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SELFINJECTIVE ALGEBRAS OF STRICTLY CANONICAL TYPE

BY

MARTA KWIECIEŃ and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract. We develop the representation theory of selfinjective algebras of strictly
canonical type and prove that their Auslander–Reiten quivers admit quasi-tubes maxi-
mally saturated by simple and projective modules.

Introduction and the main result. Throughout the article, K will
denote a fixed algebraically closed field. By an algebra is meant an associa-
tive, finite-dimensional K-algebra with an identity, which we shall assume
(without loss of generality) to be basic and indecomposable. For an alge-
bra A, we denote by modA the category of finite-dimensional (over K) right
A-modules, by indA its full subcategory formed by the indecomposable mod-
ules, and by D : modA → modAop the standard duality HomK(−,K). An
algebra A is called selfinjective if A ∼= D(A) in modA, that is, the projective
A-modules are injective. By a classical result due to Nakayama [30], a basic
algebra A is selfinjective if and only if A is a Frobenius algebra, that is, there
exists a nondegenerate K-bilinear form (−,−) : A × A → K satisfying the
associativity condition (ab, c) = (a, bc) for all elements a, b, c ∈ A. More-
over, an algebra A is said to be symmetric if A and D(A) are isomorphic
as A-A-bimodules, or equivalently, there exists an associative nondegener-
ate symmetric K-bilinear form (−,−) : A × A → K. An important class of
selfinjective algebras is formed by the orbit algebras B̂/G, where B̂ is the
repetitive algebra (locally finite-dimensional, without identity)

B̂ =
⊕
m∈Z

(Bm ⊕D(B)m)

of an algebra B, where Bm = B and D(B)m = D(B) for all m ∈ Z, and the
multiplication in B̂ is defined by

(am, fm)m · (bm, gm)m = (ambm, amgm + fmbm−1)m
for am, bm ∈ Bm, fm, gm ∈ D(B)m, and G is an admissible group of
automorphisms of B̂. For example, the identity maps Bm → Bm+1 and
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D(B)m → D(B)m+1 induce an algebra automorphism νB̂ of B̂, called the
Nakayama automorphism of B̂, and the orbit algebra B̂/(νB̂) is the trivial
extension T (B) = B n D(B) of B by D(B), which is a symmetric alge-
bra. We note that if B is of finite global dimension then the stable module
category mod B̂ of mod B̂ is equivalent, as a triangulated category, to the
derived category Db(modB) of bounded complexes over modB [21].

In the representation theory of selfinjective algebras a prominent role is
played by the selfinjective algebras of canonical type, which are the orbit
algebras Λ̂/G given by (finite-dimensional) algebras Λ whose derived cat-
egory Db(modΛ) is equivalent, as a triangulated category, to the derived
category Db(modC) of a canonical algebra C (in the sense of [33]) and
torsion-free admissible automorphism groups G of Λ̂. For example, the class
of representation-infinite tame selfinjective algebras of polynomial growth
coincides with the class of socle deformations of tame selfinjective algebras
of canonical type, as described in [38] (see also [9]–[11], [13]–[16], [37]). By
general theory (see [1], [3], [25], [26], [31], [37]), every selfinjective algebra of
canonical type is isomorphic to an algebra of the form B̂/G, where B is a
branch extension (equivalently, branch coextension) of a concealed canonical
algebra Λ (a tilt of a canonical algebra C), and G is an infinite cyclic group
generated by a strictly positive automorphism of B̂. A selfinjective algebra
A of the form B̂/G, where B is a branch extension (equivalently, branch
coextension) of a canonical algebra C and G is an infinite cyclic group gen-
erated by a strictly positive automorphism of B̂, is said to be a selfinjective
algebra of strictly canonical type.

An important combinatorial and homological invariant of the module
category modA of an algebra A is its Auslander–Reiten quiver ΓA. The
vertices of ΓA are the isoclasses [X] of modulesX in indA, and the number of
arrows from [X] to [Y ] in ΓA is the number of linearly independent irreducible
morphisms in modA starting at X and ending at Y . Moreover, we have the
Auslander–Reiten translations τA = DTr and τ−A = TrD. We shall identify
a vertex [X] of ΓA with the module X. By a component of ΓA we mean a
connected component of ΓA. A component C of ΓA is said to be standard
if the full subcategory of modA formed by the indecomposable modules
of C is equivalent to the mesh category K(C) of C (the quotient category
KC/IC of the path category KC of C modulo the ideal IC generated by the
meshes of C). Two components C and D of ΓA are said to be orthogonal if
HomA(X,Y ) = 0 and HomA(Y,X) = 0 for modules X in C and Y in D. For
a component C of ΓA, we denote by s(C) the number of simple modules in C,
by p(C) the number of projective modules in C, and by i(C) the number of
injective modules in C.

A general shape of the Auslander–Reiten quiver of a selfinjective alge-
bra of canonical type has been described (see [1], [31], [38], [39]), and its
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characteristic property is the presence of families of quasi-tubes indexed by
the projective line P1(K). We are interested in distribution of simple and
projective modules in the Auslander–Reiten quivers of selfinjective algebras
of canonical type (see [8], [12], [26], [31] for some results in this direction). It
is known that the Auslander–Reiten quiver ΓA of an arbitrary orbit algebra
A = Ĉ/G of a canonical algebra C admits a P1(K)-family of stable tubes con-
taining simple modules. On the other hand, for all orbit algebras A = B̂/G
of the concealed canonical algebras B constructed in [24, Theorem 3], all
quasi-tubes of ΓA are stable tubes and do not contain simple modules. We
will show in this paper that the quasi-tubes of the Auslander–Reiten quivers
ΓA of selfinjective algebras of strictly canonical type are maximally saturated
by simple and projective modules.

Let A be a selfinjective algebra. We denote by Γ sA the stable Auslander–
Reiten quiver of A, obtained from ΓA by removing the projective-injective
modules and the arrows attached to them. For a component C of ΓA, we
denote by Cs its stable part. It is well-known that, for any indecomposable
projective module P in modA, there is a canonical Auslander–Reiten se-
quence in modA of the form

0→ radP → (radP/socP )⊕ P → P/socP → 0.

Hence, we may recover ΓA from Γ sA if we know the positions of socle factors
P/ socP of indecomposable projective modules P in Γ sA. The Auslander–
Reiten translation τA is an automorphism of the quiver Γ sA and τ−A its inverse.
The stable Auslander–Reiten quiver Γ sA of a selfinjective algebra A also ad-
mits the action of the syzygy operator ΩA which assigns to a module X in Γ sA
the kernel ΩA(X) of a minimal projective cover PA(X)→ X of X in modA.
The inverse Ω−A of ΩA on Γ sA assigns to a module Y in Γ sA the cokernel Ω−A (Y )
of a minimal injective envelope Y → IA(Y ) of Y in modA. The Auslander–
Reiten and syzygy operators are related by τA = Ω2

ANA = NAΩ2
A and

τ−A = Ω−2
A N

−1
A = N−1

A Ω−2
A , where NA = DHomA(−, A) is the Nakayama

functor and N−1
A = HomAop(−, A)D its inverse. In particular, τA = Ω2

A and
τ−A = Ω−2

A if A is symmetric. We also note that the position of a simple
module S in Γ sA determines the position of its projective cover PA(S) in ΓA
because ΩA(S) = radPA(S).

Recall that if A∞ is the infinite linear quiver 0 → 1 → 2 → · · · then
ZA∞ is the translation quiver of the form

(i− 1, 0) (i, 0) (i + 1, 0) (i + 2, 0)

(i− 1, 1) (i, 1) (i + 1, 1)

(i− 1, 2) (i, 2)
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with the translation τ defined by τ(i, j) = (i − 1, j) for i ∈ Z, j ∈ N.
For r ≥ 1, denote by ZA∞/(τ r) the translation quiver obtained from ZA∞
by identifying each vertex x of ZA∞ with τ rx and each arrow x → y in
ZA∞ with τ rx → τ ry. Then ZA∞/(τ r) is a translation quiver consisting
of τ -periodic vertices of period r, called a stable tube of rank r. The set of
all vertices of a stable tube T having exactly one immediate predecessor
(equivalently, exactly one immediate successor) is called the mouth of T . We
refer to [35, Chapter X] for more information concerning stable tubes.

Let A be a selfinjective algebra. A component C of ΓA is said to be a
quasi-tube if its stable part Cs is a stable tube of Γ sA. By general theory (see
[27], [41]) an infinite component C of ΓA is a quasi-tube if and only if C
contains an oriented cycle. Clearly, every stable tube of ΓA is a quasi-tube.
For a quasi-tube C of ΓA, we denote by r(C) the rank of the stable tube Cs.
Then s(C)+p(C) ≤ r(C)−1 (see [28, Theorem A]). Moreover, if C and D are
quasi-tubes of ΓA such that Ds = ΩA(Cs) then s(C) = p(D), p(C) = s(D),
and r(C) = r(D).

The following main result of the paper describes the structure and homo-
logical properties of the Auslander–Reiten quivers of selfinjective algebras of
strictly canonical type.

Main Theorem. Let A be a selfinjective algebra of strictly canonical
type. The Auslander–Reiten quiver ΓA of A has a decomposition

ΓA =
∨

q∈Z/nZ

(XAq ∨ CAq ),

for some positive integer n, and the following statements hold :

(i) For each q ∈ Z/nZ, CAq = (CAq (λ))λ∈P1(K) is a P1(K)-family of quasi-
tubes with s(CAq (λ)) + p(CAq (λ)) = r(CAq (λ))− 1 for each λ ∈ P1(K).

(ii) For each q ∈ Z/nZ, XAq is a family of components containing exactly
one simple module Sq.

(iii) For each q ∈ Z/nZ, we have HomA(Sq, CAq (λ)) 6= 0 for all λ ∈
P1(K), and HomA(Sp, CAq ) = 0 for p 6= q in Z/nZ.

(iv) For each q ∈ Z/nZ, we have HomA(CAq (λ), Sq+1) 6= 0 for all λ ∈
P1(K), and HomA(CAq , Sp) = 0 for p 6= q + 1 in Z/nZ.

(v) For each q∈Z/nZ, ΩA((CAq+1)
s)=(CAq )s and ΩA((XAq+1)

s)=(XAq )s.

The paper is organized as follows. In Section 1 we introduce the canonical
algebras and describe their canonical P1(K)-family of stable tubes. Section 2
is devoted to the branch extensions and coextensions of canonical algebras,
and Section 3 to the quasi-tube enlargements of canonical algebras, playing
the fundamental role in the proof of the Main Theorem. In Section 4 we recall
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the needed facts on repetitive algebras and their orbit algebras. Section 5
contains the proof of the Main Theorem.

For background on the representation theory of algebras we refer to the
books [2], [7], [33], [35], [36], and to the survey articles [38]–[40].

1. Canonical algebras. The aim of this section is to introduce the
canonical algebras and describe their canonical family of stable tubes.

Let m ≥ 2 be a natural number, p = (p1, . . . , pm) a sequence of positive
natural numbers and λ = (λ1, . . . , λm) a sequence of pairwise different ele-
ments of the projective line P1(K) = K ∪ {∞} normalized so that λ1 = ∞
and λ2 = 0. Consider the quiver ∆(p) of the form

◦ ◦

◦ ◦ ◦

◦ ◦

◦ ◦

◦ ◦ ◦

◦ ◦
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α2,2

α1,2

αm,pm−1

α2,p2−1

α1,p1−1

α2,1 α2,p2

α1,1

αm,1

α1,p1

αm,pm

0 ω

(1, 1) (1, 2) (1, p1 − 1)

(2, 1) (2, 2) (2, p2 − 1)

(m, 1) (m, 2) (m, pm − 1)

For m = 2, C(p,λ) is defined to be the path algebra K∆(p) of the quiver
∆(p) over K. For m ≥ 3, C(p,λ) is defined to be the quotient algebra
K∆(p)/I(p,λ) of the path algebra K∆(p) by the ideal I(p,λ) of K∆(p)
generated by the elements

αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . , α2,1, j ∈ {3, . . . ,m}.
Following [33], C(p,λ) is said to be a canonical algebra of type (p,λ), p the
weight sequence of C(p,λ), and λ the (normalized) parameter sequence of
C(p,λ). It follows from [33, (3.7)] that, for a canonical algebra C = C(p,λ),
the Auslander–Reiten quiver ΓC of C is of the form

ΓC = PC ∪ T C ∪QC ,
where PC is a family of components containing all indecomposable projec-
tive C-modules (hence the unique simple projective C-module S(0) asso-
ciated to the vertex 0 of ∆(p)), QC is a family of components containing
all indecomposable injective C-modules (hence the unique simple injective
C-module S(ω) associated to the vertex ω of ∆(p)), and T C = (T Cλ )λ∈P1(K)

is a canonical P1(K)-family of pairwise orthogonal standard stable tubes
separating PC from QC and containing all simple C-modules except S(0)
and S(ω). Moreover, if rCλ denotes the rank of the stable tube T Cλ , then
rCλi = pi for i ∈ {1, . . . ,m}, and rCλ = 1 for λ ∈ P1(K) \ {λ1, . . . , λm}.

Let C = C(p,λ) be a canonical algebra. We recall a description of
modules lying on the mouth of stable tubes of the canonical P1(K)-family
T C = (T Cλ )λ∈P1(K) of ΓC :
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(a) For λ = λ1 = ∞, the mouth of T Cλ = T C∞ consists of the simple C-
modules S(1, 1), . . . , S(1, p1−1) at the vertices (1, 1), . . . , (1, p1−1)
of ∆(p) if p1 ≥ 2, and the nonsimple C-module E(∞) of the form
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with j ∈ {3, . . . ,m}.
(b) For λ = λ2 = 0, the mouth of T Cλ = T C0 consists of the simple C-

modules S(2, 1), . . . , S(2, p2−1) at the vertices (2, 1), . . . , (2, p2−1)
of ∆(p) if p2 ≥ 2, and the nonsimple C-module E(0) of the form
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with j ∈ {3, . . . ,m}.
(c) For λ = λj with j ∈ {3, . . . ,m}, the mouth of T Cλ consists of the

simple C-modules S(j, 1), . . . , S(j, pj − 1) at the vertices (j, 1), . . . ,
(j, pj − 1) of ∆(p) if pj ≥ 2, and the nonsimple C-module E(λj) of
the form
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for i ∈ {3, . . . ,m} \ {j}.
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(d) For λ ∈ P1(K) \ {λ1, . . . , λm}, the mouth of T Cλ consists of one
nonsimple C-module E(λ) of the form
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with j ∈ {3, . . . ,m}.

The following lemma will be useful in further considerations.

Lemma 1.1. Let C=C(p,λ) be a canonical algebra, with p=(p1, . . . , pm)
and λ = (λ1, . . . , λm). Let µ be an element in P1(K) \ {λ1, . . . , λm}. Take
pµ = (p1, . . . , pm, 1) and λµ = (λ1, . . . , λm, µ). Then the canonical algebras
C = C(p,λ) and Cµ = C(pµ,λµ) are isomorphic.

Proof. We have C = K∆(p)/I(p,λ), with I(p,λ) = 0 for m = 2, Cµ =
K∆(pµ)/I(pµ,λµ), where the quiver∆(pµ) is obtained from the quiver∆(p)

by adding the single arrow 0
αm+1,1←−−−− ω, and I(pµ,λµ) is the ideal of the path

algebra K∆(pµ) generated by the elements generating I(p,λ) in K∆(p) and
the additional element

αm+1,1 + α1,p1 . . . α1,1 + µα2,p2 . . . α2,1.

Then the canonical embedding of the quivers ∆(p) ↪→ ∆(pµ) induces an
isomorphism C

∼→ Cµ of algebras.

2. Branch extensions and coextensions of canonical algebras.
The aim of this section is to introduce the branch extensions and coextensions
of canonical algebras, playing a fundamental role in the paper.

Let B be an algebra and X a module in modB. The one-point extension
of B by X is the 2× 2-matrix algebra

B[X] =
[
B 0

KXB K

]
=
{[

b 0
x λ

] ∣∣∣∣ b ∈ B, λ ∈ K, x ∈ X}
with the usual addition of matrices and the multiplication induced from the
canonical K-B-bimodule structure KXB of X. The quiver QB[X] of B[X]
contains the quiver QB of B as a full convex subquiver, and there is a
single additional vertex in QB[X], which is a source. Dually, the one-point
coextension of B by X is the 2× 2-matrix algebra
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[X]B =
[

K 0
D(X) B

]
=
{[
λ 0
f b

] ∣∣∣∣ b ∈ B, λ ∈ K, f ∈ D(X)
}

with the usual addition of matrices and the multiplication induced from the
canonical B-K-bimodule structure of D(X) = HomK(KXB,K). The quiver
Q[X]B of [X]B contains the quiver QB of B as a full convex subquiver, and
there is a single additional vertex in Q[X]B, which is a sink.

A branch is a finite connected full bounded subquiver L = (QL, IL),
containing the lowest vertex 0, of the following infinite tree:
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with IL generated by all paths αβ contained in QL. The lowest vertex 0 of
L is called the germ of L, the number of vertices of L is called the capacity
of L, and the bound quiver algebra KL = KQL/IL is called the branch
algebra of L. It is known that the class of branch algebras KL of branches
L of capacity n ≥ 1 coincides with the class of tilted algebras of the Dynkin
equioriented linear quiver type

◦ ◦ ◦ ◦ ◦� � ��� . . .∆(An) :
1 2 3 n− 1 n

(see [33, (4.4)] or [36, (XVI.2.2)]).
Let C = C(p,λ) be a canonical algebra of type (p,λ) and T C =

(T Cλ )λ∈P1(K) its canonical P1(K)-family of pairwise orthogonal standard sta-
ble tubes. Let E1, . . . , Es be a set of pairwise different modules lying on the
mouth of the tubes of T C . Consider the multiple one-point extension of C,

C[E1, . . . , Es] =
[

C 0
E1 ⊕ · · · ⊕ Es K1 × · · · ×Ks

]
,

and the multiple one-point coextension of C,

[E1, . . . , Es]C =
[
K1 × · · · ×Ks 0

D(E1 ⊕ · · · ⊕ Es) C

]
,
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where K1 = · · · = Ks = K and the left module structure of E1 ⊕ · · · ⊕ Es
over K1 × · · · × Ks is given by (λ1, . . . , λs)(u1, . . . , us) = (λ1u1, . . . , λsus)
for λ1, . . . , λs ∈ K, u1 ∈ E1, . . . , us ∈ Es. Observe that C[E1, . . . , Es] is an
iterated one-point extension C[E1][E2] . . . [Es], and [E1, . . . , Es]C is an iter-
ated one-point coextension [E1][E2] . . . [Es]C. Moreover, let C[E1, . . . , Es] =
KQC[E1,...,Es]/IC[E1,...,Es] and [E1, . . . , Es]C = KQ[E1,...,Es]C/I[E1,...,Es]C be
canonical bound quiver presentations of C[E1, . . . , Es] and [E1, . . . , Es]C.

Denote by 0+
1 , . . . , 0

+
s (respectively, 0−1 , . . . , 0

−
s ) the extension vertices of

QC[E1,...,Es] (respectively, coextension vertices of Q[E1,...,Es]C) corresponding
to the extensions (respectively, coextensions) by the modules E1, . . . , Es.
Choose now branches L1 = (QL1 , IL1), . . . ,Ls = (QLs , ILs) with the germs
0∗1, . . . , 0

∗
s, respectively. The branch extension of C (branch T C-extension of

C in the sense of [36, (XV.3)]), with respect to the mouth modules E1, . . . , Es
and the branches L1, . . . ,Ls, is the bound quiver algebra

C[E1,L1, . . . , Es,Ls] = KQC[E1,L1,...,Es,Ls]/IC[E1,L1,...,Es,Ls],

where the bound quiver (QC[E1,L1,...,Es,Ls], IC[E1,L1,...,Es,Ls]) is obtained from
the bound quiver (QC[E1,...,Es], IC[E1,...,Es]) of C[E1, . . . , Es] by adding the
bound quivers of the branches L1, . . . ,Ls and making the identification of
the vertices 0+

i with 0∗i for i ∈ {1, . . . , s}. Dually, the branch coextension of
C (branch T C-coextension of C in the sense of [36, (XV.3)]), with respect
to the mouth modules E1, . . . , Es and the branches L1, . . . ,Ls, is the bound
quiver algebra

[E1,L1, . . . , Es,Ls]C = KQ[E1,L1,...,Es,Ls]C/I[E1,L1,...,Es,Ls]C ,

where the bound quiver (Q[E1,L1,...,Es,Ls]C , I[E1,L1,...,Es,Ls]C) is obtained from
the bound quiver (Q[E1,...,Es]C , I[E1,...,Es]C) of [E1, . . . , Es]C by adding the
bound quivers of the branches L1, . . . ,Ls and making the identification of
the vertices 0−i with 0∗i for i ∈ {1, . . . , s}.

We now describe the bound quivers (QC[E1,L1,...,Es,Ls], IC[E1,L1,...,Es,Ls])
and (Q[E1,L1,...,Es,Ls]C , I[E1,L1,...,Es,Ls]C) explicitly. Observe first that, by
Lemma 1.1, we may assume that the mouth modules E1, . . . , Es belong to
the tubes T Cλ with λ ∈ {λ1, . . . , λm}. Moreover, the top E = E/radE and
the socle socE of any module E lying on the mouth of a tube of T C are
one-dimensional. Hence, each extension vertex 0+

i is connected to QC by
a single arrow γ+

i with source 0+
i and sink at the vertex xi of QC corre-

sponding to the simple top S(xi) of Ei for any i ∈ {1, . . . , s}. Similarly,
each coextension vertex 0−i is connected to QC by a single arrow γ−i with
sink 0−i and source at the vertex yi of QC corresponding to the simple
socle S(yi) of Ei for any i ∈ {1, . . . , s}. Therefore, we obtain the follow-
ing description of the bound quivers (QC[E1,L1,...,Es,Ls], IC[E1,L1,...,Es,Ls]) and
(Q[E1,L1,...,Es,Ls]C , I[E1,L1,...,Es,Ls]C).
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Proposition 2.1. Let C = C(p,λ) be a canonical algebra of type (p,λ).

(i) The quiver QC[E1,L1,...,Es,Ls] is obtained from the quivers QC , QL1 ,

. . . , QLs by identifying 0+
i = 0∗i and adding the arrows

0+
i = 0∗i

γ+
i−−→ xi, i ∈ {1, . . . , s},

and the ideal IC[E1,L1,...,Es,Ls] is generated by the elements generating
the ideals IC , IL1 , . . . , ILs and the paths of length 2

γ+
i αji,ti , i ∈ {1, . . . , s},

where Ei is a mouth module of T Cλji with λji ∈ {λ1, . . . , λm} and αji,ti
is the unique arrow on the path αji,pji . . . αji,1 with source xi.

(ii) The quiver Q[E1,L1,...,Es,Ls]C is obtained from the quivers QC , QL1 ,

. . . , QLs by identifying 0−i = 0∗i and adding the arrows

yi
γ−i−−→ 0−i = 0∗i , i ∈ {1, . . . , s},

and the ideal I[E1,L1,...,Es,Ls]C is generated by the elements generating
the ideals IC , IL1 , . . . , ILs and the paths of length 2

αji,riγ
−
i , i ∈ {1, . . . , s},

where Ei is a mouth module of T Cλji with λji ∈ {λ1, . . . , λm} and αji,ri
is the unique arrow on the path αji,pji . . . αji,1 with sink yi.

Observe that αji,ti = αji,pji and αji,ri = αji,1 if Ei is the unique nonsim-
ple mouth module E(λji ) of T Cλji .

By the general theory (see [5, Section XV], [33, Chapter 4]), for a branch
extension C[E1,L1, . . . , Es,Ls] (respectively, branch coextension [E1,L1,
. . . , Es,Ls]C) of a canonical algebra C, the canonical P1(K)-family T C =
(T Cλ )λ∈P1(K) of stable tubes of ΓC is transformed into a canonical P1(K)-
family T C[E1,L1,...,Es,Ls] = (T C[E1,L1,...,Es,Ls]

λ )λ∈P1(K) of ray tubes of
ΓC[E1,L1,...,Es,Ls] (respectively, a canonical P1(K)-family T [E1,L1,...,Es,Ls]C =

(T [E1,L1,...,Es,Ls]C
λ )λ∈P1(K) of coray tubes of Γ[E1,L1,...,Es,Ls]C). In particular,

the ray tubes of T C[E1,L1,...,Es,Ls] may contain projective modules but not
injective modules, while the coray tubes of T [E1,L1,...,Es,Ls]C may contain
injective modules but not projective modules. We will need precise infor-
mation on the number of simple and projective modules in the ray tubes
of T C[E1,L1,...,Es,Ls] (respectively, simple and injective modules in the coray
tubes of T [E1,L1,...,Es,Ls]C). According to [36, Theorem XV.3.9] the class of
branch T C-extensions (respectively, branch T C-coextensions) of a canonical
algebra C coincides with the class of T C-tubular extensions (respectively,
T C-tubular coextensions) of C, as described below.
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Let A be an algebra and C a standard component of ΓA, that is, the
full subcategory of modA given by modules of C is equivalent to the mesh-
category K(C) of C. Assume that X is an admissible ray module of C, that
is, a module X lying on an infinite sectional path (ray)

X = X0 → X1 → X2 → · · · → Xi → · · ·
satysfying the conditions of [36, XV.2.1]. Then C looks as follows:
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We note that if C is a standard stable tube then the admissible ray modules
of C are exactly the modules lying on its mouth.

For a positive integer t, denote by Ht the path algebra of the quiver

◦ ◦ ◦ ◦ ◦� � ��� . . .∆(At) :
1 2 3 t− 1 t

.

Recall that the Auslander–Reiten quiver ΓHt of Ht is of the form
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S(1) S(2) S(3) S(t− 1)

Y = Y1 = I(1)

Y2 = I(2)

Yt−1 = I(t− 1)

S(t) = Yt = I(t)

where S(1), . . . , S(t) and I(1), . . . , I(t) are the simple and indecomposable
injectiveHt-modules at the vertices 1, , . . . , t, respectively. If t = 0, we denote



58 M. KWIECIEŃ AND A. SKOWROŃSKI

by H0 the zero algebra and set Y = 0. Then the one-point extension algebra

A(X, t) = [A×Ht][X ⊕ Y ] =
[
A×Ht 0
X ⊕ Y K

]
is called the t-linear extension of A at X. It follows from [36, Proposition
XV.2.7] that the component C′ of ΓA(X,t) containing the module X is a stan-
dard component obtained from C and ΓHt by inserting an infinite rectangle
as follows:
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Observe that C′ is obtained from C by inserting t + 1 rays, among them t
rays starting from the simple Ht-modules, and P = Z01 is the new projective
module, corresponding to the extension vertex of A(X, t). Clearly, for t = 0,
C′ is obtained from C by inserting only one ray starting at P = Z01.

Dually, for an admissible coray module X of C, the one-point coextension

(X, t)A = [X ⊕ Y ][A×Ht] =
[

K 0
D(X ⊕ Y ) A×Ht

]
is called the t-linear coextension of A at X. Then the connected component
C′′ of Γ(X,t)A containing X is a standard component obtained from C by
inserting t+1 corays, among them t corays ending at the simple Ht-modules,
and C′′ contains the new indecomposable injective module corresponding to
the coextension vertex of (X, t)A.
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Let C = C(p,λ) be a canonical algebra. An algebra B is said to be
a T C-tubular extension (respectively, T C-tubular coextension) of C if there
exist a sequence of algebras B0 = C,B1, . . . , Bn = B such that, for each
i ∈ {1, . . . , n}, the algebra Bi is a ti-linear extension Bi−1(Xi, ti) of Bi−1

(respectively, ti-linear coextension (Xi, ti)Bi−1 of Bi−1), for some ti ≥ 0,
with respect to an admissible ray module Xi (respectively, admissible coray
module Xi) lying in a standard stable tube T C or in a component of ΓBi−1 ,
obtained from a stable tube of T C by rectangle insertions (respectively, rect-
angle coinsertions) created by the linear extensions (respectively, linear co-
extensions) made so far. For a tubular extension (respectively, coextension)
B of C, the canonical P1(K)-family T C = (T Cλ )λ∈P1(K) is transformed into
a canonical P1(K)-family T B = (T Bλ )λ∈P1(K) of standard ray tubes (respec-
tively, standard coray tubes) T Bλ obtained from the standard stable tubes
T Cλ by the corresponding iterated rectangle insertions (respectively, iterated
rectangle coinsertions).

Let B be a T C-tubular extension of a canonical algebra C and λ ∈ P1(K).
Then every moduleM of the ray tube T Bλ lies on exactly one ray r(M) of T Bλ .
We denote by p∗(T Bλ ) the number of projective B-modules P in T Bλ which
are not proper predecessors of a projective module lying on the ray r(P ).

Let B be a T C-tubular coextension of a canonical algebra C and λ ∈
P1(K). Then every module N of the coray tube T Bλ lies on exactly one coray
c(N) of T Bλ . We denote by i∗(T Bλ ) the number of injective B-modules I
in T Bλ which are not proper successors of an injective module lying on the
coray c(I).

Proposition 2.2. Let C be a canonical algebra and T C the canonical
P1(K)-family of pairwise orthogonal standard stable tubes of ΓC .

(i) Let B be a T C-tubular extension of C. Then the Auslander–Reiten
quiver ΓB of B is of the form

ΓB = PB ∨ T B ∨QB,

where PB = PC is a family of components consisting of C-modules
and containing all indecomposable projective C-modules, QB is a fa-
mily of components containing all indecomposable injective B-mod-
ules but no projective B-module, and T B is a P1(K)-family
(T Bλ )λ∈P1(K) of pairwise orthogonal standard ray tubes separating PB
from QB. Moreover , for each λ ∈ P1(K), the number of rays of T Bλ
is equal to s(T Bλ ) + p∗(T Bλ ) + 1.

(ii) Let B be a T C-tubular coextension of C. Then the Auslander–Reiten
quiver ΓB of B is of the form

ΓB = PB ∨ T B ∨QB,
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where PB is a family of components containing all indecomposable
projective B-modules but no injective B-modules, QB = QC is a fam-
ily of components consisting of C-modules and containing all inde-
composable injective C-modules, and T B is a P1(K)-family
(T Bλ )λ∈P1(K) of pairwise orthogonal standard coray tubes separating
PB from QB. Moreover , for each λ ∈ P1(K), the number of corays
of T Bλ is equal to s(T Bλ ) + i∗(T Bλ ) + 1.

Proof. This follows from [4, Section 2], [6, Section 2], [33, Section 4], the
above discussion, and the fact that, for any stable tube T Cλ of T C , we have
p(T Cλ ) = 0 = i(T Cλ ) and s(T Cλ ) + 1 is the rank rCλ of T Cλ , hence the number
of rays (equivalently, corays) of T Cλ .

We end this section with the following consequence of [36, Theorem
XV.3.9].

Proposition 2.3. Let C be a canonical algebra and T C the canonical
P1(K)-family of standard stable tubes of ΓC . For an algebra A the following
equivalences hold :

(i) A is a T C-tubular extension of C if and only if A is a branch T C-
extension of C.

(ii) A is a T C-tubular coextension of C if and only if A is a branch
T C-coextension of C.

3. Quasi-tube enlargements of canonical algebras. We know from
Section 2 that, for a branch extension (respectively, branch coextension) B of
a canonical algebra C, the canonical P1(K)-family T C = (T Cλ )λ∈P1(K) of sta-
ble tubes is transformed into a canonical P1(K)-family T B = (T Bλ )λ∈P1(K)

of ray tubes (respectively, coray tubes). Following [4]–[6], we describe here
canonical enlargements of branch extensions (respectively, branch coexten-
sions) B of canonical algebras C to algebras B∗ such that the P1(K)-family
T B = (T Bλ )λ∈P1(K) is transformed into a canonical P1(K)-family T B∗ =
(T B∗λ )λ∈P1(K) of pairwise othogonal standard quasi-tubes. In general, a com-
ponent C of an Auslander–Reiten quiver ΓΛ is called a quasi-tube if the
projective and injective modules in C coincide, and the stable part Cs of C is
a stable tube.

Let A be an algebra and C a standard component of ΓA. Assume that
X is an indecomposable injective module in C and source of exactly two
sectional paths

Yt ← Yt−1 ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·
with t ≥ 1. The first left hand one is finite and consists of injective modules
Y1, . . . , Yt, and the second one is infinite. Hence C looks as follows:
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Let A′ = A[X] be the one-point extension of A by X. It follows from
[6, Section 2] that the component C′ of ΓA′ containing the module X is a
standard component obtained from C by inserting an infinite rectangle as
follows: # 
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We note that the new projective A′-module corresponding to the exten-
sion vertex of A′ = A[X] is injective, and the injective A-modules Y1, . . . , Yt
are not injective A′-modules.

Let B be an algebra and QB its ordinary quiver. For a vertex i of QB,
we denote by ei the idempotent of B corresponding to i, by PB(i) the as-
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sociated indecomposable projective B-module eiB, and by IB(i) the asso-
ciated indecomposable injective B-module D(Bei). Moreover, we denote by
T+
i B the one-point extension B[IB(i)] of B by IB(i), and by T−i B the one-

point coextension [PB(i)]B of B by PB(i). More generally, for a sequence
i1, . . . , it of vertices of QB, we denote by T+

i1,...,it
B the iterated extension

B[IB(i1)][IT+
i1
B(i2)] . . . [IT+

i1,...,it−1
B(it)], and by T−i1,...,itB the iterated coex-

tension [PT−i1,...,it−1
B(it)] . . . [PT−i1B

(i2)][PB(i1)]B.

Assume that B is a triangular algebra, that is, the quiver QB of B is
acyclic. For a sink i ofQB, the reflection S+

i B ofB at i is the quotient of T+
i B

by the two-sided ideal generated by ei (see [23]). The quiver σ+
i QB of S+

i B is
called the reflection of QB at i. Observe that the sink i of QB is replaced in
σ+
i QB by a source ν(i). Dually, for a source j of QB, we define the reflection
S−j B of B at j as the quotient of T−j B by the two-sided ideal generated by ej .
The quiver σ−j QB of S−j B is called the reflection of QB at j. The source j of
QB is replaced in σ−j QB by a sink ν−(j). Clearly, for a sink i (respectively,
source j) of QB, we have S−ν(i)S

+
i B
∼= B (respectively, S+

ν−(j)
S−j B

∼= B).
A reflection sequence of sinks of QB is a sequence i1, . . . , it of vertices of
QB such that is is a sink of σ+

is−1
. . . σ+

i1
QB for any s ∈ {1, . . . , t}. Dually, a

reflection sequence of sources of QB is a sequence j1, . . . , jt of vertices of QB
such that js is a source of σ−js−1

. . . σ+
j1
QB for any s ∈ {1, . . . , t}.

Theorem 3.1. Let C be a canonical algebra and T C the canonical P1(K)-
family of pairwise orthogonal standard stable tubes of ΓC .

(i) Let B be a branch T C-coextension of C. Then there exists a reflec-
tion sequence of sinks i1, . . . , it of QB such that the iterated reflec-
tion B+ = S+

it
. . . S+

i1
B of B is a branch T C-extension of C and the

Auslander–Reiten quiver ΓB∗ of the iterated extension B∗ = T+
i1,...,it

B
of B is of the form

ΓB∗ = PB∗ ∨ CB∗ ∨QB∗ ,

where PB∗ = PB is a family of components containing all indecom-
posable projective B-modules, QB∗ = QB+ is a family of components
containing all indecomposable injective B+-modules, and CB∗ is a
P1(K)-family (CB∗λ )λ∈P1(K) of pairwise orthogonal standard quasi-
tubes separating PB∗ from QB∗ , obtained from the canonical P1(K)-
family T B = (T Bλ )λ∈P1(K) of pairwise orthogonal standard coray
tubes of ΓB by iterated infinite rectangle insertions. Moreover , for
each λ ∈ P1(K), we have s(CB∗λ ) + p(CB∗λ ) = r(CB∗λ ) − 1, where
r(CB∗λ ) is the rank of the stable part of the quasi-tube CB∗λ .
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(ii) Let B be a branch T C-extension of C. Then there exists a reflec-
tion sequence of sources j1, . . . , jt of QB such that the iterated reflec-
tion B− = S−jt . . . S

−
j1
B of B is a branch T C-coextension of C and

the Auslander–Reiten quiver ΓB∗ of the iterated coextension B∗ =
T−j1,...,jtB of B is of the form

ΓB∗ = PB∗ ∨ CB∗ ∨QB∗ ,

where PB∗ = PB− is a family of components containing all inde-
composable projective B−-modules, QB∗ = QB is a family of compo-
nents containing all indecomposable injective B-modules, and CB∗ is
a P1(K)-family (CB∗λ )λ∈P1(K) of pairwise orthogonal standard quasi-
tubes separating PB∗ from QB∗ , obtained from the canonical P1(K)-
family T B = (T Bλ )λ∈P1(K) of pairwise orthogonal standard ray tubes
of ΓB by iterated infinite rectangle coinsertions. Moreover , for each
λ ∈ P1(K), we have s(CB∗λ ) + p(CB∗λ ) = r(CB∗λ )− 1, where r(CB∗λ ) is
the rank of the stable part of the quasi-tube CB∗λ .

Proof. (i) Let B = [E1,L1, . . . , Es,Ls]C be a branch T C-coextension of
C with respect to mouth modules E1, . . . , Es of T C and branches L1, . . . ,Ls.
Then B is a triangular algebra, because C and the branch algebras KL1,
. . . ,KLs are triangular algebras. Applying Proposition 2.3, we conclude that
B is a tubular T C-coextension of C, and hence the Auslander–Reiten quiver
ΓB of B is of the form ΓB = PB ∨T B ∨QB, where PB is a family of compo-
nents containing all indecomposable projective B-modules but no injective
module, QB = QC is a family of components consisting of C-modules and
containing all indecomposable injective C-modules, and T B = (T Bλ )λ∈P1(K)

is a family of pairwise orthogonal coray tubes separating PB from QB.
Moreover, for each λ ∈ P1(K), the number of corays of T Bλ is equal to
s(T Bλ ) + i∗(T Bλ ) + 1. Further, the family of indecomposable injective B-
modules located in the family T B coincides with the family of indecom-
posable injective B-modules IB(i) given by the vertices i of the branches
L1, . . . ,Ls. Observe also that the quiver QB of B is of the form

γ−1 γ−2 γ−s
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. . .
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Since the family T B = (T Bλ )λ∈P1(K) contains only a finite number of
injective B-modules, for all but finitely many λ ∈ P1(K), we have T Bλ = T Cλ ,
and then s(T Bλ ) = r(T Bλ ) − 1 holds. In fact, we have T Bλ 6= T Cλ if and only
if T Cλ contains a module Ei for some i ∈ {1, . . . , s}. Let ΛB be the set
of all λ ∈ P1(K) such that T Cλ contains at least one module Ei. For each
λ ∈ ΛB, we denote by ΣB(λ) the set of all vertices j of QB (in fact of
QL1 ∪ · · · ∪ QLs) such that the injective B-module IB(j) lies in T Bλ and is
not a proper successor of an injective B-module on the coray c(IB(j)) of T Bλ
containing IB(j). Observe that |ΣB(λ)| = i∗(T Bλ ). Moreover, for different
λ, µ ∈ ΛB, the sets ΣB(λ) and ΣB(µ) are disjoint, because they belong to
different branches. Finally, let ΣB be the union of the sets ΣB(λ), λ ∈ ΛB,
and let t = |ΣB|. We will show that a reflection sequence of sinks i1, . . . , it,
satisfying the conditions of (i), is formed by properly ordered vertices of the
set ΣB.

Fix λ ∈ ΛB. We will show that there exists a reflection sequence of sinks
i1, . . . , ir of QB, formed by the elements of ΣB(λ), hence r = i∗(T Bλ ) =
|ΣB(λ)|, such that after the iterated extension B(λ) = T+

i1,...,ir
B of B, the

coray tube T Bλ is transformed into a standard quasi-tube CB(λ)
λ of ΓB(λ). Since

λ ∈ ΛB, the stable tube T Cλ of ΓC contains a mouth module Ei involved in
the branch T C-coextension B of C. Let 0∗i = b1 → · · · → bk be the maximal
path of the branch Li starting at its germ 0∗i , which is also the coextension
vertex 0−i of the one-point coextension [Ei]C. Then the coray tube T Bλ admits
a ray

◦ ◦ ◦ ◦ ◦ ◦- - -- - - -- -. . . . . . . . . . . .
IB(bk) IB(b2) IB(b1) Ei

containing the indecomposable injective B-modules IB(b1), . . . , IB(bk) at the
vertices b1, . . . , bk. Let i1 = bk, i2 = bk−1, . . . , ik = b1. Observe that, for l ∈
{2, . . . , k}, bl is the sink of a unique arrow of QB with source bl−1, and con-
sequently i1, . . . , ik is a reflection sequence of sinks of QB. Applying the one-
point extension T+

i1
B = B[IB(i1)], we modify the standard coray tube T Bλ of

ΓB into a standard component T
T+
i1
B

λ of ΓT+
i1
B, obtained from T Bλ by the in-

finite rectangle insertion given by the extension B[IB(i1)]. Moreover, the in-
decomposable injective B-module IB(i1) is extended to the indecomposable
projective-injective T+

i1
B-module PT+

i1
B(ν(i1)) = IB(i1), while the indecom-

posable injective B-modules IB(i2), . . . , IB(ik) are extended to the indecom-
posable injective T+

i1
B-modules IT+

i1
B(i2) = IB(i2), . . . , IT+

i1
B(ik) = IB(ik).

For k ≥ 2, we consider the one-point extension T+
i1
B[IT+

i1
B(i2)] = T+

i1,i2
B.

Then the standard component T
T+
i1
B

λ of ΓT+
i1
B is modified into a standard
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component T
T+
i1,i2

B

λ of ΓT+
i1,i2

B, obtained from T
T+
i1
B

λ by the infinite rec-

tangle insertion given by the extension T+
i1
B[IT+

i1
B(i2)]. In this extension,

the indecomposable injective T+
i1
B-module IT+

i1
B(i2) is extended to the in-

decomposable projective-injective T+
i1,i2

B-module PT+
i1,i2

(ν(i2)) = IT+
i1
B(i2),

the indecomposable injective T+
i1
B-modules IT+

i1
B(i3), . . . , IT+

i1
B(ik) (if k ≥ 3)

are extended to the indecomposable injective T+
i1,i2

B-modules IT+
i1,i2

B(i3) =

IT+
i1
B(i3), . . . , IT+

i1,i2
B(ik) = IT+

i1
B(ik), and PT+

i1
B(ν(i1)) is the indecompos-

able projective-injective T+
i1,i2

B-module PT+
i1,i2

B(ν(i1)) at the vertex ν(i1).
Applying the extension procedure to all vertices of the sequence i1, . . . , ik,
we obtain the iterated extension

T+
i1,...,ik

B = B[IB(i1)][IT+
i1
B(i2)] . . . [IT+

i1,...,ik−1
B(ik)]

of B such that the standard coray tube T Bλ of ΓB is modified into a standard

component T
T+
i1,...,ik

B

λ of ΓT+
i1,...,ik

B, obtained from T Bλ by k infinite rectangle

insertions, and the indecomposable injective B-modules IB(i1), . . . , IB(ik)
of T Bλ are extended to the indecomposable projective-injective T+

i1,...,ik
B-

modules

IT+
i1,...,ik

B(i1) = PT+
i1,...,ik

B(ν(i1)), . . . , IT+
i1,...,ik

B(ik) = PT+
i1,...,ik

B(ν(ik)).

We also note that the indecomposable injective B-modules IB(j) with j ∈
ΣB(λ) \ {i1, . . . , ik} remain indecomposable injective T+

i1,...,ik
B-modules of

the component T
T+
i1,...,ik

B

λ . On the other hand, if the branch Li admits a
path

bj ← aj1 ← · · · ← ajqj with aj1 6= bj−1 and j ∈ {1, . . . , k},

then the indecomposable injective B-modules IB(aj1), . . . , IB(ajqj ) are ex-
tended to the indecomposable injective T+

i1,...,ik
B-modules

IT+
i1,...,ik

B(aj1), . . . , IT+
i1,...,ik

B(ajqj ),

which are no longer located in T
T+
i1,...,ik

B

λ . Assume that the branch Li admits
a subquiver of the form

bj ← aj1 ← · · · ← ajl → cjl1 → cjl2 → · · · → cjlm,

and let the path passing through ajl, cjl1, . . . , cjlm be the maximal path of
QL1 with source ajl. Then the coray tube T Bλ admits a maximal finite sec-
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tional path of the form
◦ ◦ ◦ ◦ ◦- - - -- - - -. . . . . . . . . . . .

IB(cjlm) IB(cjl2) IB(cjl1) IB(ajl)

and the subpath

◦ ◦ ◦ ◦- -- - . . .

IB(bj) IB(aj1) IB(aj2) IB(ajl)

of the unique coray c(IB(bj)) of T Bλ passing through IB(bj). In the component

T
T+
i1,...,iu

B

λ of ΓT+
i1,...,iu

B the first (finite) sectional path is completed to an (infi-

nite) ray by the infinite sectional path with source IB(ajl) in the infinite rect-
angle insertion created by the one-point extension T+

i1,...,iu−1
B[IT+

i1,...,iu−1

(bj)]

leading from T+
i1,...,iu−1

B to T+
i1,...,iu

B, where u = k + 1 − j. Note that in

T
T+
i1,...,iu−1

B

λ we have the sectional path

◦ ◦ ◦ ◦- -- - . . .

I
T+

i1,...,iu−1
(bj) IB(aj1) IB(aj2) IB(ajl)

because IB(aj1), . . . , IB(ajl) are still the indecomposable injectiveT+
i1,...,iu−1

B-
modules. Therefore, the vertices cjlm, . . . , cjl1 form a reflection sequence of
sinks of QB and QT+

i1,...,ik
B, and we may consider the iterated extension

T+
cjlm,...,cjl1

T+
i1,...,ik

B = T+
i1,...,ik,cjlm,...,cjl1

B.

Moreover, i1, . . . , ik, cjlm, . . . , cjl1 is a reflection sequence of sinks of QB. In
the extension process leading from T+

i1,...,ik
B to T+

i1,...,ik,cjlm,...,cjl1
B the stan-

dard component T
T+
i1,...,ik

B

λ of ΓT+
i1,...,ik

B is modified to a standard component

T
T+
i1,...,ik,cjlm,...,cjl1

B

λ of ΓT+
i1,...,ik,cjlm,...,cjl1

B, by m infinite rectangle insertions,

and the indecomposable injective B-modules

IB(cjlm) = IT+
i1,...,ik

B(cjlm), . . . , IB(cjl1) = IT+
i1,...,ik

B(cjl1)

are extended to the indecomposable projective-injective T+
i1,...,ik,cjlm,...,cjl1

B-
modules

IT+
i1,...,ik,cjlm,...,cjl1

B(cjlm) = PT+
i1,...,ik,cjlm,...,cjl1

B(ν(cjlm)), . . .

. . . , IT+
i1,...,ik,cjlm,...,cjl1

B(cjl1) = PT+
i1,...,ik,cjlm,...,cjl1

B(ν(cjl1)).

We will now define a reflection sequence of sinks i1, . . . , ip of QB, consist-
ing of the common vertices of ΣB(λ) and QLi , such that after the iterated
extension T+

i1,...,ip
B of B the standard coray tube T Bλ of ΓB is extended to
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a standard component T
T+
i1,...,ip

B

λ of ΓT+
i1,...,ip

B, by p infinite rectangle inser-

tions, and the indecomposable injective B-modules IB(i1), . . . , IB(ip) of T Bλ
are extended to the indecomposable projective-injective T+

i1,...,ip
B-modules

IT+
i1,...,ip

B(i1) = PT+
i1,...,ip

B(ν(i1)), . . . , IT+
i1,...,ip

B(ip) = PT+
i1,...,ip

B(ν(ip)).

Recall that the branch Li = (QLi , ILi) is a finite connected full bound sub-
quiver of the infinite tree
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α
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β

β

β

β

β β

0∗i = 0−i

containing the germ 0∗i = 0−i , with ILi generated by all paths αβ contained
in QLi . Denote by Q−Li the quiver obtained from QLi by adding the arrow

yi
β=β−i−−−−→ 0−i = 0∗i connecting QC with QLi (see Proposition 2.1). By a β-path

of Q−Li we mean a subpath ◦ β→ ◦ β→ · · · → ◦ β→ ◦ consisting of consecutive
arrows β, and by an α-path of Q−Li we mean a subpath ◦ α→ ◦ α→ . . .→ ◦ α→ ◦
consisting of consecutive arrows α. Denote by M (i)

β the set of all maximal

β-paths of Q−Li . Observe that different paths in M (i)
β have no common ver-

tices. Moreover, if p is a β-path j1
β← · · · β← jr

β← jr+1 inM (i)
β then j1, . . . , jr

is a reflection sequence of sinks of QLi , and hence of QB, called the reflection
sequence of sinks of p.

We assign to each β-path p in M
(i)
β a natural number d(p), called the

degree of p, as follows. The unique maximal β-path of Q−Li

yi
β=β−i−−−−→ b1 = ik

β−→ b2 = ik−1
β−→ · · · β−→ bk−1 = i2

β−→ bk = i1

passing through the germ 0∗i = 0−i of Li is said to be the β-path of degree 0.
This is the unique β-path of M (i)

β of degree 0. We say that a β-path

c1
β−→ · · · β−→ cm
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in M
(i)
β is of degree 1 if its source c1 is connected to the unique β-path of

degree 0 by an α-path bj
α←− ◦ α←− · · · α←− ◦ α←− c1 for some j ∈ {1, . . . , k}.

Inductively, we define a β-path of M (i)
β to be of degree d(p) = d + 1 if the

source of p is also the source of an α-path of QLi with sink on a β-path q of
M

(i)
β with degree d(q) = d. Observe that we may have in M (i)

β several paths
of the same nonzero degree.

We define the required reflection sequence of sinks i1, . . . , ip of QB related
with the branch Li as follows. We start with the reflection sequence of sinks
i1, . . . , ik given by the unique β-path in M (i)

β of degree 0. Consider next all

β-paths p1, . . . , pr in M (i)
β of degree 1 (if such paths exist), in an arbitrary

order. For each j ∈ {1, . . . , r}, let i(j)1 , . . . , i
(j)
lj

be the reflection sequence of
sinks associated to the β-path pj . Then we complete i1, . . . , ik to a reflection
sequence of sinks of QB as follows:

i1, . . . , ik, i
(1)
1 , . . . , i

(1)
l1
, i

(2)
1 , . . . , i

(2)
l2
, . . . , i

(r)
1 , . . . , i

(r)
lr
.

Next we complete this reflection sequence of sinks by the segments of re-
flection sequences given by all β-paths in M (i)

β of degree 2, in an arbitrary

order (ifM (i)
β admits paths of degree 2). Inductively, for d ≥ 2, if a reflection

sequence of sinks given by the segments of reflection sequences of β-paths
in M

(i)
β of degree at most d is defined, we complete it by the segments of

reflection sequences in M (i)
β of degree d + 1 (if M (i)

β admits paths of degree
d+1). Summing up, we obtain a reflection sequence of sinks i1, . . . , ip of QB
given by the reflection sequence of sinks of all β-paths inM (i)

β . Hence p is the
number of common vertices of ΣB(λ) and QLi , and the iterated extension
T+
i1,...,ip

B has the required property. We also note that the iterated reflection
S+
ip
. . . S+

i1
B of B is of the form

[E1,L1, . . . , Ei−1,Li−1, Ei+1,Li+1, . . . Es,Ls]C[Ei, S+
ip
. . . S+

i1
Li],

hence is obtained from the branch T C-coextension B = [E1,L1, . . . , Es,Ls]C
of C by replacing the branch T C-coextension part [Ei,Li]C by a branch T C-
extension part C[Ei, S+

ip
. . . S+

i1
Li], where S+

ip
. . . S+

i1
Li is the branch obtained

from Li by the reflections at the vertices i1, . . . , ip, and hence ν(i1) is the
extension vertex of the one-point extension C[Ei] inside S+

ip
. . . S+

i1
B.

In general, the tube T Cλ may contain several mouth modules Ei involved
in the branch T C-coextension B = [E1,L1, . . . , Es,Ls]C. Applying the above
procedures to all modules Ei belonging to T Cλ and the connected branches
Li, we obtain segments of independent reflection sequences of sinks, which
collected together form a reflection sequence of sinks i1, . . . , ip, . . . , ir such
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that, after the iteration extension T+
i1,...,ir

B of B, the standard coray tube

T Bλ is transformed into a standard quasi-tube C
T+
i1,...,ir

B

λ of ΓT+
i1,...,ir

B whose

indecomposable projective-injective T+
i1,...,ir

B-modules are the modules

IT+
i1,...,ir

B(i1) = PT+
i1,...,ir

B(ν(i1)), . . . , IT+
i1,...,ir

B(ir) = PT+
i1,...,ir

B(ν(ir)),

that is, the modules IT+
i1,...,ir

B(j) = PT+
i1,...,ir

B(ν(j)) for all vertices j ∈

ΣB(λ). Moreover, the quasi-tube C
T+
i1,...,ir

B

λ is obtained from the coray tube
T Bλ by r infinite rectangle insertions, corresponding to the r one-point exten-
sions leading from B to T+

i1,...,ir
B. In particular, we conclude that all modules

of the coray tube T Bλ lie in the quasi-tube C
T+
i1,...,ir

B

λ . Observe also that the
number of corays of the coray tube T Bλ equals the number of corays of the

stable part of the quasi-tube C
T+
i1,...,ir

B

λ . Hence, applying Proposition 2.2(ii),

we infer that s(T Bλ ) + i∗(T Bλ ) + 1 is the rank r(C
T+
i1,...,ir

B

λ ) of the stable

tube associated to C
T+
i1,...,ir

B

λ . Further, in the iterated transformation of the

coray tube T Bλ into the quasi-tube C
T+
i1,...,ir

B

λ no new simple modules are

created, and so s(T Bλ ) = s(C
T+
i1,...,ir

B

λ ). Finally, observe that i∗(T Bλ ) is ex-
actly the number of indecomposable projective-injective T+

i1,...,ir
B-modules

in C
T+
i1,...,ir

B

λ . Therefore,

s(C
T+
i1,...,ir

B

λ ) + p(C
T+
i1,...,ir

B

λ ) = r(C
T+
i1,...,ir

B

λ )− 1.

We also note that

r(C
T+
i1,...,ir

B

λ ) = r(T Cλ ) +
∑

Ei∈T Cλ

|Li|,

where |Li| denotes the capacity of the branch Li. Indeed, i∗(T Bλ ) =

p(C
T+
i1,...,ir

B

λ ) is the number of vertices of all branches Li with Ei ∈ T Cλ
which are sinks of arrows β, including the coextension vertices of [Ei]C,
while s(T Bλ ) − s(T Cλ ) = s(T Bλ ) − r(T Cλ ) + 1 is the number of vertices of all
branches Li with Ei ∈ T Cλ which are sources of arrows α.

Applying the above considerations to all standard coray tubes T Bλ with
λ ∈ ΛB, we find a reflection sequence of sinks i1, . . . , it of QB such that after
the iterated extension B∗ = T+

i1,...,it
B of B, the standard coray tubes T Bλ

of ΓB, λ ∈ ΛB, are transformed into standard quasi-tubes CB∗λ of ΓB∗ , λ ∈ Λ,
while the standard stable tubes T Bλ = T Cλ , λ ∈ P1(K)\ΛB, remain standard
stable tubes of ΓB∗ . In particular, we have s(CB∗λ )+ p(CB∗λ ) = r(CB∗λ )− 1 for
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any λ ∈ P1(K). Moreover, the iterated reflection algebra B+ = S+
it
. . . S+

i1
B

of B is the branch T C-extension
S+
it
. . . S+

i1
B = C[E1,L+

1 , . . . , Es,L
+
s ]

γ+
1 γ+

2 γ+
s

. . .

. . .? ? ?• • •

�
�
�
��

�
�
�
��A

A
A
AA

A
A
A
AA �

�
�
��A

A
A
AA• • •

QL+
1

QL+
2

QL+
s

0+
1 0+

2 0+
s

QC

where the branches L+
1 , . . . ,L+

s are obtained from the branches L1, . . . ,Ls by
the corresponding reflections at some vertices i1, . . . , it, as described above.
Finally, applying [6, Theorem 4.1], we conclude that the Auslander–Reiten
quiver ΓB∗ of B∗ is of the form

ΓB∗ = PB∗ ∨ CB∗ ∨QB∗ ,
where PB∗ = PB is a family of components containing all indecomposable
projective B-modules, QB∗ = QB+ is a family of components containing all
indecomposable injective B+-modules, and CB∗ = (CB∗λ )λ∈P1(K) is a family
of pairwise orthogonal standard quasi-tubes separating PB∗ from QB∗ (in
the sense of [6, (2.1)]).

The proof of (ii) is dual.

Remark 3.2. In the terminology of [6] the algebra B∗ associated (in
Theorem 3.1(i)) to a branch T C-coextension B of a canonical algebra C is
a quasi-tube enlargement of C, B = B− is a unique maximal branch co-
extension of C inside B∗, with QB a convex subquiver of QB∗ , and B+ =
S+
it
. . . S+

i1
B is a unique maximal branch extension of C inside B∗, with QB+

a convex subquiver of QB∗ . Dually, the algebra B∗ associated (in Theo-
rem 3.1(ii)) to a branch T C-extension B of a canonical algebra C is a quasi-
tube enlargement of C, B = B+ is a unique maximal branch extension of C
inside B+, with QB a convex subquiver of QB∗ , and B− = S−jt . . . S

−
j1
B is

a unique maximal branch coextension of C inside B∗, with QB− a convex
subquiver of QB∗ .

We end this section with an example illustrating the above considerations.

Example 3.3. Let B = KQ/I be the bound quiver algebra given by the
quiver Q of the form
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α1,1

α1,2

α2,1 α2,2

α3,1

α1,3

α4,1

α4,2 α4,3 α4,4

α4,5

α2

α3

α9

α11

α12

α14

α16

α18

β1

β4

β5

β6

β7

β8 β10

β13

β15

β17

β19

and I is the ideal of the path algebra KQ of Q generated by the elements

α3,1 +α1,3α1,2α1,1 +α2,2α2,1, α4,5α4,4α4,3α4,2α4,1 +α1,3α1,2α1,1 +µα2,2α2,1,

for a fixed µ ∈ K \ {0, 1}, and
α3,1β1, α4,2β4, α4,4β6, α9β7, α12β13, α18β17.

Let C = KQC/IC be the bound quiver algebra, where QC is the full sub-
quiver of Q given by the vertices 0, ω, (1, 1), (1, 2), (2, 1), (4, 1), (4, 2), (4, 3),
(4, 4) and IC is generated only by the first two generators of I, that is, the
generators of I involving only the arrows of QC . Then C is a canonical al-
gebra C(p,λ) of type (p,λ) with the weight sequence p = (3, 2, 1, 4) and
the parameter sequence λ = (λ1, λ2, λ3, λ4), with λ1 = ∞, λ2 = 0, λ3 = 1,
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λ4 = µ. Then B is the branch T C-coextension B = [E1,L1, E2,L2, E3,L3]C
of C, where

• E1 = E(1) is the unique module lying on the mouth of the stable tube
T C1 of rank 1, L1 = (QL1 , IL1) is the branch withQL1 the full subquiver
of Q given by the vertices 1, 2, 3, IL1 = 0, and β1 = γ−1 is the arrow
connecting QC with QL1 ;
• E2 = S(4, 1) is the simple C-module at the vertex (4, 1), lying on the

mouth of the stable tube T Cµ of rank 5, L2 = (QL2 , IL2) is the branch
with QL2 the full subquiver of Q given by the vertices 4, 5, and IL2 = 0,
and β4 = γ−2 is the arrow connecting QC with QL2 ;
• E3 = S(4, 3) is the simple C-module at the vertex (4, 3), lying on the

mouth of the stable tube T Cµ of rank 5, L3 = (QL3 , IL3) is the branch
with QL3 the full subquiver of Q given by the vertices 6, 7, 8, . . . , 18, 19,
and IL3 is the ideal of KQL3 generated by the paths α9β7, α12β13,
α18β17, and β6 = γ−3 is the arrow connecting QC with QL3 .

Then the canonical P1(K)-family T B = (T Bλ )λ∈P1(K) of pairwise orthog-
onal standard coray tubes of ΓB is described as follows. Since E1 lies in
T C1 and E2, E3 lie in T Cµ , we have T Bλ = T Cλ (hence it is a stable tube) for
λ ∈ P1(K) \ {1, µ}. The coray tube T B1 is obtained from the stable tube T C1
(of rank 1) by insertion of three corays and looks as follows:
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•

where the corresponding vertices along the dashed lines have to be identified,
and S(2) = SB(2), S(3) = SB(3), I(1) = IB(1), I(2) = IB(2), I(3) = IB(3).
The coray tube T Bµ is obtained from the stable tube T Cµ (of rank 5), by
insertion of 16 corays, obtained from the coray tube T [E2,L2]C

µ of the branch
T C-coextension [E2,L2]C
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by removing the arrows connecting the vertices on the two corays ending at
the vertices S(4, 2) and S(4, 3), and inserting between these two corays the
translation quiver of the form
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We now indicate a reflection sequence of sinks i1, . . . , it of QB leading
to the quasi-tube enlargement B∗ = T+

i1,...,it
B of C and the branch T C-

extension B+ = S+
it
. . . S+

i1
B of C, according to the proof of Theorem 3.1(i).

(1) For the branch L1, the set M (1)
β of all maximal β-paths of QL1 con-

sists of one arrow β1, and hence the reflection sequence of sinks given
by M (1)

β reduces to i1 = 1.

(2) For the branch L2, the setM
(2)
β consists of the path (4, 1)

β4−→ 4
β5−→ 5

of degree 0, and hence we have a unique reflection sequence of sinks
i2 = 5, i3 = 4, associated to M (2)

β .

(3) For the branch L3, the set M (3)
β consists of the paths

(4, 3)
β6−→ 6

β7−→ 7
β8−→ 8 (of degree 0);

9
β10−→ 10, 11

β13−→ 13 (of degree 1);

14
β15−→ 15 (of degree 2);

16
β17−→ 17, 18

β19−→ 19 (of degree 3).

Then as a reflection sequence of sinks associated toM (3)
β we may take

i4 = 8, i5 = 7, i6 = 6, i7 = 10, i8 = 13, i9 = 15, i10 = 17, i11 = 19.
(We note that interchanging 10 with 13, or 17 with 19, gives another
admissible sequence of sinks associated to M (3)

β .)

Therefore, i1 = 1, i2 = 5, i3 = 4, i4 = 8, i5 = 7, i6 = 6, i7 = 10, i8 = 13,
i9 = 15, i10 = 17, i11 = 19 is a required reflection sequence of sinks of QB,
and so t = 11.

The iterated extension B∗ = T+
i1,...,i11

B is the bound quiver algebra B∗ =
KQB∗/IB∗ , where QB∗ is the quiver on the page opposite and IB∗ is the
ideal in the path algebra KQB∗ of QB∗ generated by the elements

α3,1 + α1,3α1,2α1,1 + α2,2α2,1,

α4,5α4,4α4,3α4,2α4,1 + α1,3α1,2α1,1 + µα2,2α2,1,

α3,1β1, α4,2β4, α4,4β6, α9β7, α12β13, α18β17,

αν(1)α1,3α1,2α1,1β1 − βν(1)α3α2, αν(5)α4,1, αν(4)αν(5)β4β5,

βν(8)α12α11 − αν(8)β6β7β8, αν(8)α4,3, αν(7)βν(8),

βν(6)α9 − αν(6)αν(7)αν(8)β6, βν(13)α14 − αν(13)β13,

αν(13)β15, βν(13)β15,

βν(15)α18α16 − αν(15)β15, βν(15)β19, αν(17)α16, αν(19)α18.
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The iterated reflection B+ = S+
i11
. . . S+

i1
B is the bound quiver algebra

B+ = KQB+/IB+ , where QB+ is the quiver on the next page and IB+ is the
ideal in the path algebra KQB+ of QB+ generated by the elements

α3,1 +α1,3α1,2α1,1 +α2,2α2,1,

α4,5α4,4α4,3α4,2α4,1 +α1,3α1,2α1,1 +µα2,2α2,1,

αν(1)α3,1, αν(5)α4,1, αν(8)α4,3, αν(7)βν(8), αν(19)β18.

Therefore, B+ is the branch T C-extension
B+ = C[E1,L+

1 , E2,L+
2 , E3,L+

3 ]
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of C, where L+
1 = (QL+

1
, IL+

1
) is the branch with QL+

1
the full subquiver of

QB+ given by the vertices ν(1), 3, 2, and IL+
1

= 0; L+
2 = (QL+

2
, IL+

2
) is the

branch with QL+
2
the full subquiver of QB+ given by the vertices ν(4), ν(5),

and IL+
2

= 0; L+
3 = (QL+

3
, IL+

3
) is the branch with QL+

3
the full translation

subquiver of QB+ given by the vertices ν(8), ν(7), ν(6), 9, ν(10), 12, 11,
ν(13), 14, ν(15), 18, ν(19), 16, ν(17), and IL+

3
is the ideal of the path algebra

KQL+
3
of QL+

3
generated by αν(7)βν(8), αν(19)β18.
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The P1(K)-family CB∗ = (CB∗λ )λ∈P1(K) of pairwise orthogonal standard
quasi-tubes is as follows. For λ ∈ P1(K) \ {1, µ}, we have CB∗λ = T Bλ = T Cλ
(a stable tube). The coray tube T B1 of ΓB is transformed into a quasi-tube
CB∗1 of ΓB∗ of the form
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where the corresponding vertices (marked by •) along the dashed lines have
to be identified. Observe that

s(CB∗1 ) + p(CB∗1 ) + 1 = 2 + 1 + 1 = 4

is the rank r(CB∗1 ) of the stable tube (CB∗1 )s associated to CB∗1 .
The coray tube T Bµ of ΓB is transformed into a quasi-tube CB∗µ of ΓB∗ ,

which is obtained by glueing the following translation quivers along the
dashed lines passing through vertices marked by •, �, ∗, respectively:
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•
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Observe that s(CB∗µ ) = 10, p(CB∗µ ) = 10 and s(CB∗µ ) + p(CB∗µ ) + 1 = 21 is the
rank r(CB∗µ ) of the stable tube (CB∗µ )s associated to CB∗µ .

We now claim that the reflection B1 = S+
0 B

+ of B+ at the sink 0 of
QB+ is again a branch T C1-coextension of a canonical algebra C1. Indeed,
B1 = KQB1/IB1 , where QB1 is the quiver
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and IB1 is the ideal in the path algebra KQB1 of QB1 generated by the
elements

β3,2β3,1 + β1,1 + β2,1, β4,1 + β1,1 + µβ2,1,

β1,1α1,3, β2,1α2,2, β3,2βν(1), β4,1α4,5, αν(8)α4,3, αν(7)βν(8), αν(19)β18.

Then the bound quiver algebra C1 = KQC1/IC1 , where QC1 is the full
subquiver of QB1 given by the vertices ω, ν(0) and ν(1), and IC1 is the ideal
in KQC1 generated by the elements β3,2β3,1 +β1,1 +β2,1, β4,1 +β1,1 +µβ2,1,
is a canonical algebra of type (p,λ) with the weight sequence p = (1, 1, 2, 1)
and the parameter sequence λ = (∞, 0, 1, µ). Moreover, B1 is the branch
T C1-coextension [E1,L1, E2,L2, E3,L3, E4,L4]C1, where
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• E1 = E∞ is the unique module on the mouth of the stable tube T C1
∞

of rank 1, L1 = (QL1
, IL1

) is the branch with QL1
the full subquiver

of QB1 given by the vertices (1, 1), (1, 2), and IL1
= 0;

• E2 = E0 is the unique module on the mouth of the stable tube T C1
0

of rank 1, L2 = (QL2
, IL2

) is the branch with QL2
given by the vertex

(2, 1), and hence IL2
= 0;

• E3 = S(ν(1)) is the simple C1-module lying on the mouth of the stable
tube T C1

1 of rank 2, L3 = (QL3
, IL3

) is the branch with QL3
the full

subquiver of QB1 given by the vertices 2, 3, and IL3
= 0;

• E4 = E(µ) is the unique module on the mouth of the stable tube T C1
µ

of rank 1, L4 = (QL4
, IL4

) is the branch with QL4
the full subquiver of

QB1 given by the vertices (4, 4), (4, 3), (4, 2), (4, 1), ν(5), ν(4), ν(8),
ν(7), ν(6), 9, ν(10), 12, 11, ν(13), 14, ν(15), 18, ν(19), 16, ν(17), and
IL4

is the ideal of KQL4
generated by αν(8)α4,3, αν(7)βν(8), αν(19)β18.

Consider the set of vertices of QB1 : j1 = (1, 1), j2 = (1, 2), j3 = (2, 1),
j4 = 2, j5 = 3, j6 = (4, 1), j7 = (4, 2), j8 = (4, 3), j9 = (4, 4), j10 = 9,
j11 = 11, j12 = 12, j13 = 14, j14 = 16, j15 = 18. Then j1, . . . , j15 is a reflec-
tion sequence of sinks of QB1 associated to the branch T C1-coextension B1 of
C1, according to the rule presented in the proof of Theorem 3.1(i), and hence
the iterated reflection S+

j15
. . . S+

j1
B1 is a branch T C1-extension B+

1 of C1.
Moreover, the reflection S+

ωB
+
1 at the sink ω of QB+

1
is isomorphic to B.

Therefore, i1, . . . , i11, 0, j1, . . . , j15, ω is a reflection sequence of sinks of
QB, exhausting all 28 vertices of QB, such that S+

ω Sj15 . . . S
+
j1
S+

0 Si11 . . . Si1B
is isomorphic to B.

4. Selfinjective orbit algebras. In this section we recall the needed
background on selfinjective orbit algebras.

Let B be an algebra and EB = {ei | 1 ≤ i ≤ n} be a fixed set of
orthogonal primitive idempotents of B with 1B = e1 + · · · + en. Then we
have the associated canonical set ÊB = {em,i | m ∈ Z, 1 ≤ i ≤ n} of or-
thogonal primitive idempotents of the repetitive algebra B̂ of B such that
em,1 + · · · + em,n is the identity of Bm, and νB̂(em,i) = em+1,i for any
m ∈ Z, i ∈ {1, . . . , n}. By an automorphism of B̂ we mean a K-linear
algebra automorphism ϕ of B̂ preserving the set ÊB. An automorphism ϕ of
B̂ is said to be

• positive if, for each pair (m, i) ∈ Z×{1, . . . , n}, we have ϕ(em,i) = ep,j
for some p ≥ m and some j ∈ {1, . . . , n};
• rigid if, for each pair (m, i) ∈ Z × {1, . . . , n}, we have ϕ(em,i) = em,j

for some j ∈ {1, . . . , n};
• strictly positive if it is positive but not rigid.
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Observe that the Nakayama automorphism νB̂ is a strictly positive automor-
phisms of B̂. A group G of automorphisms of B̂ is said to be admissible if it
acts freely on the set ÊB and has finitely many orbits. We may identify the
algebra B with a finite K-category B whose objects are elements of EB, the
morphism spaces are defined by B(ei, ej) = ejBei for all i, j ∈ {1, . . . , n},
and the composition of morphisms is given by the multiplication in B. Sim-
ilarly, we consider the repetitive algebra B̂ of B as a K-category with the
objects the set ÊB, the morphism spaces defined by

B̂(em,i, er,j) =


ejBei, r = m,

D(eiBej), r = m+ 1,
0, otherwise,

and the composition of morphisms given by multiplication in B and the
canonical B-B-bimodule structure of D(B) = HomK(B,K). Then an au-
tomorphism of the repetitive algebra B̂ is just an automorphism of the
K-category B̂. Moreover, an admissible group of automorphisms of B̂ is
a group G of automorphisms of the K-category B̂ acting freely on the set
ÊB of objects of B̂ and having finitely many orbits. We refer to [32] for more
information on automorphisms of repetitive algebras (categories).

Let B be an algebra and G be an admissible group of automorphisms
of B̂. Following Gabriel [20] we may consider the finite orbit K-category
B̂/G defined as follows. The objects of B̂/G are the elements a = Gx of the
set ÊB/G of G-orbits in ÊB and the morphism spaces are given by

(B̂/G)(a, b)

=
{

(fy,x) ∈
∏

(x,y)∈a×b

B̂(x, y)
∣∣∣ g · fy,x = fgy,gx for all g ∈ G, x ∈ a, y ∈ b

}
,

for all objects a, b of B̂/G. Then we have a canonical Galois covering functor
F : B̂ → B̂/G which assigns to each object x of B̂ its G-orbit Gx, and, for
any objects x of B̂ and a of B̂/G, F induces natural K-linear isomorphisms⊕
y∈ÊB , Fy=a

B̂(x, y) ∼→ (B̂/G)(Fx, a),
⊕

y∈ÊB , Fy=a

B̂(y, x) ∼→ (B̂/G)(a, Fx).

The finite-dimensional algebra
⊕

a,b∈Ê/G(B̂/G)(a, b) associated to the
orbit category B̂/G is a selfinjective algebra, denoted by B̂/G and called
an orbit algebra of B̂, with respect to the admissible automorphism group
G of B̂. The group G also acts on the category mod B̂ of right B̂-modules
(identified with contravariant functors from B̂ to modK with finite support)
by gM = M ◦g−1 for anyM ∈ mod B̂ and g ∈ G. Further, we have the push-
down functor Fλ : mod B̂ → mod B̂/G such that Fλ(M)(a) =

⊕
x∈aM(x)

for a module M in mod B̂ and an object a of B̂/G.
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The following theorem is a consequence of [20, Lemma 3.5, Theorem 3.6].

Theorem 4.1. Let B be an algebra and G a torsion-free admissible group
of K-linear automorphisms of B̂. Then

(i) The push-down functor Fλ : mod B̂ → mod B̂/G induces an injection
from the set of G-orbits of isomorphism classes of indecomposable
modules in mod B̂ into the set of isomorphism classes of indecom-
posable modules in mod B̂/G.

(ii) The push-down functor Fλ : mod B̂ → mod B̂/G preserves the Aus-
lander–Reiten sequences.

In general, the push-down functor Fλ : mod B̂ → mod B̂/G associated
to a Galois covering F : B̂ → B̂/G is not dense (see [18], [19]). Following
[18], a repetitive category B̂ is said to be locally support-finite if for any
object x of B̂, the full subcategory of B̂ given by the supports suppM of all
indecomposable modules M in mod B̂ with M(x) 6= 0 is finite. Here, by the
support of a module M in mod B̂ we mean the full subcategory of B̂ given
by all objects z with M(z) 6= 0.

The following consequence of [19, Proposition 2.5] (see also [18, Theo-
rem]) will be essentially applied in the next section.

Theorem 4.2. Let B be an algebra with locally support-finite repetitive
category B̂, and G be a torsion-free admissible group of automorphisms of B̂.
Then the push-down functor Fλ : mod B̂ → mod B̂/G is dense. In particu-
lar , Fλ induces an isomorphism of the orbit translation quiver ΓB̂/G of the
Auslander–Reiten quiver ΓB̂ of B̂, with respect to the action of G, and the
Auslander–Reiten quiver ΓB̂/G of B̂/G.

We end this section with information on isomorphisms of repetitive cat-
egories (algebras) of algebras.

Let B be a triangular algebra, identified with the full subcategory of
B̂ given by the objects e0,k, k ∈ {1, . . . , n}. Then for any sink i (respec-
tively, source j) of QB, the full subcategory of B̂ given by the objects e0,k,
k ∈ {1, . . . , n} \ {i}, and e1,i = νB(e0,i) (respectively, the objects e0,k,
k ∈ {1, . . . , n} \ {j}, and e−1,j = ν−

B̂
(e0,j)) is the reflection S+

i B of B at i
(respectively, the reflection S−j B of B at j), and we have an isomorphism

of K-categories (algebras) B̂ ∼= Ŝ+
i B (respectively, B̂ ∼= Ŝ−j B). In fact, we

have the following general theorem (see [23]).

Theorem 4.3. Let B and B′ be triangular algebras. The following state-
ments are equivalent.

(i) B̂ ∼= B̂.
(ii) B′ ∼= S+

ir
. . . S+

i1
B for a reflection sequence of sinks i1, . . . , ir of QB.
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(iii) B′ ∼= S−js . . . S
−
j1
B for a reflection sequence of sources j1, . . . , js

of QB.

For an algebra B, we denote by mod B̂ the stable category of mod B̂.
Recall that the objects of mod B̂ are the modules in mod B̂ without nonzero
projective direct summands, and, for any two objects M and N in mod B̂,
the space HomB̂(M,N) of morphisms from M to N is the quotient
HomB̂(M,N)/PB̂(M,N), where PB̂(M,N) is the subspace of HomB̂(M,N)
consisting of all morphisms which factorize through a projective B̂-module.
For a morphism f ∈ HomB̂(M,N), the induced morphism f +PB̂(M,N) in
HomB̂(M,N) is denoted by f . We note that the syzygy operators ΩB̂ and
Ω−
B̂

induce two mutually inverse functors ΩB̂, Ω
−
B̂

: mod B̂ → mod B̂.
The following known fact (see [34, p. 56]) will be applied in Section 5.

Lemma 4.4. Let M and N be two objects of mod B̂, and f : M → N
a nonzero morphism in mod B̂. Assume that f is a monomorphism or an
epimorphism. Then f is a nonzero morphism in mod B̂.

5. Selfinjective algebras of strictly canonical type. In this section
we describe the structure and properties of the Auslander–Reiten quivers of
selfinjective algebras of strictly canonical type, applying results presented in
Sections 3 and 4. The following theorem is crucial.

Theorem 5.1. Let B be a branch extension (respectively , branch coex-
tension) of a canonical algebra C. Then there exist algebras Cq, B−q , B+

q , B∗q
and Bq, q ∈ Z, and a decomposition

ΓB̂ =
∨
q∈Z

(Xq ∨ Cq)

of the Auslander–Reiten quiver ΓB̂ of B̂ such that the following statements
hold :

(i) For each q ∈ Z, Xq is a family of components of ΓB̂ containing
exactly one simple B̂-module Sq.

(ii) For each q ∈ Z, Cq is a family (Cq(λ))λ∈P1(K) of pairwise orthogonal
standard quasi-tubes of ΓB̂ with s(Cq(λ)) + p(Cq(λ)) = r(Cq(λ))− 1
for any λ ∈ P1(K).

(iii) For each pair p, q ∈ Z with p < q, we have HomB̂(Xq,Xp ∨ Cp) = 0
and HomB̂(Cq,Xp ∨ Cp ∨ Xp+1) = 0.

(iv) For each q ∈ Z, Cq is a canonical algebra, B−q is a branch coexten-
sion of Cq, B+

q is a branch extension of Cq, and B∗q is a quasi-tube
enlargement of Cq.
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(v) For each q ∈ Z, Cq, B−q , B+
q , B∗q and Bq are full convex subcate-

gories of B̂ with B̂−q = B̂ = B̂+
q , νB̂(Cq) = Cq+2, νB̂(B−q ) = B−q+2,

νB̂(B+
q ) = B+

q+2, νB̂(B∗q ) = B∗q+2, νB̂(Bq) = Bq+2.
(vi) There exists a reflection sequence of sinks i0, i1, . . . , ir−1, ir, ir+1,

. . . , in−1in of QB−0 , where n is the rank of K0(B−0 ) = K0(B), such
that B+

0 = S+
ir−1

. . . S+
i0
B−0 , B−1 = S+

ir
B+

0 , B+
1 = S+

in−1
. . . S+

ir+1
B−1 ,

B−2 = S+
in
B+

1 , B∗0 = T+
i1,...ir−1

B−0 , B1 = T+
ir
B+

0 , B∗1 = T+
ir+1,...in−1

B−1
and B2 = T+

in
B+

1 .
(vii) For each q ∈ Z, Cq is the canonical P1(K)-family of quasi-tubes

of ΓB∗q , obtained from the canonical P1(K)-family T −q of coray
tubes of ΓB−q by infinite rectangle insertions, and from the canonical
P1(K)-family T +

q of ray tubes of ΓB+
q

by infinite rectangle inser-
tions.

(viii) For each q ∈ Z, Xq consists of indecomposable Bq-modules.
(ix) For each q ∈ Z, we have νB̂(Xq) = Xq+2 and νB̂(Cq) = Cq+2.
(x) B̂ is locally support-finite.
(xi) For each q ∈ Z, HomB̂(Sq, Cq(λ)) 6= 0 for all λ ∈ P1(K), and

HomB̂(Sp, Cq) = 0 for p 6= q in Z.
(xii) For each q ∈ Z, HomB̂(Cq(λ), Sq+1) 6= 0 for all λ ∈ P1(K), and

HomB̂(Cq, Sp) = 0 for p 6= q + 1 in Z.
(xiii) For each q ∈ Z, we have ΩB̂(Csq+1) = Csq and ΩB̂(X sq+1) = X sq .

Proof. It follows from Theorem 3.1 and Section 4 that the classes of repet-
itive algebras (categories) of branch extensions and branch coextensions of
a fixed canonical algebra C coincide. Therefore, we may assume (without
loss of generality) that B is a branch coextension of a canonical algebra C.
Let B−0 = B and C0 = C. Moreover, if B = C, we set B+

0 = C, B∗0 = C,
C0 = T C , C0(λ) = T Cλ for any λ ∈ P1(K). Assume B 6= C. Applying
Theorem 3.1(i), we conclude that there is a reflection sequence of sinks
i0, i1, . . . , ir−1 of QB, for some r ≥ 1, such that the iterated reflection
B+

0 = S+
ir−1

. . . S+
i0
B−0 of B−0 = B is a branch extension of C0 = C and the

Auslander–Reiten quiver ΓB∗0 of the iterated extension B∗0 = T+
i0,...,ir−1

B−0 of
B−0 = B has a decomposition

ΓB∗0 = PB∗0 ∨ CB∗0 ∨QB∗0 ,

where PB∗0 = PB
−
0 is a family of components consisting of B−0 -modules

and containing all indecomposable projective B−0 -modules, QB∗0 = QB
+
0 is

a family of components consisting of B+
0 -modules and containing all inde-

composable injective B+
0 -modules, and CB∗0 is a P1(K)-family (CB

∗
0

λ )λ∈P1(K)

of pairwise orthogonal standard quasi-tubes, separating PB∗0 from QB∗0 , ob-
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tained from the canonical P1(K)-family T B
−
0 = (T B

−
0

λ )λ∈P1(K) of pairwise
orthogonal standard coray tubes of ΓB−0 by iterated infinite rectangle inser-

tions. Moreover, for each λ ∈ P1(K), we have s(CB
∗
0

λ )+ p(CB
∗
0

λ ) = r(CB
∗
0

λ )− 1.
Further, B−0 is the iterated reflection B−0 = S−ν(i0) . . . S

−
ν(ir−1)B

+
0 , and ap-

plying Theorem 3.1(ii), we infer that the P1(K)-family CB
∗
0

λ of quasi-tubes

of ΓB∗0 is obtained from the canonical P1(K)-family T B
+
0 = (T B

+
0

λ )λ∈P1(K) of
pairwise orthogonal standard ray tubes of ΓB+

0
by suitable iterated infinite

rectangle coinsertions. We set C0 = CB∗0 and C0(λ) = CB
∗
0

λ for λ ∈ P1(K).
Since B+

0 is a branch extension of C0 = C (trivial if B+
0 = C), the

unique sink of QC , say ir = 0, is a sink of QB+
0
. Then we may consider the

one-point extension B1 = T+
ir
B+

0 = B+
0 [I(ir)] of B+

0 by the indecomposable
injective B+

0 -module IB+
0
(0) at the vertex ir, and the reflection B−1 = S+

ir
B+

0

of B+
0 at ir. In this process, we create a new canonical algebra C1 such

that the extension vertex ν(ir) of T+
ir
B+

0 is the unique source of QC1 , while
the unique source ω of QC is the unique sink of QC1 . Moreover, B−1 is
a branch coextension of C1, with respect to the canonical family T C1 =
(T C1
λ )λ∈P1(K) of stable tubes of ΓC1 . Observe also that B1 is also the one-

point coextension [PB−1 (ν(ir))]B−1 of B−1 by the indecomposable projective
B−1 -module PB−1 (ν(ir)) at the vertex ν(ir). Hence, the Auslander–Reiten
quiver ΓB1

of B1 has a decomposition

ΓB1
= PB

+
0 ∨ T B

+
0 ∨ X1 ∨ T B

−
1 ∨QB

−
1

given by canonical decompositions

ΓB+
0

= PB
+
0 ∨ T B

+
0 ∨QB

+
0 and ΓB−1

= PB
−
1 ∨ T B

−
1 ∨QB

−
1

of the Auslander–Reiten quivers of B+
0 and B−1 , where PB

+
0 = PC0 ,

QB
−
1 = QC1 , and X1 is a family of components containing the simple B1-

module S1 = SB1
(ω) at the vertex ω of QB+

1
. We note that ω is the unique

common vertex of the quivers QC0 and QC1 . Observe that we may have
B−1 = C1. In such a case, we set B+

1 = C1. Assume B+
1 6= C1. Then, ap-

plying Theorem 3.1(i) to the branch coextension B−1 of C1, we conclude
that there exists a reflection sequence of sinks ir+1, . . . , it of QB−1 , for some
t ≥ r+1, such that the iterated reflection B+

1 = S+
it
, . . . , S+

ir+1
B−1 of B−1 is a

branch extension of C1 and the Auslander–Reiten quiver ΓB∗1 of the iterated
extension B∗1 = Tir+1,...,itB

−
1 of B−1 has a decomposition

ΓB∗1 = PB∗1 ∨ CB∗1 ∨QB∗1 ,
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where PB∗1 = PB
−
1 is a family of components consisting of B−1 -modules

and containing all indecomposable projective B−1 -modules, QB∗1 = PB
+
1 is

a family of components consisting of B+
1 -modules and containing all inde-

composable injective B+
1 -modules, and CB∗1 is a P1(K)-family (CB

∗
1

λ )λ∈P1(K)

of pairwise orthogonal standard quasi-tubes, separating PB∗1 from QB∗1 , ob-
tained from the canonical P1(K)-family T B

−
1 = (T B

−
1

λ )λ∈P1(K) of pairwise
orthogonal standard coray tubes of ΓB−1 by iterated infinite rectangle inser-

tions. Moreover, for each λ ∈ P1(K), we have s(CB
∗
1

λ )+ p(CB
∗
1

λ ) = r(CB
∗
1

λ )− 1.
Further, B−1 is the iterated reflection B−1 = S−ν(ir+1) . . . S

−
ν(it)

B+
1 , and apply-

ing Theorem 3.1(ii) we infer that the canonical family CB∗1 of quasi-tubes of

ΓB∗1 is obtained from the canonical P1(K)-family T B
+
1 = (T B

+
1

λ )λ∈P1(K) of
pairwise orthogonal standard ray tubes of ΓB+

1
by suitable iterated infinite

rectangle coinsertions. We set C1 = CB∗1 and C1(λ) = CB
∗
1

λ for λ ∈ P1(K).
We now note that i0, i1, . . . , ir−1, ir, ir+1, . . . , it is a reflection sequence of

sinks of QB = QB−0
exhausting all vertices of QB except the unique source ω

of QC , and hence t = n− 1. Moreover, in = ω is a unique sink of QC1 , and a
sink of QB+

1
, because B+

1 is a branch extension of C1. Consider the one-point
extension B2 = T+

in
B+

1 = B+
1 [IB+

1
(in)] and the reflection B−2 = S+

in
B+

1 .
Then B−2 is a branch coextension of a new canonical algebra C2, and B2

is a one-point coextension [PB−2 (ν(in))]B−2 of B−2 by the indecomposable
projective B−2 -module PB−2 (ν(in)) at the vertex ν(in) = ν(ω). Hence, the
Auslander–Reiten quiver ΓB2

of B2 has a decomposition

ΓB2
= PB

+
1 ∨ T B

+
1 ∨ X2 ∨ T B

−
2 ∨QB

−
2

given by canonical decompositions

ΓB+
1

= PB
+
1 ∨ T B

+
1 ∨QB

+
1 and ΓB−2

= PB
−
2 ∨ T B

−
2 ∨QB

−
2

of the Auslander–Reiten quivers of B+
1 and B−2 , where PB

+
1 = PC1 ,

QB
−
2 = QC2 , and X2 is a family of components containing the simple B2-

module S2 = SB2
(ν(ir)) at the vertex ν(ir) = ν(0) of QB+

2
. Observe that

ν(0) is the unique common vertex of C1 and C2.
Identify now B = B−0 with the full convex subcategory of B̂ given by the

objects e0,k, k ∈ {1, . . . , n}. Then

• B+
0 is the full convex subcategory of B̂ given by the objects e0,k

with k ∈ {1, . . . , n} \ {i0, . . . , ir−1} and e1,i0 = νB̂(e0,i0), . . . , e1,ir−1 =
νB̂(e0,ir−1);
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• B−1 is the full convex subcategory of B̂ given by the objects ek,0 with
k ∈ {1, . . . , n} \ {i0, . . . , ir−1, ir} and e1,i0 = νB̂(e0,i0), . . . , e1,ir−1 =
νB̂(e0,ir−1), e1,ir = νB̂(e0,ir);
• B+

1 is the full convex subcategory of B̂ given by the objects e0,in ,
e1,i0 = νB̂(e0,i0), . . . , e1,ir = νB̂(e0,ir), e1,ir+1 = νB̂(e0,ir+1), . . . , e1,in−1

= νB̂(e0,in−1);
• B−2 is the full convex subcategory of B̂ given by the objects e1,k =
νB̂(e0,k), k ∈ {1, . . . , n}.

In particular, we conclude that the Nakayama automorphism νB̂ of B̂ induces
isomorphisms of K-categories (algebras) B−0 ∼= B−2 and C = C0

∼= C2.
We define full convex subcategories Cq, B−q , B+

q , B∗q and Bq, q ∈ Z, of
B̂ as follows:

• For q = 2p even, Cq = νp
B̂

(C0), B−q = νp
B̂

(B−0 ), B+
q = νp

B̂
(B+

0 ), B∗q =

νp
B̂

(B∗0), Bq = νp−1

B̂
(B2).

• For q = 2p + 1 odd, Cq = νp
B̂

(C1), B−q = νp
B̂

(B−1 ), B+
q = νp

B̂
(B+

1 ),
B∗q = νp

B̂
(B∗1), Bq = νp

B̂
(B1).

Then, for each q ∈ Z, Cq is a canonical algebra, B−q is a branch coextension
of Cq, and B+

q is a branch extension of Cq. We denote by 0q the unique sink
and by ωq the unique source of the quiver QCq of Cq.

For each q ∈ Z, the Auslander–Reiten quiver ΓB∗q of B∗q has a decompo-
sition

ΓB∗q = PB∗q ∨ CB∗q ∨QB∗q ,

where PB∗q = PB
−
q is a family of components consisting of B−q -modules and

containing all indecomposable projective B−q -modules, QB∗q = QB
+
q is a fam-

ily of components consisting of B+
q -modules and containing all indecompos-

able injective B+
q -modules, and CB∗q is a P1(K)-family (CB

∗
q

λ )λ∈P1(K) of pair-
wise orthogonal standard quasi-tubes, separating PB∗q from QB∗q , obtained
from the canonical P1(K)-family T B

−
q = (T B

−
q

λ )λ∈P1(K) of pairwise orthogo-
nal standard coray tubes of ΓB−q by iterated infinite rectangle insertions, and

from the canonical P1(K)-family T B
+
q = (T B

+
q

λ )λ∈P1(K) of pairwise orthog-
onal standard ray tubes of ΓB+

q
by iterated infinite rectangle coinsertions.

Moreover, for each λ ∈ P1(K), we have s(CB
∗
q

λ )+p(CB
∗
q

λ ) = r(CB
∗
q

λ )−1. We set
Cq = CB∗q and Cq(λ) = CB

∗
q

λ for λ ∈ P1(K). Since HomB∗q (C
B∗q ,PB∗q ) = 0 and

HomB∗q (Q
B∗q , CB∗q ) = 0, B∗q is a full convex subcategory of B̂, and B̂ can be

obtained from B∗q by iterated one-point coextensions by projective modules
whose restrictions to B∗q are modules from the additive category add(PB∗q )
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and iterated one-point extensions by injective modules whose restrictions to
B∗q are modules from the additive category add(QB∗q ) of QB∗q , applying [36,
Corollary 1.7] and its dual, we conclude that Cq = (Cq(λ))λ∈P1(K) remains a
P1(K)-family of pairwise orthogonal standard quasi-tubes of ΓB̂.

Similarly, for each q ∈ Z, Bq is a one-point extension B+
q−1[IB+

q−1
(0q)]

of B+
q−1 by the indecomposable injective B+

q−1-module IB+
q−1

(0q−1) at the
unique sink 0q−1 of QCq−1 , and a one-point coextension [PB−q (ν(0q−1))]B−q
of B−q by the indecomposable projective B−q -module PB−q (ν(0q−1)) at the
unique source ν(0q−1) = ωq of QCq . Moreover, the Auslander–Reiten quiver
ΓBq of Bq has a decomposition

ΓBq = PB
+
q−1 ∨ T B

+
q−1 ∨ Xq ∨ T B

−
q ∨QB

−
q

given by canonical decompositions

ΓB+
q−1

= PB
+
q−1 ∨ T B

+
q−1 ∨QB

+
q−1 and ΓB−q = PB

−
q ∨ T B

−
q ∨QB

−
q

of the Auslander–Reiten quivers of B+
q−1 and B−q , where P

B+
q−1 = PCq−1 ,

QB
−
q = QCq , and Xq is a family of components containing the simple Bq-

module Sq = SB+
q−1

(ωq−1) = SB−q (0q) at the vertex ωq−1 = 0q, separating

PB
+
q−1 ∨T B

+
q−1 from T B

−
q ∨QB

−
q . In particular, we have HomBq

(Xq,PB
+
q−1 ∨

T B
+
q−1) = 0 and HomBq

(T B
−
q ∨QB

−
q ,Xq) = 0. Since B̂ can be obtained from

Bq by iterated one-point extensions by indecomposable projective modules
whose restrictions to Bq are modules from the additive category add(PB

+
q−1∨

T B
+
q−1) of PB

+
q−1 ∨ T B

+
q−1 and iterated one-point coextensions by indecom-

posable injective modules whose restrictions to Bq are modules from the
additive category add(T B

−
q ∨ QB

−
q ) of T B

−
q ∨ QB

−
q , applying [36, Corollary

1.7] and its dual again, we conclude that Xq remains a family of components
of ΓB̂.

For each pair of integers p ≤ q, let Bp,q be the full subcategory of B̂
given by the objects em,k with p ≤ m ≤ q and k ∈ {1, . . . , n}. Observe that
the module category modBp,q is the full subcategory of mod B̂ consisting
of modules with supports contained in Bp,q. Moreover, every module from
mod B̂ belongs to a full subcategory modBp,q.

Observe now that B0,1 is the iterated extension B0,1 = T+
i0,i1,...,in

B of
B = B−0 . Then it follows from the above discussion that the Auslander–
Reiten quiver ΓB0,1 of B0,1 has a decomposition

ΓB0,1 = PB
−
0 ∨ C0 ∨ X1 ∨ C1 ∨ X2 ∨ T B

−
2 ∨QB

−
2
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where B−2 = νB̂(B−0 ), T B
−
2 = νB̂(T B

−
0 ) and QB

−
2 = νB̂(QB

−
0 ). Similarly, the

Auslander–Reiten quiver ΓB−1,0 of B−1,0 has a decomposition

ΓB−1,0 = PB
−
−1 ∨ C−1 ∨ X0 ∨ C0 ∨ X1 ∨ T B

−
1 ∨QB

−
1

where B−−1 = ν−
B̂

(B−1 ), C−1 = ν−
B̂

(C1), and X0 = ν−
B̂

(X2). Combining, we con-
clude that the Auslander–Reiten quiver ΓB−1,1 of B−1,1 has a decomposition

ΓB−1,1 = PB
−
−1 ∨ C−1 ∨ X0 ∨ C0 ∨ X1 ∨ C1 ∨ X2 ∨ T B

−
2 ∨QB

−
2 .

Repeating these considerations, we deduce that, for any positive integer p,
the Auslander–Reiten quiver ΓB−p,p of B−p,p has a decomposition

ΓB−p,p = PB
−
−p ∨ C−p ∨

( ∨
−p<q≤p

(Xq ∨ Cq)
)
∨ Xp+1 ∨ T B

−
p+1 ∨QB

−
p+1 .

Since mod B̂ is the union of the full subcategories modB−p,p, p ≥ 1, we
conclude that the Auslander–Reiten quiver ΓB̂ of B̂ has a required decom-
position

ΓB̂ =
∨
q∈Z

(Xq ∨ Cq)

and the statements (i)–(ix) hold. Observe also that, for a fixed object
x = eq,k of B̂, the full subcategory of B̂ given by the supports suppM of
all indecomposable modules from mod B̂ with M(x) 6= 0, is contained in the
full subcategory Bq−1,q+1. Therefore, B̂ is a locally support-finite category,
and so (x) also holds.

We now prove the statements (xi) and (xii). Fix q ∈ Z. For each λ ∈
P1(K), the quasi-tube Cq(λ) contains the unique nonsimple indecomposable
Cq-module E(λ)

q lying on the mouth of the stable tube T Cqλ of ΓCq , having the
simple socle isomorphic to Sq = SCq(0q) and the simple top isomorphic to
Sq+1 = SCq(ωq). Therefore, we have HomB̂(Sq, E

(λ)
q ) = HomCq(Sq, E

(λ)
q ) 6= 0

and HomB̂(E(λ)
q , Sq+1) = HomCq(E

(λ)
q , Sq+1) 6= 0. Hence, HomB̂(Sq, Cq(λ))

6= 0 and HomB̂(Cq(λ), Sq+1) 6= 0 for any λ ∈ P1(K). Moreover, since ΓB∗q =

PB
−
q ∨ Cq ∨ QB

+
q , Cq separates PB

−
q from QB

+
q , Sq lies in PB

−
q , Sq+1 lies

in QB
+
q , we conclude that HomB̂(Sq+1, Cq) = 0 and HomB̂(Cq, Sq) = 0. Fi-

nally, the support of any indecomposable B̂-module from the family Cq is con-
tained in the full convex subcategoryB∗q . Hence, we obtain HomB̂(Sp, Cq) = 0
and HomB̂(Cq, Sp) = 0 for any p ∈ Z different from q and q+1, respectively.
Thus the statements (xi) and (xii) hold.

It remains to prove (xiii). The syzygy operators ΩB̂ and Ω−
B̂
are mutually

inverse equivalences of the stable category mod B̂ of B̂. Applying (iii), for
each q ∈ Z, we have HomB̂(X sq ,X sp ∨ Csp) = 0 and HomB̂(Csq , Csp ∨ X sp+1) = 0
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for any p ∈ Z with p < q. We first show that Ω(Csq+1) = Csq for any q ∈ Z.
Fix λ ∈ P1(K). We have three cases to consider, depending on the structure
of the quasi-tube Cq+1(λ).

Assume first that Cq+1(λ) is a stable tube of rank 1. Then, in the above
notation, Cq+1(λ) is a stable tube T Cq+1

λ of rank 1 of the Auslander–Reiten
quiver ΓCq+1 of the canonical algebra Cq+1. Then the unique module E(λ)

Cq+1

lying on the mouth of T Cq+1

λ = Cq+1(λ) is an indecomposable Cq+1-module
having a one-dimensional space at each vertex of QCq+1 (see Section 1),
one-dimensional socle SCq+1(0q+1) given by the unique sink 0q+1 of QCq+1

and one-dimensional top SCq+1(ωq+1) given by the unique source ωq+1 of
QCq+1 . Further, the quiver QCq of the canonical algebra Cq has a unique
source at the vertex ωq = 0q+1 and a unique sink at the vertex 0q such that
νB̂(0q) = ωq+1, the indecomposable projective-injective B̂-module PB̂(0q+1)
at 0q+1 has a 2-dimensional vector space at the common vertex ωq = 0q+1

of QCq and QCq+1 , a one-dimensional vector space at the remaining ver-
tices of QCq and QCq+1 , and the zero space at the vertices of QB̂ which are
not vertices of QCq and QCq+1 . Then the syzygy module ΩB̂(E(λ)

Cq+1
) is an

indecomposable Cq-module having a one-dimensional vector space at each
vertex ofQCq , one-dimensional socle SCq(0q) at the unique sink 0q ofQCq and
one-dimensional top SCq(ωq) at the unique source ωq of QCq . Moreover, since
Cq+1(λ) = T Cq+1

λ is a stable tube of rank 1 (hence without simple and projec-
tive modules), we conclude that ΩB̂(Cq+1(λ)) is a stable tube of rank 1 in ΓB̂,
and consequently ΩB̂(Cq+1(λ)) is a stable tube T Cq% of rank 1 in ΓCq for some
% ∈ P1(K). Clearly, in that case T Cq% = Cq(%), and ΩB̂(Cq+1(λ)) = Cq(%).

Assume now that Cq+1(λ) is a quasi-tube enlargement of a stable tube
T Cq+1

λ of rank 1 in ΓCq+1 , with r(Cq+1(λ)) ≥ 2 (equivalently, Cq+1(λ) 6=
T Cq+1

λ ). Then the branch coextension B−q+1 of Cq+1 inside B̂ contains the

one-point coextension [E(λ)
Cq+1

]Cq+1 of Cq+1 by the unique module E
(λ)
Cq+1

lying on the mouth of T Cq+1

λ . According to Theorem 3.1 (and its proof),
the quasi-tube Cq+1(λ) contains the indecomposable projective-injective B̂-
module IB̂(x)=PB̂(νB̂(x)), where x is the coextension vertex of [E(λ)

Cq+1
]Cq+1.

Moreover, x is the sink of an arrow with source 0q+1 = ωq on the path of QCq
from the source ωq to the sink 0q corresponding to the parameter λ. Hence,
the simple B̂-module SB̂(x) = SCq(x) lies in the stable tube T Cqλ of ΓCq ,

and consequently SB̂(x) lies in the quasi-tube Cq(x) = CB
∗
q

λ . Finally, observe
that PB̂(νB̂(x))/SB̂(x) lies in Cq+1(λ), and ΩB̂(PB̂(νB̂(x))/SB̂(x)) = SB̂(x).
This shows that ΩB̂(Csq+1(λ)) = Csq(λ).



SELFINJECTIVE ALGEBRAS 91

Assume that Cq+1(λ) is a quasi-tube enlargement of a stable tube T Cq+1

λ

of ΓCq+1 of rank at least 2. Then the tube T Cq+1

λ , and hence Cq+1(λ), contains
a simple module SB̂(y) = SCq+1(y) at a vertex y which is the source of an
arrow with sink 0q+1 on the path from ωq+1 to 0q+1 in QCq+1 corresponding
to the parameter λ. Then y is the extension vertex of the one-point exten-
sion Cq[E

(λ)
Cq

] of Cq by the unique nonsimple module lying on the mouth

of the stable tube T Cqλ of ΓCq , and Cq[E
(λ)
Cq

] is a full convex subcategory
of the quasi-tube enlargement B∗q of Cq inside B̂. Applying Theorem 3.1

(and its proof) again, we conclude that the quasi-tube Cq(λ) = CB
∗
q

λ con-
tains the indecomposable projective module PB̂(y) = PB∗q (y), and hence
also its radical radPB̂(y). Since radPB̂(y) = ΩB̂(SB̂(y)), we conclude that
ΩB̂(Csq+1(λ)) = Csq(λ).

Summing up, we proved that ΩB̂(Csq+1) = Csq for any q ∈ Z. In order to
prove that ΩB̂(X sq+1) = X sq for q ∈ Z, we need a characterization of inde-
composable nonprojective modules from a family Xp in the stable category
mod B̂. Fix p ∈ Z. Recall that Xp consists of indecomposable Bp-modules,
where Bp is simultaneously the one-point extension Bp = B+

p−1[IB+
p−1

(0p−1)]

of the branch extension B+
p−1 of the canonical algebra Cp−1 by the inde-

composable injective B+
p−1-module IB+

p−1
(0p−1) at the unique sink 0p−1 of

QCp−1 , and the one-point coextension Bp = [PB−p (ωp)]B−p of the branch co-
extension B−p of the canonical algebra Cp by the indecomposable projective
B−p -module PB−p (ωp) at the unique source ωp = νB̂(0p−1) of QCp . Further,
the Auslander–Reiten quiver ΓBp has a decomposition

ΓBp = PB
+
p−1 ∨ T B

+
p−1 ∨ Xp ∨ T B

−
p ∨QB

−
p

given by decompositions

ΓB+
p−1

= PB
+
p−1 ∨ T B

+
p−1 ∨QB

+
p−1 and ΓB−p = PB

−
p ∨ T B

−
p ∨QB

−
p

of the Auslander–Reiten quivers of B+
p−1 and B−p . The P1(K)-family T B

+
p−1

of ray tubes of ΓB+
p−1

separates PB
+
p−1 from QB

+
p−1 , the indecomposable pro-

jective B+
p−1-modules lie in PB

+
p−1 ∨ T B

+
p−1 , and hence, for each indecom-

posable module X in QB
+
p−1 , there exists an epimorphism U → X with

U from the additive category add(T B
∗
p−1) of T B

∗
p−1 , because a projective

cover epimorphism PB+
p−1

(X) → X of X in modB+
p−1 factors through a

module U from add(T B
∗
p−1). Dually, the P1(K)-family T B

−
p of ray tubes of

ΓB−p separates PB
−
p from QB

−
p , the indecomposable injective B−p -modules
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lie in T B
−
p ∨ QB

−
p , and hence, for each indecomposable module Y in PB

−
p ,

there exists a monomorphism Y → V with V a module from the additive
category add(T B

−
p ) of T B

−
p , because an injective envelope monomorphism

Y → IB−p (Y ) of Y in modB−p factors through a module V from add(T B
−
p ).

Observe also that Xp contains exactly one projective and exactly one in-
jective B−p -module, namely the indecomposable projective-injective B̂-mod-
ule PB̂(ωp) = PBp(ωp) = IBp(0p−1) = IB̂(0p−1), where ωp = νB̂(0p−1).
Moreover, the simple B̂-module Sp−1 = SB̂(0p−1) = SCp−1(0p−1) lies in
Xp−1, and the simple B̂-module Sp+1 = SB̂(ωp) = SCp(ωp) lies in Xp+1. Since
Bp = B+

p−1[IB+
p−1

(0p−1)] and I+
p−1(0p−1) lies in QB

+
p−1 , the restriction of every

module M in Xp to B+
p−1 belongs to the additive category add(QB

+
p−1) of

QB
+
p−1 . In particular, every module M from Xp contains an indecomposable

submodule X from QB
+
p−1 . Dually, since Bp = [PB−p (ωp)]B−p and PB−p (ωp)

lies in PB
−
p , the restriction of every module N in Xp to B−p belongs to the

additive category add(PB
−
p ) of PB

−
p . As a consequence, every module N

from Xp has an indecomposable quotient module Y from PB
−
p . Therefore,

we conclude that an indecomposable module Z from mod B̂ belongs to Xp if
and only if there exists a sequence of homomorphisms in mod B̂ of the form

U
e→ X

f→ Z
g→ Y

h→ V

where e and g are epimorphisms, f and h are monomorphisms, U is a module
from add(T B

+
p−1), X a module from QB

+
p−1 , Y a module from PB

−
p , and

V a module from add(T B
−
p ). We also note that all modules of T B

+
p−1 are

indecomposable nonprojective B̂-modules contained in Cp−1 = CB
∗
p−1 , and

all modules of T B
−
p are indecomposable nonprojective B̂-modules contained

in Cp = CB∗p .
Hence, applying (iii), we infer that the modules X and Y , occurring in

the above sequence, belong to Xp. Further, applying Lemma 4.4, we con-
clude that the homomorphisms e, f , g, h induce nonzero morphisms e, f ,
g, h in the stable category mod B̂. Moreover, HomB̂(U,X) 6= 0 implies that
HomB̂(L,X) 6= 0 for some indecomposable direct summand L of U , and
HomB̂(Y, V ) 6= 0 implies that HomB̂(Y,W ) 6= 0 for some indecomposable
direct summand W of V . Therefore, we established the following charac-
terization of modules from X sp : an indecomposable nonprojective module Z
from mod B̂ belongs to X sp if and only if there exists a sequence of nonzero
morphisms in mod B̂ of the form
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L→ X → Z → Y →W

where L is in Csp−1, X is indecomposable not in Csp−1, Y is indecomposable
not in Csp, and W is in Csp. Clearly, X and Y then also belong to X sp .

Fix now q ∈ Z, and take an indecomposable module M in X sq+1. Then
there exists a sequence of nonzero morphisms in mod B̂ of the form

N →M ′ →M →M ′′ → R

such that N is in Csq ,M ′ is indecomposable not in Csq ,M ′′ is indecomposable
not in Csq+1, and R is in Csq+1. Applying the selfequivalence functor ΩB̂ :
mod B̂ → mod B̂ to the above sequence, we obtain a sequence of nonzero
morphisms in mod B̂ of the form

ΩB̂(N)→ ΩB̂(M ′)→ ΩB̂(M)→ ΩB̂(M ′′)→ ΩB̂(R).

Since ΩB̂(Csq) = Csq−1 and ΩB̂(Csq+1) = Csq , we conclude that ΩB̂(N) lies
in Csq−1, ΩB̂(M ′) is indecomposable not in Csq−1, ΩB̂(M ′′) is indecompos-
able not in Csq , and ΩB̂(R) lies in Csq . This implies that ΩB̂(M) lies in X sq .
Therefore, ΩB̂(X sq+1) = X sq .

Proposition 5.2. Let B be a branch extension (respectively , branch co-
extension) of a canonical algebra C. Then there exists a strictly positive
automorphism ϕB̂ of B̂ such that following statements hold :

(i) ϕB̂ = νB̂ or ϕ2
B̂

= νB̂.
(ii) Every torsion-free admissible group G of automorphisms of B̂ is an

infinite cyclic group generated by a strictly positive automorphism
fϕs

B̂
for some s ≥ 1 and some rigid automorphism f of B̂.

Proof. We may assume (without loss of generality) that B is a branch
coextension of C. We identify B and C with the corresponding full convex
subcategories B0 = B−0 and C0 of B̂. In the notation of Theorem 5.1, there
exists a reflection sequence of sinks i0, i1, . . . , ir−1, ir of QB such that the
iterated reflection B−1 = S+

ir
. . . S+

i1
S+
i0
B is again a branch coextension of a

canonical algebra C1. Further, the iterated Nakayama shifts C2p = νp
B̂

(C0)
and C2p+1 = νp

B̂
(C1), p ≥ 0, form a complete family of full convex canonical

subcategories of B̂. Clearly, the iterated Nakayama shifts B−2p = νp
B̂

(B−0 ) and
B−2p+1 = νp

B̂
(B−1 ), p ≥ 0, then form a complete family of full convex subcat-

egories of B̂ which are branch coextensions of canonical algebras inside B̂.
We also have Cq+2 = νB̂(Cq) and B−q+2 = νB̂(B−q ) for any q ∈ Z. Moreover,
B̂−q = B̂−0 = B̂ for any q ∈ Z. We have two possible cases: B−0 6∼= B−1 or
B−0
∼= B−1 . If B−0 6∼= B−1 , we take ϕB̂ = νB̂. In the case B−0 ∼= B−1 , we de-

note by ϕB̂ the canonical automorphism of B̂ such that ϕB̂(B−0 ) = B−1 and
ϕ2
B̂

= νB̂.
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Let G be a torsion-free admissible group of automorphisms of B̂. Then
every element g ∈ G acts on the family Cq, q ∈ Z, of full convex canonical
subcategories of B̂. For g ∈ G, let mg be the integer such that g(C0) = Cmg .
Observe that mh = −mg for h = g−1. Suppose mg = 0 for some g ∈ G.
Then g acts on the finite set of objects of C0, and hence a power gr of g fixes
an object of C0. Since G is torsion-free and acts freely on the objects of B̂,
we get g = 1. Choose now an element g ∈ G such that mg is positive and
minimal. Let h ∈ G and mh = tmg + l with t ∈ Z and 0 ≤ l < mg. Then
a = hg−t ∈ G, ma = l, and hence l = 0, a = 1. Therefore, G is an infinite
cyclic group generated by g. The automorphism g also acts on the family
B−q , q ∈ Z, and g(Cq) = Cq+mq forces g(B−q ) = B−q+mg. If B

−
0 6∼= B−1 , then

mg is even, say mg = 2s for some s ≥ 1, and we define f = gν−s
B̂

= gϕ−s
B̂

.
If B−0 ∼= B−1 , we take s = mg and f = gϕ−s

B̂
. Observe that f(Cq) = Cq

and f(B−q ) = B−q for any q ∈ Z, and hence f is a rigid automorphism of B̂.
Consequently, G is an infinite cyclic group generated by g = fϕs

B̂
for some

s ≥ 1 and some rigid automorphism f of B̂.

We are now in a position to prove the theorem describing the structure
and homological properties of the Auslander–Reiten quivers of selfinjective
algebras of strictly canonical type.

Theorem 5.3. Let A be a selfinjective algebra of strictly canonical type.
The Auslander–Reiten quiver ΓA of A has a decomposition

ΓA =
∨

q∈Z/nZ

(XAq ∨ CAq )

for some positive integer n, and the following statements hold :

(i) For each q ∈ Z/nZ, CAq = (CAq (λ))λ∈P1(K) is a P1(K)-family of
quasi-tubes with s(CAq (λ)) + p(CAq (λ)) = r(CAq (λ)) − 1 for each λ ∈
P1(K).

(ii) For each q ∈ Z/nZ, XAq is a family of components containing exactly
one simple module Sq.

(iii) For each q ∈ Z/nZ, HomA(Sq, CAq (λ)) 6= 0 for all λ ∈ P1(K), and
HomA(Sp, CAq ) = 0 for p 6= q in Z/nZ.

(iv) For each q ∈ Z/nZ, HomA(CAq (λ), Sq+1) 6= 0 for all λ ∈ P1(K), and
HomA(CAq , Sp) = 0 for p 6= q + 1 in Z/nZ.

(v) For each q ∈ Z/nZ, ΩA((CAq+1)
s) = (CAq )s and ΩA((XAq+1)

s) =
(XAq )s.

Proof. We may assume that A = B̂/G, where B is a branch coextension
of a canonical algebra C, with respect to the canonical P1(K)-family T C of
stable tubes of ΓA, and G is an infinite cyclic group generated by a strictly
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positive automorphism g = fϕs
B̂

for some positive integer s and some rigid
automorphism f of B̂. We use the notation introduced in the proof of The-
orem 5.1. Let n = 2s if ϕB̂ = νB̂, and n = s if ϕ2

B̂
= νB̂. Then for the

full convex subcategories Cq, B−q , B+
q , B∗q and Bq, q ∈ Z, from Theorem

5.1, we have g(Cq) = Cq+n, g(B−q ) = B−q+n, g(B+
q ) = B+

q+n, g(B∗q ) = B∗q+n,
and g(Bq) = Bq+n for all q ∈ Z. Consider now the induced actions of G on
mod B̂ and Γ s

B̂
. For the decomposition

ΓB̂ =
∨
q∈Z

(Xq ∨ Cq)

of ΓB̂ established in Theorem 5.1, we then have g(Xq) = Xq+n and g(Cq) =
Cq+n for all q ∈ Z. The push-down functor Fλ : mod B̂ → mod B̂/G = modA
associated to the Galois covering F : B̂ → B̂/G = A is exact and pre-
serves Auslander–Reiten sequences, simple modules, and projective modules.
Moreover, by Theorem 5.1(x), B̂ is a locally support-finite category. Apply-
ing Theorem 4.2, we conclude that Fλ induces an isomorphism of the orbit
translation quiver ΓB̂/G of ΓB̂, with respect to the action of G, and the
Auslander–Reiten quiver ΓA of A = B̂/G. Therefore, ΓA has a decomposi-
tion

ΓA =
∨

q∈Z/nZ

(XAq ∨ CAq )

with Z/nZ = {0, 1, . . . , n − 1} and XAq =Fλ(Xq), CAq =Fλ(Cq) for q ∈Z/nZ.
Further, CAq = (CAq (λ))λ∈P1(K), where CAq (λ) = Fλ(Cq(λ)), λ ∈ P1(K), are
quasi-tubes such that s(CAq (λ)) + p(CAq (λ)) = r(CAq (λ))− 1, because Fλ pre-
serves the simple and projective modules and ranks of the stable tubes of Γ s

B̂
.

Similarly, XAq = Fλ(Xq) is a family of components of ΓA containing a unique
simple A-module Sq = Fλ(Sq). This shows the statements (i) and (ii).

Since the push-down functor Fλ is dense, we also have a Galois covering
Fλ : mod B̂ → modA of module categories. In particular, for any indecom-
posable modules M and N in mod B̂, the functor induces isomorphisms of
K-vector spaces⊕

r∈Z
HomB̂( g

r
M,N) ∼→ Hom(Fλ(M), Fλ(N)),⊕

r∈Z
HomB̂(M, g

r
N) ∼→ Hom(Fλ(M), Fλ(N)).

Hence, the statements (iii) and (iv) follow from the statements (xi) and (xii)
of Theorem 5.1. Finally, since Fλ is exact and preserves the indecomposable
modules and projective covers (see [17]), for any nonprojective indecompos-
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able module M in mod B̂, we have Fλ(ΩB̂(M)) ∼= ΩAFλ(M). Hence, the
statement (v) follows from the statement (xiii) of Theorem 5.1.

We end this section with two examples illustrating possible situations.

Example 5.4. Let B be a canonical algebra C = C(p,λ) with a weight
sequence p = (p1, . . . , pm) and a parameter sequence λ = (λ1, . . . , λm),
m ≥ 2, λ1 =∞, λ2 = 0. Then C is the bound quiver algebraK∆(p)/I(p,λ),
where ∆(p) is the quiver

◦ ◦

◦ ◦ ◦
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◦ ◦ ◦

◦ ◦

� �
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. . .
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. . .

αm,2

α2,2

α1,2

αm,pm−1

α2,p2−1

α1,p1−1

α2,1 α2,p2

α1,1

αm,1

α1,p1

αm,pm

0 ω

(1, 1) (1, 2) (1, p1 − 1)

(2, 1) (2, 2) (2, p2 − 1)

(m, 1) (m, 2) (m, pm − 1)

and I(p,λ) = 0 for m = 2, while I(p,λ) is the ideal of K∆(p,λ) generated
by the elements αj,pj . . . αj,1 +α1,p1 . . . α1,1 +λjα2,p2 . . . α2,1, j ∈ {3, . . . ,m},
for m ≥ 3. Moreover, the Auslander–Reiten quiver ΓC has a decomposition
ΓA = PC∨T C∨QC , where T C = (T Cλ )λ∈P1(K) is a P1(K)-family of pairwise
orthogonal standard stable tubes, described in Section 1. We use the notation
introduced in Theorem 5.1. Hence B = B−0 = B∗0 = B+

0 = C = C0 is a trivial
quasi-tube enlargement of C. Further, the algebra B1 = T+

0 B
−
0 = C[IC(0)]

is the bound quiver algebra KQB1
/IB1

, where QB1
is the quiver

K
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0 ν(0)
ω

(1, 1) (1, p1 − 1)

(2, 1) (2, p2 − 1)

(m, 1) (m, pm − 1)

α1,1

α2,1

αm,1

α1,p1

α2,p2

αm,pm

β1,1

β2,1

βm,1

and IB1
is the ideal of the path algebra KQB1

of QB1
generated by the

elements

β1,1α1,p1 , β2,1α2,p2 , β1,1α2,p2 . . . α2,1 − β2,1α1,p1 . . . α1,1

if m = 2, and the elements

αj,pj . . . αj,1 + α1,p1 . . . α1,1 + λjα2,p2 . . . α2,1, j ∈ {3, . . . ,m},
βj,1 + β1,1 + λjβ2,1, j ∈ {3, . . . ,m},
βj,1αj,pj , j ∈ {1, . . . ,m}, β2,1α1,p1 . . . α1,1 − β1,1α2,p2 . . . α2,1,
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for m ≥ 3. The reflection B−1 = S+
0 B

+
0 = S+

0 C is the bound quiver algebra
KQB−1

/IB−1
, where QB−1 is the quiver obtained from QB1

by removing the
vertex 0 and the arrows α1,1, α2,1, . . . , αm,1, and IB−1 is the ideal of KQB−1
generated by β1,1α1,p1 (if p1 ≥ 2) and β2,1α2,p2 (if p2 ≥ 2) for m = 2, and
by the elements

βj,1 + β1,1 + λjβ2,1, j ∈ {3, . . . ,m},
βj,1αj,pj with pj ≥ 2, j ∈ {1, . . . ,m},

for m ≥ 3. Moreover, B−1 is a branch coextension of the canonical algebra
C1 = KQC1/IC1 , where QC1 is the subquiver of QB1

given by the vertices
ω, ν(0), and the arrows β1,1, β2,1, . . . , βm,1, IC1 = 0 for m = 2, and IC1 is
generated by βj,1 + β1,1 + λjβ2,1, j ∈ {3, . . . ,m}, for m ≥ 3. Observe that
C1 is isomorphic to the path algebra of the Kronecker quiver given by the
arrows β1,1 and β2,1. Moreover, the vertices

(1, 1), . . . , (1, p1 − 1), (2, 1), . . . , (2, p2 − 1), . . . , (m, 1), . . . , (m, pm − 1)

form a reflection sequence of sinks of QB−1 . Then the quasi-tube enlargement
B∗1 of C1 associated to this reflection sequence of sinks is the bound quiver
algebra KQB∗1/IB∗1 , where QB∗1 is the quiver

K
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ν(0)ω

(1, 1)

(2, 1)

(m, 1)

(1, 2)

(2, 2)

(m, 2)

(1, p1 − 1)

(2, p2 − 1)

(m, pm − 1)

ν(1, 1)

ν(2, 1)

ν(m, 1)

ν(1, p1 − 1)

ν(2, p2 − 1)

ν(m, pm − 1)

α1,1

α2,1

αm,1

α1,p1

α2,p2

αm,pm

β1,1

β2,1

βm,1

α∗1,p1−1

α∗2,p2−1

α∗m,pm−1

α∗1,1

α∗2,1

α∗m,1

and IB∗1 is generated by IC1 , and the paths

βj,1αj,pj , α
∗
j,1βj,1, j ∈ {1, . . . ,m},

α∗1,r . . . α
∗
1,1β2,1α1,p1 . . . α1,r, r ∈ {2, . . . , p1 − 1},

α∗j,r . . . α
∗
j,1β1,1αj,pj . . . αj,r, r ∈ {2, . . . , pj − 1}, j ∈ {2, . . . ,m}.

Moreover, the associated iterated reflection algebra B+
1 is a branch exten-

sion of the canonical algebra C1 and the bound quiver algebra KQB+
1
/IB+

1
,

where QB+
1
is the full convex subquiver of QB∗1 given by the vertices

ω, ν(0), ν(1, 1), . . . , ν(1, p1 − 1),
ν(2, 1), . . . , ν(2, p2 − 1), . . . , ν(m, 1), . . . , ν(m, pm − 1),

and IB+
1
is generated by α∗1,1β1,1 and α∗1,2β2,1, form = 2, and by the elements
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βj,1 + β1,1 + λjβ2,1, j ∈ {3, . . . ,m}, α∗j,1βj,1, j ∈ {1, . . . ,m},

for m ≥ 3. Observe also that the extension B2 = T+
ω B

+
1 is the algebra Bop

1

opposite to B1, while the reflection B−2 = S+
ωB

+
1 = νB̂(B−0 ) = νB̂(C0) is the

canonical algebra isomorphic to C.
Assume pj ≥ 2 for some j ∈ {1, . . . ,m}. Then C0(λj) = T Cλj is a stable

tube of rank pj of the form

•

•

•

•
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C

with pj − 1 = r(C0(λj)) − 1 simple modules lying on its mouth. Applying
Theorem 3.1 to the branch coextension B−1 of C1, we conclude that the
quasi-tube C1(λj) = CB

∗
1

λ contains pj − 1 projective modules but no simple
modules, and is of the form
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•
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E
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C1

Therefore, if the weight sequence p = (p1, . . . , pm) is different from
(1, . . . , 1), then B−0 6∼= B−1 , ϕB̂ = νB̂, and

• for even q ∈ Z, Cq = (Cq(λ))λ∈P1(K) is a P1(K)-family of stable tubes
of ΓB̂ containing simple B̂-modules but no projective B̂-modules,
• for odd q ∈ Z, Cq = (Cq(λ))λ∈P1(K) is a P1(K)-family of quasi-tubes of
ΓB̂ containing projective B̂-modules but no simple B̂-modules.

For the weight sequence p = (p1, . . . , pm) = (1, . . . , 1), each Cq =
(Cq(λ))λ∈P1(K) is a P1(K)-family of stable tubes of ΓB̂ of rank 1, and hence
all simple B̂-modules and indecomposable projective B̂-modules are located
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in the families Xq, q ∈ Z. In fact, each Xq then consists of one component,
which is of the form
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and Pq+1 = PB̂(Sq+1) is the projective cover of the simple B̂-module Sq+1 ∈
Xq+1. We note that in this degenerate case, that is, for the Kronecker algebra
B = C, we have ϕB̂ 6= νB̂ and ϕ2

B̂
= νB̂.

Example 5.5. Let B = KQB/IB, where QB is the quiver
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and IB is the ideal of the path algebraKQB of QB generated by the elements
α1σ1, β1ξ1, γ1η2, γ2δ, γ3γ2γ1 +α2α1 + β2β1. Denote by C the bound quiver
algebra C = KQC/IC , where QC is the full subquiver of Q given by the ver-
tices 5, 6, 7, 8, 9, 10, and IC is the ideal in the path algebra KQC of QC gen-
erated by γ3γ2γ1+α2α1+β2β1. Then C is the canonical algebra C(p,λ) with
the weight sequence p = (2, 2, 3) and the parameter sequence λ = (∞, 0, 1).
Moreover, B is a branch coextension B = [E1,L1, E2,L2, E3,L3, E4,L4]C
with E1 = E(∞) ∈ T C∞ , E2 = E(0) ∈ T C0 , E3 = E(1) ∈ T C1 , E4 = S(8) ∈ T C1 ,
L1 the branch given by the vertex 1, L2 the branch given by the vertex 2, L3

the branch given by the vertices 3, 4, 11 and arrows η1, %, and L4 the branch
given by the vertex 12. Then 1, 2, 3, 4, 12 is a reflection sequence of sinks of
QB, and the iterated extension B∗0 = T+

1,2,3,4,12B is the bound quiver algebra
KQB∗0/IB∗0 , where QB∗0 is the quiver
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and IB∗0 is the ideal of KQB∗0 generated by the elements α1σ1, β1ξ1, γ1η2,
γ2δ, γ3γ2γ1 + α2α1 + β2β1, α∗1α2, β∗1β2, γ∗1γ3, γ∗2δ∗, δ∗%− γ∗1α2α1η2η1, %∗γ1.
Moreover, the iterated reflection B+

0 = S+
12S

+
4 S

+
3 S

+
2 S

+
1 B
−
0 of B−0 = B is

the bound quiver algebra KQB+
0
/IB+

0
, where QB+

0
is the full subquiver of

QB∗0 given by the vertices 5, 6, 7, 8, 9, 10, ν(1), ν(2), ν(3), ν(4), ν(12), and
IB+

0
is the ideal of KQB+

0
generated by the elements γ3γ2γ1 + α2α1 + β2β1,

α∗1α2, β∗1β2, γ∗1γ3, γ∗2δ∗, %∗γ1, which is the branch extension C[E1,L∗1, E2,L∗2,
E3,L∗3, E4,L∗4], with L∗1 the branch given by the vertex ν(1), L∗2 the branch
given by the vertex ν(2), L∗3 the branch given by the vertices ν(3), ν(4), 11
and arrows γ∗2 , δ∗, and L∗4 the branch given by the vertex ν(12). Observe
also that the reflection B−1 = S+

5 B
+
0 is isomorphic to B−0 = B. Therefore,

we have a canonical strictly positive automorphism ϕB̂ of B̂, with ϕ2
B̂

= νB̂
and ϕB̂ 6= νB̂, such that ϕB̂(e0,1) = e0,6, ϕB̂(e0,2) = e0,7, ϕB̂(e0,3) = e0,8,
ϕB̂(e0,4) = e0,9, ϕB̂(e0,5) = e0,10, ϕB̂(e0,6) = e1,1 = νB̂(e0,1), ϕB̂(e0,7) =
e1,2 = νB̂(e0,2), ϕB̂(e0,8) = e1,3 = νB̂(e0,3), ϕB̂(e0,9) = e1,4 = νB̂(e0,4),
ϕB̂(e0,10) = e1,5 = νB̂(e0,5), ϕB̂(e0,12) = e0,11. Moreover, we also have a rigid
automorphism f of B̂ induced by the automorphism h of the quiver QB of
order 2 such that h(1) = 2, h(2) = 1, h(3) = 3, h(4) = 4, h(5) = 5, h(6) = 7,
h(7) = 6, h(8) = 8, h(9) = 9, h(10) = 10, h(11) = 11, h(12) = 12, and
h(σ1) = ξ1, h(ξ1) = σ1, h(α1) = β1, h(β1) = α1, h(α2) = β2, h(β2) = α2,
h(γ1) = γ1, h(γ2) = γ2, h(γ3) = γ3, h(η1) = η1, h(η2) = η2, h(%) = %,
h(δ) = δ.

Consider the orbit algebras A = B̂/(ϕB̂) and A′ = B̂/(fϕB̂). Then A
and A′ are the bound quiver algebras A = KQ/I and A′ = KQ/I ′, where
Q is the quiver
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and I is the ideal of KQ generated by the elements

γ3γ2γ1 + α2α1 + β2β1, α1α2, β1β2, γ1γ3, %γ1, γ2δ,

α2α1β2β1 − β2β1α2α1, γ1γ3γ2 − δ%,
and I ′ is the ideal of KQ generated by the elements

γ3γ2γ1 + α2α1 + β2β1, α1β2, β1α2, γ1γ3, %γ1, γ2δ,

α2α1α2α1 − β2β1β2β1, γ1γ3γ2 − δ%.

We note that A is a symmetric algebra and A′ is not symmetric. Ac-
cording to Theorem 5.3, the Auslander–Reiten quivers ΓA and ΓA′ have
decompositions

ΓA = XA ∨ CA and ΓA′ = XA
′ ∨ CA′

where CA = (CA(λ))λ∈P1(K) (respectively, CA
′
= (CA′(λ))λ∈P1(K)) is a P1(K)-

family of quasi-tubes of ΓA (respectively, ΓA′) containing all simple modules
and indecomposable projective modules, except the simple module S(5) and
the projective module P (5) at the vertex 5, which are located in XA (re-
spectively, XA′).
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