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Abstract. For i € C such that Rep > 0 let F,, denote the class of all non-vanishing
analytic functions f in the unit disk D with f(0) = 1 and

/
Re(Q—W zf(z)+1+z) >0 inD.

po flz)  1-=z

For any fixed 2z in the unit disk, a € C with |a| < 1 and A € D, we shall determine the
region of variability V' (zo, A) for log f(z0) when f ranges over the class

Fu(\) = {f € Fu: f(0)= %(A —1) and

7(0) = %(a(l — AP+ %(A 12 (1— )\2)) }

In the final section we graphically illustrate the region of variability for several sets of
parameters.

1. Introduction. We denote by H(D) the class of analytic functions in
the unit disk D = {z € C : |z| < 1}, and we think of H(D) as a topological
vector space endowed with the topology of uniform convergence over com-
pact subsets of D. Denote by S* the subclass of functions ¢ € H(DD) with
#(0) = 0 such that ¢ maps D univalently onto a domain 2 = ¢(D) that is
starlike with respect to the origin. That is, t¢(z) € ¢(ID) for each ¢ € [0, 1].
It is well known that for ¢ € H(D) with ¢(0) =0 = ¢'(0) — 1, ¢ € S* if and

only if
Z¢’(Z)>
Re< 5(2) >0, ze€D.

Functions in §* are referred to as starlike functions. Denote by C the subclass
of functions ¢ € H(D) with ¢(0) = 0 such that ¢ maps D univalently onto a
convex domain. It is well known that for ¢ € H(D) with ¢(0) = 0 = ¢/(0)—1,
¢ € C if and only if z¢/ € S*. Functions in C are referred to as convex
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functions. We refer to the books [2, 5] for a detailed discussion of these two
classes. Although the class of starlike functions (with respect to an interior
point) has been extensively studied, little was known about starlike functions
with respect to a boundary point until the work of Robertson [15]. Motivated
by the work in [15] and characterizations of this class of functions, some
advancement in this direction has taken place (see [17, 7, 4, 6]). On the other
hand, there does not seem to be any development on spiral-like functions
with respect to a boundary point until the recent work of Elin et al. [3]
(see also [4]). More recently, Aharonov et al. [1] provide a natural geometric
approach to spiral-like functions with respect to a boundary point, and the
conditions described in [1] cover the results studied by others. On the other
hand, several authors have studied region of variability problems for various
subclasses of univalent functions in H(D) (see [8, 9, 12, 13, 14, 18, 19]). For
example, it is well known that for each fixed zy € D, the region of variability

V(z0) = {log¢'(20) : ¢ € C, ¢/(0) = 1}

is the set {log(1 —2)72:|z| < |20}
For pn € C such that Repy > 0, let F, denote the class of functions
f € H(D) non-vanishing in D with f(0) =1 and

RePf(z) >0, zeD,

where

2w z2f'(2) 14z
(1.1) Pp(z) = W) tioe

Clearly P¢(0) = 1. Basic properties and a number of equivalent characteri-
zations of the class F), are formulated in [1]. The case p = 7 coincides with
the class introduced by Robertson [15], who has generated interest in this
class, and its associated classes. It is also known that functions in F, are
either close-to-convex or just the constant 1.

For f € F,, we denote by log f the single-valued branch of the logarithm
of f with log f(0) = 0. The Herglotz representation for analytic functions
with positive real part in D shows that if f € F,, then there exists a unique
positive unit measure v on (—, 7] such that

2m 2f'(2)  1+z TSF 1+ ze %
pwo flz)  1—z ) 1—zeit

—Tr

dv(t),
and hence a computation gives

log f(z) = & 7§ log<1_2_z,t> dv(t),

™
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or equivalently

F(z) = (1— )i exp{Z _75; 1og(1_ie_it> dz/(t)}.

Let By be the class of analytic functions w in D such that |w(z)] < 1in D
and w(0) = 0. Then for each f € F, there exists an wy € By of the form

Pi(z) -1
1.2 == D
(1.2) w(z) i1 ‘€D
f
and conversely. It is a simple exercise to see that
(1.3) PH(0) = 24(0) = 2<Z £10) + 1).

Suppose that f € F,. Then a simple application of the classical Schwarz
lemma (see for example [2, 10, 11]) shows that

[PFO)] = 2|(m/m) f'(0) +1] < 2,
because |w(0)| < 1. Using (1.2), one can compute that

w//(o) Pl/(o) 47T 4
AN SR i _ =T e ARy N2
5 =71 A° and Pf(()) £7(0) - (A—=1)*+4,
so that
W10
2 %
Also if we let
- A
g(z) = @A <
1 —dwy(z)/z

and g(z) = Az for |\| = 1, then we see that
1 (.U// 0
( ( )) for |A] <1,

1 (w2
gO0)=< 1-[A2\ =z o LA 2

A for [A\] = 1.

We note that for |A\| <1,
|w§(0)]
2(1 - 1A%
b
1—|A]2

JO<1 & <1

"
70 = " (at= B+ E - 17 - - 02)

N oy -Eo-12+1-x% <1
T
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for some a € C with |a| < 1. Consequently, for A € D = {z € C: |z] < 1}
and a € C with |a| <1, and for 2y € D fixed, it is natural to introduce

]:u()‘):{fefuif/(o)zg()\—l)and

710 =2 (= AP + £ - 17 - (- 08))

V(20,A) = {log f(20) : f € Fu(N)}.
From (1.3) and the normalization condition introduced in the class F,()),
we observe that w(0) = A. The main aim of this paper is to determine
the region of variability V(z9,A) for log f(20) when f ranges over F,(\).
The precise geometric description of the set V(zp, A) is established in Theo-
rem 2.6.

2. Basic properties of V(zp, A\) and the main result. To state our
main theorem, we need some preparation. For a positive integer p, let

SV ={f=1f4:foeS}
and recall the following result from [18].
LEMMA 2.1. Let f be an analytic function in D with f(z) = 2P +---. If
f"(2)
f'(2)

Re(l—i—z )>0, z €D,

then f € (S*)P.
Now, we list some basic properties of V(zg, A).
PropoOSITION 2.2.

(1) V(z0, ) is compact.
(2) V(z0,A) is convexr.
(3) For |A\| =1 or z =0,

. )2 1-— 20
(2.3) V(z0,A\) = {wlog<1 — AZO) }
(4) For |\ <1 and zo € D\ {0}, V (20, ) has (u/7)log( I_AZ;o) as an

1—
interior point.

Proof. (1) Since F,()) is a compact subset of H(D), it follows that
V' (20, A) is also compact.

(2) If fo, fi € Fu(A) and 0 <t < 1, then the function

fi(z) = exp{(1 —t)log fo(z) + tlog fi(z)}

is evidently in F,(A). Also, because of the representation of f;, we see easily
that the set V' (20, A) is convex.
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(3) If 20 = 0, (2.3) trivially holds. If [A| = [w}(0)] = 1, then it follows
from the classical Schwarz lemma that wf(z) = Az, which implies

14Xz 1—z \M"
Pf(z)zl_/\z and f(z):<1—)\z> .

Consequently,
_ 1— 2
V(z0,A\) = {77 log<1 — AZO) }

(4) For |\| < 1 and a € D, we define

o=A) = 12—:—)\)\2
and
B T d(al,\) —1
(24)  Hya(2) = exp<ﬂ_§) TRV dg), zeD,

First we claim that H, ) € F,()). For this, we compute
2m ZHL;,)\(Z)  22(6(az,A)—1)  2z0(az,\) 2
p Hax(z)  (1—-6(az,N)2)(1—2) 1-6d(az,\)z 1—2’
and so we see easily that
om zH, () 142z 1+40d(az, )z

o Hax(z) T TIC d(az,\)z’

As §(az, \) lies in the unit disk D, H, » € F,(\) and the claim follows. Also
we observe that

(2.5) wh, ,(2) = 26(az, ).

Next we claim that the mapping D 3 a +— log H, x(20) is a non-constant
analytic function of a for each fixed zp € D\ {0} and A € D. To see this, we
put

21 0
T CR T
A computation gives
oS — 2.
h(z)—2§)(1_/\<)2d§—z 4o

from which it is easy to see that

zh'"(z) 1+ Az
R =R 0 D.
Lo i) o e
By Lemma 2.1 there exists a function hg € S* with h = h2. The univalence
of ho together with the condition ho(0) = 0 implies that h(zp) # 0 for
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zp € D\ {0}. Consequently, the mapping D 5 a — log H x(20) is a non-
constant analytic function of a, and hence it is an open mapping. Thus,
V' (20, A) contains the open set {log H, x(20) : |a| < 1}. In particular,

1-2z
log Ho x(20) = (p/m) 10g<1 — Ago)

is an interior point of {log H, x(20) : @ € D} C V(20,A). =

We remark that, since V' (29, A) is a compact convex subset of C and has
non-empty interior, the boundary 0V (zg, A) is a Jordan curve and V' (zp, \)
is the union of OV (29, A) and its inner domain.

Now we state our main result; its proof will be presented in Section 3.

THEOREM 2.6. For A\ € D and zy € D\ {0}, the boundary 0V (zo, A) is
the Jordan curve given by
20

) _ M 5(€i9q? )‘) -1
(wmr] 2.0 = log Hon(0) =} (e oA =0

If log f(z0) = log H.io \(20) for some f € F,(\) and 0 € (—m,7], then
f(2) = Heio \(2).

3. Proof of Theorem 2.6
PROPOSITION 3.1. For f € F,()\) we have

dc.

(3.2) J}((j)) B %c(z, M| = ’;” r(z,)\), zeD,
where
(2, ) = 122Z = N1 =X) — (1 =) (1 -)2)
VT =T R+ [~ 2Re(32))’
r(z,\) = (L= A2l

(1= [2[2)(1 +[2]* — 2Re(A2))
For each z € D\ {0}, equality holds if and only if f = H.io 5 for some 6 € R.

Proof. Let f € F,()). Then there exists wy € By satisfying (1.2). As no-
ticed in the introduction, through (1.3) and the normalization of f, we have
w’(0) = A. It follows from the Schwarz lemma (see for example [2, 10, 11])
that

—A

(3.3) ’(.Uf(Z)/Z

1—dwy(z)/z

From (1.1) and (1.2) this is equivalent to
ECNYTERY

(3.4) S

O 1 2B(z, 0)

<|z|, =ze€D.

< [zl [r(z, M),
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where
A—1
AN =52 A1 —2)
1-A
. Z,A) = ——m—————,
(3.5) B = 16
\T(Z,)\) = 12—_)\,2'

A simple calculation shows that the inequality (3.4) is equivalent to

f'(2) Az A) + 12 |7(2, )P B(2, A)

B8 15 "7 IRPRGEAP
_ I LI ) AG, N + Bz V)
S I PP

Using (3.5) we can easily see that
2 _ (L= |21+ [2]> — 2Re(A2))
|1 — Az|? ’
1— )2
(1—-X2)(z— )

1= [z |7 (2, )]

A(z,\) + B(z,\) =

and
A=1(1=X2) + |22z -\ (1 — X)'

A(z,A) + 27 (2, VP B(z,A) = (1= 2)|1 = Az]?

Thus, by a simple computation, we see that
AN + P NPBEY
1—[zP7(z, A)?
2] |7(z, M) [A(z, A) + B(z, A)|
1—[zP|7(z, A)?
Now the inequality (3.2) follows from these equalities and (3.6).
It is easy to see that equality occurs in (3.2) for a z € D when f = H.i0 )
for some 0 € R. Conversely, if equality occurs for some z € D\ {0} in (3.2),

then equality must hold in (3.3). Thus from the Schwarz lemma there exists
a6 € Rsuch that wy(z) = 26(e?2, \) for all z € D. This implies f = Hgio . m

The choice of A = 0 gives the following result which may deserve a special
mention.

=r(z,\).

COROLLARY 3.7. For f € F,(0) we have

P elePEe) [ el

fz) w1 =2) A= [zY)| 7 w(1—[2]")
For each z € D\ {0}, equality holds if and only if f = H,is o for some 6 € R.
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COROLLARY 3.8. Let v : z(t), 0 < t < 1, be a C'-curve in D with
2(0) =0 and z(1) = z9. Then

Vi < {wec:|u- oo < M rom

1
CA7) =\ c(z(t), )7 () dt and R(A\7) = r(z(t), V)| (t)| dt.
0

0
Proof. For f € F,(\), it follows from Proposition 3.1 that
1 ’ 5
o t20) = £ €0 = | G 5 econ [
g(gj jf)) Lo 0|12 0] dr
1
<l S NCORVEOEE L, ),

Since log f(20) € V (20, A) was arbltrary, the conclusion follows. m
For the proof of our next result, we need the following lemma.
LEMMA 3.9. For 8 € R and A € D, the function

2 7,9
p ¢
G(z) = ;S {1+ (et — \)C — eif(2)2
0
has a double zero at the origin and no zeros elsewhere in D. Furthermore,

there exists a starlike univalent function Gy in D with G = (u/(27))e? G2
and Go(0) = G((0) —1 = 0.

Proof. Let b =TIm(\e?/?) € R. Then a computation shows that
T4+ e =Nz —e?22 = (1—2/2)(1 — 2/2),

d¢, ze€D,

where
21 =e 23+ 1—02) and 2 =e P2(ib— /1 —b2).
From this we have

G"z) 1 d G'(z)| 2/ 2/z
G’(z)_z_dz{l()g z }_1—z}zl+1—2522'

Since |z1| = |22]| = 1, for z € D we have

R%1+izg}zR%if22}+R%ijZZ}>a
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Lemma 2.1 applied to (27/p)e”G(z) with p = 2 yields a Gy € S* such
that G = (u/(27))e’G3. =

PRrROPOSITION 3.10. Let zp € D\ {0}. Then for 0 € (—m, 7] we have
log H,io 5(20) € OV(z0,A). Furthermore, if log f(z0) = log Hi 5(20) for
some f € Fu(A) and 0 € (—m, 7|, then f = H_i .

Proof. From (2.4) we have
H;A( ) u Slaz,\) —1 _p =D+ (1—=Naz
an(2) T (1=0(az,N)2)(1-2) 7 (1-2)(1+Na—X)z—az?)

Using (3.5) we compute

Hy\(2) oy B w(1 = [Aaz

Hoa(z) Al 2 = (1= X2) (14 Qa— Nz — az?)’

H, A(Z) 0 _ p(l—N%)

Ho\(2) T Blz ) = m(z = A)(1+ (Aa — Nz — az?)
and hence
Hp(2) B o0 = Hox(2) i Az N) + 2P (2, MPPB(2, )
Ha,)\(z) ™ S Ha7/\(z) Q0 1- ‘Z|2‘T(Z,)\)‘2

= (ZiE; - ?A(Z’”)
I VP (A 4 2B ) )

)

(
p( = [AP)z[a(l — A7) — 2(z = V)]

+(

2

:7r(1—|z|2)(1+|z|2—2Re()\z))( Aa—\)z—az?)
— H%\1+(Xa—)\)z—az2|
= ’/\)ﬂ' lz| (14 (a—N)z—az2)?’

Now by substituting a = e’ we easily see that
Hly \(2) 1 - A ei022|2
Lfﬁc(z,)\)_r(z)\)“ez| +( )z — ’
Heoy\(2) 7 lz] (1+ ()\ele — Az —eifz2)2
For G(z) as in Lemma 3.9, we get
Ao 5(2) 1 G'(2)
3.11 AT By = B,
( ) HeiG,A(Z) T 6(27 ) T T(Z, ) ‘G,(Z)|

and there‘ exists a starlike univalent function Gy in D such that G =
(1n/(27))e®G2 and Go(0) = G{(0) — 1 = 0. As Gy is starlike, for any
zp € D\ {0} the linear segment joining 0 and Go(zp) entirely lies in Go(D).
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Now, we define g by
(3.12) Yo i 2(t) = Gyt (tGo(20)), 0<t<1.
Since G(2(1)) = (1/(2m))e®(Go(2(1)))? = (1] (2))e? (tGo(20))? = £2G(z0),

we have
(3.13) G'(2(t))2'(t) = 2tG(z0), t€]0,1].
Using (3.13) and (3.11) we have

(3.14)  log Hyu y(20) — %C(MO)
_ S}{g:izg; - ic(z(t),)\)}z'(t) dt
e S
:1§3HJ&wmw“mﬁ:€§$TR“%%

where C(),v0) and R(A, 7o) are defined as in Corollary 3.8. Thus, we have

log HeioJ\(Zo) € 8]])(/; C(M\ ), ’/;’ R(A, '70))'

Also, from Corollary 3.8, we have
og Hio 5(20) € V(20,A) CD = C(A\ ), . R\ ) ).

Hence, we conclude that log H,is (20) € OV (20, A).
Finally, we prove the uniqueness of the curve. Suppose that
log f(20) = log Heis »(20)
for some f € F,(\) and 0 € (—m,7]. We introduce

G(20) {f’(Z(t)) p } :

h(t) = — —c(z(t), ) p2' (1),
9= 1aG\ rem) Y 0

where v : z(t), 0 < t < 1, is given by (3.12). Then h(t) is a continuous

function in [0, 1] and satisfies

(o) < Eae, 101
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Furthermore, from (3.14) we have
1 1

§Re h(t) dt = (S)Re{ éﬁjg;' {J;/((j((tt;)) Lot )\)}z’(t)} dt
= Re{ ‘ggz& {log f(20) — % C(A, 70)}}
~ Re{ GE0 Loy Hoep o) — £ CO ) |}

Thus, we have
h(t) = M1"(,z(t),)\)|z'(t)| for all t € [0, 1].
™
From (3.11) and (3.13), it follows that

f/ Héw’)\
— = o1n vo-.

f Heie,)\

By applying the identity theorem for analytic functions, we get
/

f, Hew A .

= = : in D,

f Heie,)\

and hence, by normalization, f = Hie 5 in D. =
Proof of Theorem 2.6. We need to prove that the closed curve
(=, 7] 3 6 — log Hyo 5 (x0)
is simple. Suppose that
log Heiel,)\(zo) = log Heiez,,\(zo)
for some 01,0y € (—m, 7| with 61 # 6,. Then, from Proposition 3.10, we have
Heio \ = Heioy -

From (2.5) this gives a contradiction that

4 WH 49 WH 4 .
1 o
e‘olz:T< = ’)\,)\>:T< <22 N) = €22
z z

Thus, the curve must be simple.

Since V(zp,\) is a compact convex subset of C and has non-empty in-
terior, the boundary 0V (zp, \) is a simple closed curve. From Proposition
3.1, the curve 0V'(20,A) contains the curve (—m, 7] > 6 + log H.io \(20)-
Recall that a simple closed curve cannot contain any simple closed curve
other than itself. Thus, 9V (20, A) is given by (—m, 7] 3 0 +— log H_is ,(20).
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4. Geometric view of Theorem 2.6. Using Mathematica 4.1 (see
[16]), we describe the boundary of the set V' (zp, A). In the program below,
“z0” stands for zp, “lam” for A, and “mu” for pu.

Remove["Global‘*"];

z0 = Random[]Exp[I* Random[Real, {-Pi, Pi}]]
lam = Random[]Exp[I *Random[Real, {-Pi, Pi}]]
mu = Random[Real, {0, 10°3}] + I *Random[Real, {-10"3, 10°3}]

Q[lam_, the_] := ((lam - 1) + (1 - Conjugate[lam])Exp[I*thelz)/
((1 - 2)((1 + ( Conjugate[lam]*Exp[I*the] - lam)*z )
- Exp[I*thel#*z*z));

myf2[lam_, the_, z0_] := mu/Pi NIntegrate[Q[lam, the]l, {z, 0, z0}];
image = ParametricPlot[{Re[myf2[lam, the, z0]],

Im[myf2[lam, the, z0]]}, {the, -Pi, Pil},

AspectRatio -> Automatic];
(¥Clear[z0, lam, mu];x*)

The following figures show the boundary of V(zp, ) for the values of
zo € D\ {0}, A € D and p € C with Re u > 0, given below the pictures. Note
that according to Proposition 2.2 the region bounded by the curve 0V (zp, A)
is compact and convex.

1600
2
1500
1400
20000
1300
1200 15000
1100
10060
1000
20000 2 30000
4900 5000 5100 5200 5300 5400 \\\\\\\\\\‘4‘,44/////5060/
zo = —0.173777 4+ 0.08691914 zo = —0.713811 — 0.0997298:
A = —0.196029 + 0.480913¢ A = —0.225338 + 0.323073:¢
= 32796 + 64560.2¢ = 69097.4 + 83886.6%

Fig. 1
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12000
5000 10000 15000 20000 25000
—5000 10000
—10000
15000 -1\@ -8000 -7000 -6 ~5000 -4000
zo = —0.734426 + 0.61942¢ zo = —0.69693 — 0.601351¢
A = —0.0564481 — 0.006561227¢ A = —0.0416728 — 0.683999:¢
w = 54025 — 5108.28¢ 1= 23944.2 4+ 50613.5¢
Fig. 2
-15000  -10000 ~5000 5000 10000

6000
4000
2000

7000 8000 9000 10000 11000 12000 13000

-2000

zo = 0.0150249 + 0.9945941 2o = 0.378332 — 0.901351
A = —0.219752 — 0.256693¢ A =0.366791 — 0.600223¢
p=16828.1 — 35690.8¢ © = 5006.59 — 46769.81

Fig. 3
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-65000 -60000 55000 50000 —45000 10000 1 20000 25000 30000 35000 40000
—5000
™ ~10000
~20000
~20000
—25000
-30000
~30000
2o = 0.80351 4 0.5490357 20 = 0.691568 + 0.644823:
A = —0.55886 + 0.04192961 A =0.126172 + 0.137643:
w = 83278.8 — 90464.3: pw=47178.4 + 83497.8:¢
Fig. 4

1000 2000 4000
zo = 0.737135 + 0.496542: zo = —0.00588894 — 0.00496324
A = —0.00646307 — 0.0167039% A = —0.0472837 + 0.0970889:
1= 14038.5 + 9544.661 po=25447.1 — 2011.7¢

Fig. 5
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o -20000 -18000 -16000 -14000 -12000 -10000
zo = 0.556307 — 0.8144041 zo = 0.880992 — 0.328223:
A = 0.226895 — 0.384635¢ A = —0.0326596 + 0.6563041
n = 13589.3 — 25797.8¢ p=39935.5 + 11412¢

Fig. 6
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