pact subsets of D. Denote by S∗ the subclass of functions φ ∈ H(D) with
φ(0) = 0 such that φ maps D univalently onto a domain Ω = φ(D) that is
starlike with respect to the origin. That is, tφ(z) ∈ φ(D) for each t ∈ [0, 1].
It is well known that for φ ∈ H(D) with φ(0) = 0 = φ′(0)− 1, φ ∈ S∗ if and
only if

Re
(
zφ′(z)
φ(z)

)
> 0, z ∈ D.

Functions in S∗ are referred to as starlike functions. Denote by C the subclass
of functions φ ∈ H(D) with φ(0) = 0 such that φ maps D univalently onto a
convex domain. It is well known that for φ ∈ H(D) with φ(0) = 0 = φ′(0)−1,
φ ∈ C if and only if zφ′ ∈ S∗. Functions in C are referred to as convex
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functions. We refer to the books [2, 5] for a detailed discussion of these two
classes. Although the class of starlike functions (with respect to an interior
point) has been extensively studied, little was known about starlike functions
with respect to a boundary point until the work of Robertson [15]. Motivated
by the work in [15] and characterizations of this class of functions, some
advancement in this direction has taken place (see [17, 7, 4, 6]). On the other
hand, there does not seem to be any development on spiral-like functions
with respect to a boundary point until the recent work of Elin et al. [3]
(see also [4]). More recently, Aharonov et al. [1] provide a natural geometric
approach to spiral-like functions with respect to a boundary point, and the
conditions described in [1] cover the results studied by others. On the other
hand, several authors have studied region of variability problems for various
subclasses of univalent functions in H(D) (see [8, 9, 12, 13, 14, 18, 19]). For
example, it is well known that for each fixed z0 ∈ D, the region of variability

V (z0) = {log φ′(z0) : φ ∈ C, φ′(0) = 1}

is the set {log(1− z)−2 : |z| ≤ |z0|}.
For µ ∈ C such that Reµ > 0, let Fµ denote the class of functions

f ∈ H(D) non-vanishing in D with f(0) = 1 and

RePf (z) > 0, z ∈ D,

where

(1.1) Pf (z) =
2π
µ

zf ′(z)
f(z)

+
1 + z

1− z
.

Clearly Pf (0) = 1. Basic properties and a number of equivalent characteri-
zations of the class Fµ are formulated in [1]. The case µ = π coincides with
the class introduced by Robertson [15], who has generated interest in this
class, and its associated classes. It is also known that functions in Fπ are
either close-to-convex or just the constant 1.

For f ∈ Fµ, we denote by log f the single-valued branch of the logarithm
of f with log f(0) = 0. The Herglotz representation for analytic functions
with positive real part in D shows that if f ∈ Fµ, then there exists a unique
positive unit measure ν on (−π, π] such that

2π
µ

zf ′(z)
f(z)

+
1 + z

1− z
=

π�

−π

1 + ze−it

1− ze−it
dν(t),

and hence a computation gives

log f(z) =
µ

π

π�

−π
log
(

1− z
1− ze−it

)
dν(t),
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or equivalently

f(z) = (1− z)µ/π exp
{
µ

π

π�

−π
log
(

1
1− ze−it

)
dν(t)

}
.

Let B0 be the class of analytic functions ω in D such that |ω(z)| ≤ 1 in D
and ω(0) = 0. Then for each f ∈ Fµ there exists an ωf ∈ B0 of the form

(1.2) ωf (z) =
Pf (z)− 1
Pf (z) + 1

, z ∈ D,

and conversely. It is a simple exercise to see that

(1.3) P ′f (0) = 2ω′f (0) = 2
(
π

µ
f ′(0) + 1

)
.

Suppose that f ∈ Fµ. Then a simple application of the classical Schwarz
lemma (see for example [2, 10, 11]) shows that

|P ′f (0)| = 2|(π/µ)f ′(0) + 1| ≤ 2,

because |ω′f (0)| ≤ 1. Using (1.2), one can compute that

ω′′f (0)
2

=
P ′′f (0)

4
− λ2 and P ′′f (0) =

4π
µ
f ′′(0)− 4µ

π
(λ− 1)2 + 4,

so that
ω′′f (0)

2
=
π

µ
f ′′(0)− µ

π
(λ− 1)2 + 1− λ2.

Also if we let

g(z) =
ωf (z)/z − λ
1− λωf (z)/z

for |λ| < 1,

and g(z) = λz for |λ| = 1, then we see that

g′(0) =


1

1− |λ|2

(
ωf (z)
z

)′∣∣∣∣
z=0

=
1

1− |λ|2

(
ω′′f (0)

2

)
for |λ| < 1,

λ for |λ| = 1.

We note that for |λ| < 1,

|g′(0)| ≤ 1 ⇔
|ω′′f (0)|

2(1− |λ|2)
≤ 1

⇔ 1
1− |λ|2

∣∣∣∣πµ f ′′(0)− µ

π
(λ− 1)2 + 1− λ2

∣∣∣∣ ≤ 1

⇔ f ′′(0) =
µ

π

(
a(1− |λ|2) +

µ

π
(λ− 1)2 − (1− λ2)

)
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for some a ∈ C with |a| ≤ 1. Consequently, for λ ∈ D = {z ∈ C : |z| ≤ 1}
and a ∈ C with |a| ≤ 1, and for z0 ∈ D fixed, it is natural to introduce

Fµ(λ) =
{
f ∈ Fµ : f ′(0) =

µ

π
(λ− 1) and

f ′′(0) =
µ

π

(
a(1− |λ|2) +

µ

π
(λ− 1)2 − (1− λ2)

)}
,

V (z0, λ) = {log f(z0) : f ∈ Fµ(λ)}.
From (1.3) and the normalization condition introduced in the class Fµ(λ),
we observe that ω′f (0) = λ. The main aim of this paper is to determine
the region of variability V (z0, λ) for log f(z0) when f ranges over Fµ(λ).
The precise geometric description of the set V (z0, λ) is established in Theo-
rem 2.6.

2. Basic properties of V (z0, λ) and the main result. To state our
main theorem, we need some preparation. For a positive integer p, let

(S∗)p = {f = fp0 : f0 ∈ S∗}
and recall the following result from [18].

Lemma 2.1. Let f be an analytic function in D with f(z) = zp + · · · . If

Re
(

1 + z
f ′′(z)
f ′(z)

)
> 0, z ∈ D,

then f ∈ (S∗)p.
Now, we list some basic properties of V (z0, λ).

Proposition 2.2.

(1) V (z0, λ) is compact.
(2) V (z0, λ) is convex.
(3) For |λ| = 1 or z0 = 0,

(2.3) V (z0, λ) =
{
µ

π
log
(

1− z0
1− λz0

)}
.

(4) For |λ| < 1 and z0 ∈ D \ {0}, V (z0, λ) has (µ/π) log
(

1−z0
1−λz0

)
as an

interior point.

Proof. (1) Since Fµ(λ) is a compact subset of H(D), it follows that
V (z0, λ) is also compact.

(2) If f0, f1 ∈ Fµ(λ) and 0 ≤ t ≤ 1, then the function

ft(z) = exp{(1− t) log f0(z) + t log f1(z)}
is evidently in Fµ(λ). Also, because of the representation of ft, we see easily
that the set V (z0, λ) is convex.
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(3) If z0 = 0, (2.3) trivially holds. If |λ| = |ω′f (0)| = 1, then it follows
from the classical Schwarz lemma that ωf (z) = λz, which implies

Pf (z) =
1 + λz

1− λz
and f(z) =

(
1− z

1− λz

)µ/π
.

Consequently,

V (z0, λ) =
{
µ

π
log
(

1− z0
1− λz0

)}
.

(4) For |λ| < 1 and a ∈ D, we define

δ(z, λ) =
z + λ

1 + λz

and

(2.4) Ha,λ(z) = exp
(
µ

π

z�

0

δ(aζ, λ)− 1
(1− δ(aζ, λ)ζ)(1− ζ)

dζ

)
, z ∈ D.

First we claim that Ha,λ ∈ Fµ(λ). For this, we compute

2π
µ

zH ′a,λ(z)
Ha,λ(z)

=
2z(δ(az, λ)− 1)

(1− δ(az, λ)z)(1− z)
=

2zδ(az, λ)
1− δ(az, λ)z

− 2z
1− z

,

and so we see easily that

2π
µ

zH ′a,λ(z)
Ha,λ(z)

+
1 + z

1− z
=

1 + δ(az, λ)z
1− δ(az, λ)z

.

As δ(az, λ) lies in the unit disk D, Ha,λ ∈ Fµ(λ) and the claim follows. Also
we observe that

(2.5) ωHa,λ(z) = zδ(az, λ).

Next we claim that the mapping D 3 a 7→ logHa,λ(z0) is a non-constant
analytic function of a for each fixed z0 ∈ D \ {0} and λ ∈ D. To see this, we
put

h(z) =
2π

µ(1− |λ|2)
∂

∂a
{logHa,λ(z)}

∣∣∣∣
a=0

.

A computation gives

h(z) = 2
z�

0

ζ

(1− λζ)2
dζ = z2 + · · · ,

from which it is easy to see that

Re
{
zh′′(z)
h′(z)

}
= Re

{
1 + λz

1− λz

}
> 0, z ∈ D.

By Lemma 2.1 there exists a function h0 ∈ S∗ with h = h2
0. The univalence

of h0 together with the condition h0(0) = 0 implies that h(z0) 6= 0 for
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z0 ∈ D \ {0}. Consequently, the mapping D 3 a 7→ logHa,λ(z0) is a non-
constant analytic function of a, and hence it is an open mapping. Thus,
V (z0, λ) contains the open set {logHa,λ(z0) : |a| < 1}. In particular,

logH0,λ(z0) = (µ/π) log
(

1− z0
1− λz0

)
is an interior point of {logHa,λ(z0) : a ∈ D} ⊂ V (z0, λ).

We remark that, since V (z0, λ) is a compact convex subset of C and has
non-empty interior, the boundary ∂V (z0, λ) is a Jordan curve and V (z0, λ)
is the union of ∂V (z0, λ) and its inner domain.

Now we state our main result; its proof will be presented in Section 3.

Theorem 2.6. For λ ∈ D and z0 ∈ D \ {0}, the boundary ∂V (z0, λ) is
the Jordan curve given by

(−π, π] 3 θ 7→ logHeiθ,λ(z0) =
µ

π

z0�

0

δ(eiθζ, λ)− 1
(1− δ(eiθζ, λ)ζ)(1− ζ)

dζ.

If log f(z0) = logHeiθ,λ(z0) for some f ∈ Fµ(λ) and θ ∈ (−π, π], then
f(z) = Heiθ,λ(z).

3. Proof of Theorem 2.6

Proposition 3.1. For f ∈ Fµ(λ) we have

(3.2)
∣∣∣∣f ′(z)f(z)

− µ

π
c(z, λ)

∣∣∣∣ ≤ |µ|π r(z, λ), z ∈ D,

where

c(z, λ) =
|z|2(z − λ)(1− λ)− (1− λ)(1− λz)
(1− z)(1− |z|2)(1 + |z|2 − 2 Re(λz))

,

r(z, λ) =
(1− |λ|2)|z|

(1− |z|2)(1 + |z|2 − 2 Re(λz))
.

For each z ∈ D\{0}, equality holds if and only if f = Heiθ,λ for some θ ∈ R.

Proof. Let f ∈ Fµ(λ). Then there exists ωf ∈ B0 satisfying (1.2). As no-
ticed in the introduction, through (1.3) and the normalization off , we have
ω′f (0) = λ. It follows from the Schwarz lemma (see for example [2, 10, 11])
that

(3.3)
∣∣∣∣ ωf (z)/z − λ
1− λωf (z)/z

∣∣∣∣ ≤ |z|, z ∈ D.

From (1.1) and (1.2) this is equivalent to

(3.4)

∣∣∣∣∣∣
f ′(z)
f(z) −

µ
πA(z, λ)

f ′(z)
f(z) + µ

πB(z, λ)

∣∣∣∣∣∣ ≤ |z| |τ(z, λ)|,



REGION OF VARIABILITY 37

where

(3.5)



A(z, λ) =
λ− 1

(1− λz)(1− z)
,

B(z, λ) =
1− λ

(1− z)(z − λ)
,

τ(z, λ) =
z − λ
1− λz

.

A simple calculation shows that the inequality (3.4) is equivalent to

(3.6)
∣∣∣∣f ′(z)f(z)

− µ

π

A(z, λ) + |z|2 |τ(z, λ)|2B(z, λ)
1− |z|2 |τ(z, λ)|2

∣∣∣∣
≤ |µ|

π

|z| |τ(z, λ)| |A(z, λ) +B(z, λ)|
1− |z|2 |τ(z, λ)|2

.

Using (3.5) we can easily see that

1− |z|2 |τ(z, λ)|2 =
(1− |z|2)(1 + |z|2 − 2 Re(λz))

|1− λz|2
,

A(z, λ) +B(z, λ) =
1− |λ|2

(1− λz)(z − λ)
and

A(z, λ) + |z|2|τ(z, λ)|2B(z, λ) =
(λ− 1)(1− λz) + |z|2(z − λ)(1− λ)

(1− z)|1− λz|2
.

Thus, by a simple computation, we see that
A(z, λ) + |z|2|τ(z, λ)|2B(z, λ)

1− |z|2|τ(z, λ)|2
= c(z, λ),

|z| |τ(z, λ)| |A(z, λ) +B(z, λ)|
1− |z|2|τ(z, λ)|2

= r(z, λ).

Now the inequality (3.2) follows from these equalities and (3.6).
It is easy to see that equality occurs in (3.2) for a z ∈ D when f = Heiθ,λ

for some θ ∈ R. Conversely, if equality occurs for some z ∈ D \ {0} in (3.2),
then equality must hold in (3.3). Thus from the Schwarz lemma there exists
a θ ∈ R such that ωf (z) = zδ(eiθz, λ) for all z ∈ D. This implies f = Heiθ,λ.

The choice of λ = 0 gives the following result which may deserve a special
mention.

Corollary 3.7. For f ∈ Fµ(0) we have∣∣∣∣f ′(z)f(z)
− µ(|z|2z − 1)
π(1− z)(1− |z|4)

∣∣∣∣ ≤ |µ| |z|
π(1− |z|4)

, z ∈ D.

For each z ∈ D\{0}, equality holds if and only if f = Heiθ,0 for some θ ∈ R.
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Corollary 3.8. Let γ : z(t), 0 ≤ t ≤ 1, be a C1-curve in D with
z(0) = 0 and z(1) = z0. Then

V (z0, λ) ⊂
{
w ∈ C :

∣∣∣∣w − µ

π
C(λ, γ)

∣∣∣∣ ≤ |µ|π R(λ, γ)
}
,

where

C(λ, γ) =
1�

0

c(z(t), λ)z′(t) dt and R(λ, γ) =
1�

0

r(z(t), λ)|z′(t)| dt.

Proof. For f ∈ Fµ(λ), it follows from Proposition 3.1 that∣∣∣∣log f(z0)− µ

π
C(λ, γ)

∣∣∣∣ =
∣∣∣∣1�
0

{
f ′(z(t))
f(z(t))

− µ

π
c(z(t), λ)

}
z′(t) dt

∣∣∣∣
≤

1�

0

∣∣∣∣f ′(z(t))f(z(t))
− µ

π
c(z(t), λ)

∣∣∣∣ |z′(t)| dt
≤ |µ|

π

1�

0

r(z(t), λ)|z′(t)| dt =
|µ|
π
R(λ, γ).

Since log f(z0) ∈ V (z0, λ) was arbitrary, the conclusion follows.

For the proof of our next result, we need the following lemma.

Lemma 3.9. For θ ∈ R and λ ∈ D, the function

G(z) =
µ

π

z�

0

eiθζ

{1 + (λeiθ − λ)ζ − eiθζ2}2
dζ, z ∈ D,

has a double zero at the origin and no zeros elsewhere in D. Furthermore,
there exists a starlike univalent function G0 in D with G = (µ/(2π))eiθG2

0

and G0(0) = G′0(0)− 1 = 0.

Proof. Let b = Im(λeiθ/2) ∈ R. Then a computation shows that

1 + (λeiθ − λ)z − eiθz2 = (1− z/z1)(1− z/z2),

where

z1 = e−iθ/2(ib+
√

1− b2) and z2 = e−iθ/2(ib−
√

1− b2).

From this we have
G′′(z)
G′(z)

− 1
z

=
d

dz

{
log

G′(z)
z

}
=

2/z1
1− z/z1

+
2/z2

1− z/z2
.

Since |z1| = |z2| = 1, for z ∈ D we have

Re
{

1 +
zG′′(z)
G′(z)

}
= Re

{
1 + z/z1
1− z/z1

}
+ Re

{
1 + z/z2
1− z/z2

}
> 0.
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Lemma 2.1 applied to (2π/µ)e−iθG(z) with p = 2 yields a G0 ∈ S∗ such
that G = (µ/(2π))eiθG2

0.

Proposition 3.10. Let z0 ∈ D \ {0}. Then for θ ∈ (−π, π] we have
logHeiθ,λ(z0) ∈ ∂V (z0, λ). Furthermore, if log f(z0) = logHeiθ,λ(z0) for
some f ∈ Fµ(λ) and θ ∈ (−π, π], then f = Heiθ,λ.

Proof. From (2.4) we have

H ′a,λ(z)
Ha,λ(z)

=
µ

π

δ(az, λ)− 1
(1− δ(az, λ)z)(1− z)

=
µ

π

(λ− 1) + (1− λ)az
(1− z)(1 + (λa− λ)z − az2)

.

Using (3.5) we compute

H ′a,λ(z)
Ha,λ(z)

− µ

π
A(z, λ) =

µ(1− |λ|2)az
π(1− λz)(1 + (λa− λ)z − az2)

,

H ′a,λ(z)
Ha,λ(z)

+
µ

π
B(z, λ) =

µ(1− λ2)
π(z − λ)(1 + (λa− λ)z − az2)

and hence
H ′a,λ(z)
Ha,λ(z)

− µ

π
c(z, λ) =

H ′a,λ(z)
Ha,λ(z)

− µ

π

A(z, λ) + |z|2|τ(z, λ)|2B(z, λ)
1− |z|2|τ(z, λ)|2

=
1

1− |z|2|τ(z, λ)|2

{(
H ′a,λ(z)
Ha,λ(z)

− µ

π
A(z, λ)

)
− |z|2|τ(z, λ)|2

(
H ′a,λ(z)
Ha,λ(z)

+
µ

π
B(z, λ)

)}
=

µ(1− |λ|2)z[a(1− λz)− z(z − λ)]
π(1−|z|2)(1+ |z|2−2 Re(λz))(1+(λa−λ)z−az2)

= r(z, λ)
µ

π

az

|z|
|1 + (λa− λ)z − az2|2

(1 + (λa− λ)z − az2)2
.

Now by substituting a = eiθ we easily see that

H ′
eiθ,λ

(z)

Heiθ,λ(z)
− µ

π
c(z, λ) = r(z, λ)

µ

π

eiθz

|z|
|1 + (λeiθ − λ)z − eiθz2|2

(1 + (λeiθ − λ)z − eiθz2)2
.

For G(z) as in Lemma 3.9, we get

(3.11)
H ′
eiθ,λ

(z)

Heiθ,λ(z)
− µ

π
c(z, λ) =

|µ|
π
r(z, λ)

G′(z)
|G′(z)|

and there exists a starlike univalent function G0 in D such that G =
(µ/(2π))eiθG2

0 and G0(0) = G′0(0) − 1 = 0. As G0 is starlike, for any
z0 ∈ D \ {0} the linear segment joining 0 and G0(z0) entirely lies in G0(D).
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Now, we define γ0 by

(3.12) γ0 : z(t) = G−1
0 (tG0(z0)), 0 ≤ t ≤ 1.

Since G(z(t)) = (µ/(2π))eiθ(G0(z(t)))2 = (µ/(2π))eiθ(tG0(z0))2 = t2G(z0),
we have

(3.13) G′(z(t))z′(t) = 2tG(z0), t ∈ [0, 1].

Using (3.13) and (3.11) we have

(3.14) logHeiθ,λ(z0)− µ

π
C(λ, γ0)

=
1�

0

{H ′
eiθ,λ

(z(t))

Heiθ,λ(z(t))
− µ

π
c(z(t), λ)

}
z′(t) dt

=
|µ|
π

1�

0

r(z(t), λ)
G′(z(t))z′(t)
|G′(z(t))z′(t)|

|z′(t)| dt

=
G(z0)
|G(z0)|

|µ|
π

1�

0

r(z(t), λ)|z′(t)| dt =
G(z0)
|G(z0)|

|µ|
π
R(λ, γ0),

where C(λ, γ0) and R(λ, γ0) are defined as in Corollary 3.8. Thus, we have

logHeiθ,λ(z0) ∈ ∂D
(
µ

π
C(λ, γ0),

|µ|
π
R(λ, γ0)

)
.

Also, from Corollary 3.8, we have

logHeiθ,λ(z0) ∈ V (z0, λ) ⊂ D
(
µ

π
C(λ, γ0),

|µ|
π
R(λ, γ0)

)
.

Hence, we conclude that logHeiθ,λ(z0) ∈ ∂V (z0, λ).
Finally, we prove the uniqueness of the curve. Suppose that

log f(z0) = logHeiθ,λ(z0)

for some f ∈ Fµ(λ) and θ ∈ (−π, π]. We introduce

h(t) =
G(z0)
|G(z0)|

{
f ′(z(t))
f(z(t))

− µ

π
c(z(t), λ)

}
z′(t),

where γ0 : z(t), 0 ≤ t ≤ 1, is given by (3.12). Then h(t) is a continuous
function in [0, 1] and satisfies

|h(t)| ≤ |µ|
π
r(z(t), λ)|z′(t)|.
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Furthermore, from (3.14) we have
1�

0

Reh(t) dt =
1�

0

Re
{
G(z0)
|G(z0)|

{
f ′(z(t))
f(z(t))

− µ

π
c(z(t), λ)

}
z′(t)

}
dt

= Re
{
G(z0)
|G(z0)|

{
log f(z0)− µ

π
C(λ, γ0)

}}
= Re

{
G(z0)
|G(z0)|

{
logHeiθ,λ(z0)− µ

π
C(λ, γ0)

}}
=
|µ|
π

1�

0

r(z(t), λ)|z′(t)| dt.

Thus, we have

h(t) =
|µ|
π
r(z(t), λ)|z′(t)| for all t ∈ [0, 1].

From (3.11) and (3.13), it follows that

f ′

f
=
H ′
eiθ,λ

Heiθ,λ

on γ0.

By applying the identity theorem for analytic functions, we get

f ′

f
=
H ′
eiθ,λ

Heiθ,λ

in D,

and hence, by normalization, f = Heiθ,λ in D.

Proof of Theorem 2.6. We need to prove that the closed curve

(−π, π] 3 θ 7→ logHeiθ,λ(z0)

is simple. Suppose that

logHeiθ1 ,λ(z0) = logHeiθ2 ,λ(z0)

for some θ1, θ2 ∈ (−π, π] with θ1 6= θ2. Then, from Proposition 3.10, we have

Heiθ1 ,λ = Heiθ2 ,λ.

From (2.5) this gives a contradiction that

eiθ1z = τ

(ωH
eiθ1 ,λ

z
, λ

)
= τ

(ωH
eiθ2 ,λ

z
, λ

)
= eiθ2z.

Thus, the curve must be simple.
Since V (z0, λ) is a compact convex subset of C and has non-empty in-

terior, the boundary ∂V (z0, λ) is a simple closed curve. From Proposition
3.1, the curve ∂V (z0, λ) contains the curve (−π, π] 3 θ 7→ logHeiθ,λ(z0).
Recall that a simple closed curve cannot contain any simple closed curve
other than itself. Thus, ∂V (z0, λ) is given by (−π, π] 3 θ 7→ logHeiθ,λ(z0).
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4. Geometric view of Theorem 2.6. Using Mathematica 4.1 (see
[16]), we describe the boundary of the set V (z0, λ). In the program below,
“z0” stands for z0, “lam” for λ, and “mu” for µ.

Remove["Global‘*"];

z0 = Random[]Exp[I* Random[Real, {-Pi, Pi}]]

lam = Random[]Exp[I *Random[Real, {-Pi, Pi}]]

mu = Random[Real, {0, 10^3}] + I *Random[Real, {-10^3, 10^3}]

Q[lam_, the_] := ((lam - 1) + (1 - Conjugate[lam])Exp[I*the]z)/

((1 - z)((1 + ( Conjugate[lam]*Exp[I*the] - lam)*z )

- Exp[I*the]*z*z));

myf2[lam_, the_, z0_] := mu/Pi NIntegrate[Q[lam, the], {z, 0, z0}];

image = ParametricPlot[{Re[myf2[lam, the, z0]],

Im[myf2[lam, the, z0]]}, {the, -Pi, Pi},

AspectRatio -> Automatic];

(*Clear[z0, lam, mu];*)

The following figures show the boundary of V (z0, λ) for the values of
z0 ∈ D\{0}, λ ∈ D and µ ∈ C with Reµ > 0, given below the pictures. Note
that according to Proposition 2.2 the region bounded by the curve ∂V (z0, λ)
is compact and convex.
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[16] H. Ruskeepää, Mathematica Navigator : Mathematics, Statistics, and Graphics, 2nd
ed., Elsevier, Burlington, MA, 2004.

[17] H. Silverman and E. M. Silvia, Subclasses of univalent functions starlike with respect
to a boundary point, Houston J. Math. 16 (1990), 289–299.

[18] H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai
Math. J. 28 (2005), 452–462.

[19] —, Regions of variability for convex functions, Math. Nachr. 279 (2006), 1723–1730.

Department of Mathematics
Indian Institute of Technology Madras
Chennai 600 036, India
E-mail: samy@iitm.ac.in

alluvasu@iitm.ac.in

Department of Mathematics
FIN-20014 University of Turku, Finland

E-mail: vuorinen@utu.fi

Received 19 March 2008;
revised 20 November 2008 (5023)


