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Abstract. We show that the No Trumps combinatorial property (NT), introduced
for the study of the foundations of regular variation by the authors, permits a natural
extension of the definition of the class of functions of regular variation, including the
measurable/Baire functions to which the classical theory restricts itself. The “generic
functions of regular variation” defined here characterize the maximal class of functions to
which the three fundamental theorems of regular variation (Uniform Convergence, Rep-
resentation and Characterization Theorems) apply. The proof uses combinatorial variants
of the Steinhaus and Ostrowski Theorems deduced from NT in an earlier paper of the
authors.

1. Introduction. The theory of regular variation was initiated by Kara-
mata in 1930 (see [BGT]) for continuous functions, but began to achieve its
modern form only in 1949 in the work of Korevaar et al. [KAdB], where it
is extended to (Lebesgue) measurable functions. It may also be developed
for functions which have the property of Baire (briefly, Baire functions). We
refer to [BGT] for an exposition of this classical theory, in the measurable
and Baire cases, and to [Oxt] for duality between measure and category. We
point out that regular variation is motivated, not only by its intrinsic math-
ematical interest, but by two major areas of application: Tauberian theory,
for which we refer to [Kor, Ch. IV], and probability theory, for which see
e.g. [BGT, Ch. 8]. We point out also that the classical theory is in one di-
mension, but that much interest currently attaches to the multi-dimensional
case (see e.g. [HLMS]).

The three foundation stones of the theory of regular variation are the
Uniform Convergence Theorem (UCT), the (Karamata) Representation
Theorem and the Characterization Theorem, which identifies the crucial
concept of the index of regular variation (denoted here by %). In [BOst1] we
introduced a combinatorial property, called No Trumps or NT (see [BOst1],
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[BOst3] for the origin of this name, traced there to an analogy with Jensen’s
♦ and Ostaszewski’s ♣), which gave the UCT for slowly varying functions
in a maximally general context, thus including both measurability and the
Baire property as special cases. Here we extend the UCT from slow to regu-
lar variation—for which we need a strengthening of No Trumps to Strong No
Trumps or SNT—and also obtain the Representation and Characterization
Theorems in this new setting.

We use combinatorial versions of the classical Steinhaus and Ostrowski
theorems, recently obtained in [BOst3]. We call our new setting generic,
by analogy with usage in two areas: in analysis, as it includes the mea-
surable and Baire contexts (see e.g. [AP1], [AP2]), and in mathematical
logic, where certain model-theoretic extensions are said to be generic (see
e.g. [Jech1], [Jech2]), where the two canonical extensions—Cohen generic
and Solovay generic—have respectively category and measure connections.
We mention in passing that, if we restrict from slow to “very slow” varia-
tion, one can dispense with assumptions such as measurability or the Baire
property altogether, as demonstrated by [BOst2]. We restrict attention here
to one dimension, for convenience and brevity; for a glimpse of what our
generic approach brings to the higher-dimensional case, we refer to [BOst3,
Section 5].

The theory of regular variation, or of regularly varying functions, ex-
plores the consequences of a relationship of the form

(RV) f(λx)/f(x)→ g(λ) (x→∞) ∀λ > 0,

for functions defined on R+. The limit function g must satisfy the Cauchy
functional equation

(CFE) g(λµ) = g(λ)g(µ) ∀λ, µ > 0.

Subject to a mild regularity condition, (CFE) forces g to be a power:

(%) g(λ) = λ% ∀λ > 0.

Then f is said to be regularly varying with index %, written f ∈ R%.
The case % = 0 is basic. A function f ∈ R0 is called slowly varying ;

slowly varying functions are often written ` (for lente, or langsam). Here

`(λx)/`(x)→ 1 ∀λ > 0 as x→∞.
While regular variation is usually applied in the multiplicative formula-

tion above, for proofs in the subject it is usually more convenient to use an
additive formulation. Writing h(x) := log f(ex) (or log `(ex) as the case may
be), k(u) := log g(eu), the relations above become

h(x+ u)− h(x)→ k(u) (x→∞) ∀u ∈ R,(1)

h(x+ u)− h(x)→ 0 (x→∞) ∀u ∈ R,(2)
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(3) k(u+ v) = k(u) + k(v) ∀u, v ∈ R.

Subject to some mild regularity asumptions classically based on measura-
bility or the Baire property, one proves the Characterisation Theorem, that

(4) k(t) = %t ∀t ∈ R.

Evidently it follows that
h0(t) = h(t)− %t

is slowly varying, and so in the measurable/Baire case obeys the UCT. Thus
the classical functions of regular variation take the form

(5) h(t) = %t+ h0(t).

In this paper we study the maximal possible family of functions to which
the theory of regular variation could conceivably apply—the functions h of
the form (5) with h0 satisfying UCT. We prove a characterization theorem
for this family by reference to a purely combinatorial property of functions
(the SNT-functions, for “Strong No Trumps”) shared also by the slowly
varying functions. As both the measurable functions and the Baire func-
tions have this combinatorial property (this being the content of what we
call the Strong No Trumps Theorem), the theorems of the extended theory
demonstrably imply their classical counterparts as special cases. It is thus
appropriate to dub the functions in the maximal family generically regularly
varying, or GRV.

The Karamata Representation Theorem—for which see Section 3 below
—decomposes a slowly varying function h0 into a sum of an integral term
and a term converging to a constant, c say. The integral term may be made to
behave as well as desired—e.g. to be C∞, to have all its derivatives tending
to 0, etc.—by use of a de Bruijn mollifier ([dB]; [BGT, Th. 1.3.3]; see also
the Smooth Variation Theorem, [BGT, Section 1.8]). By contrast, the term
converging to a constant may be made to do so as badly as desired. It may
be taken as pathological as the Axiom of Choice allows. For many purposes
in analysis the distinction between a function tending to c and the constant c
is immaterial—in which case, one may restrict oneself to functions which are
smooth and well-behaved. By contrast, from the point of view of building a
theory of regular variation in maximal generality, it is just here that the main
difficulty, and so interest, lies. For background see e.g. [BGT, Section 3.2.2,
esp. p. 145], and the Character Theorems of [BOst9, Section 3].

2. Definitions and assumed background. This section is devoted
to basic definitions and theorems on which this paper relies.

2.1. Definitions of NT principles. We recall the definitions from [BOst1].
It is convenient to amend the notation in the light of our present needs.
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We follow the set-theorists and denote the set of natural numbers by ω =
{0, 1, 2, . . .}.

In the definitions below, {Tk : k ∈ ω} denotes a family of subsets of R.

Definition 1. NT({Tk : k ∈ ω}) means that, for every bounded/conver-
gent sequence {un} in R, some Tk contains a translate of a subsequence of
{un}, i.e. there are k ∈ ω, an infinite M ⊆ ω, and t ∈ R such that

{t+ un : n ∈M} ⊆ Tk.

In the definitions below, the subscripts A,F and L are meant to suggest
“almost all”, “in full” and “localized”.

Definition 2. NTA({Tk : k ∈ ω}) means that, for every convergent
sequence {un}, some Tk contains almost all of a translate of {un}, i.e. there
are k,M, t such that

{t+ un : n > M} ⊆ Tk.

Definition 3. NTF ({Tk : k ∈ ω}) means that, for every convergent
sequence {un}, some Tk contains all of {un}, i.e. there is k such that

{un : n ∈ ω} ⊆ Tk.

Definition 4 (Strong No Trumps, SNT). NTL({Tk : k ∈ ω}) means
that, for every convergent sequence {un} → t ∈

⋃
k∈ω Tk, some Tk contains

a “neighbouring” translate of a subsequence of {un}, i.e. for all ε > 0, there
are k ∈ ω, an infinite M ⊆ ω and z ∈ (t− ε, t+ ε) such that

{z + un : n ∈M} ⊆ Tk.

For the function h : R → R, the (symmetric) level sets of h are defined
by

Hr = Hr(h) := {t : |h(t)| < r}.

The difference function hx(t) is defined by hx(t) = h(x+ t)− h(x). It is
a central tool; it may be helpful to think of it as a differential operator. Its
level sets are denoted

Hr
x = Hr(hx) := {t : |h(t+ x)− h(x)| < r}.

The function h : R→ R is slowly varying if it satisfies (2) above, i.e. its
difference function tends to zero:

hx(t) = h(x+ t)− h(x)→ 0 (x→∞) ∀t ∈ R.

For x = {xn} a sequence, in Rω, tending to infinity, we will write x→∞.
The x-stabilized sets, or just the “stabilized sets”, of h are defined to be

T rk = T rk (x) :=
⋂
n≥k

Hr
x(n) =

⋂
n≥k
{t : |h(xn + t)− h(xn)| < r},
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with xn and x(n) synonymous. They are of necessity instrumental in our
analysis of the limiting behaviour of hx (cf. Proposition 2 below). Note that

T r0 (x) ⊆ T r1 (x) ⊆ T r2 (x) ⊆ · · · and T rk (x) ⊆ T sk (x) whenever r < s.

For x→∞ and any ε > 0, if h is slowly varying, then

(6) R =
⋃
k∈ω

T εk (x).

The function h : R → R is additive if it satisfies the Cauchy functional
equation (3) of Section 1. In this case

Hr
x = Hr = {t : |h(t)| < r},

which is independent of x. Thus the stabilized sets T rk coincide with the sets
Hr in this case. Note that, if h is additive, then t ∈ H |h(t)| and so

(7) R =
⋃
k∈ω

Hk.

The connection between results derived from No Trumps assumptions
and classical measure/category considerations is given by the following the-
orem. For the cognoscenti, the intuition for this may be gleaned from forcing
proofs due to Miller; see the cycle of papers [Mil1]–[Mil3]. The following re-
sult is due in this form in the measure case to Borwein and Ditor [BoDi],
but was already known much earlier albeit in somewhat weaker form by
Kestelman ([Kes, Th. 3]), and rediscovered by Trautner [Trau] (see [BGT,
p. xix and footnote p. 10]). Much more may in fact be said—see [BOst6]
and [BOst7].

Theorem (Kestelman–Borwein–Ditor Theorem). Let {zn} → 0 be a
null sequence of reals. If T is measurable and non-null (resp. Baire and
non-meagre), then, for almost all (resp. for quasi-all) t ∈ T, there is an
infinite set Mt such that

{t+ zm : m ∈Mt} ⊆ T.
For the proof see [BOst3]. We will need the following result, which is

contained in [CsEr] implicitly.

Strong No Trumps Theorem (Csiszár and Erdős). If T is an interval
and T =

⋃
k∈ω Tk with each Tk measurable/Baire, then NTL({Tk : k ∈ ω})

holds. Indeed, for every convergent sequence {un} → u0 ∈ T, any neighbour-
hood of the limit u0 contains a point s for which there exist K = K(s) ∈ ω
and an infinite set M = M(s) ⊆ ω such that

z + um ∈ TK for m ∈M.

Proof 1. Suppose un converges to u0. Consider an interval I = (u0 − η,
u0 + η) ⊂ T, for some η > 0. For some K ∈ ω, the set TK ∩ I is measurable
and non-null (resp. Baire non-meagre). Let zn := un − u. Then zn → 0
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and so by the Kestelman–Borwein–Ditor Theorem for almost all (resp. for
quasi-all) t ∈ TK ∩ I, there is an infinite set Mt such that

{t+ zm : m ∈Mt} ⊆ TK ∩ I.
For any such t put s = t− u. Then writing M = M(s) for Mt we have

{s+ um : m ∈Mt} ⊆ TK .
Proof 2. As an alternative, the following direct argument is an adapta-

tion of the proof of [BGT, Theorem 2.0.1].
Let {un} converge to u0. Let η > 0. We assume that |un − u0| ≤ η for

all n. Put
[−η + u0, u0 + η] =

⋃
k

Ik, where Ik = [−η + u0, u0 + η] ∩ Tk.

By assumption, each Ik is measurable [Baire], so there is K such that IK
has positive measure [is non-meagre]. Let

ZK = u(IK) :=
∞⋂
j=1

∞⋃
n=j

(IK − un) .

We now quote almost verbatim from [BGT, p. 9]. “In the measurable case all
the IK−un have measure |IK |, and as they are subsets of the fixed bounded
interval [u0−2η, u0+2η], ZK is a subset of the same interval having measure

|ZK | = lim
j→∞

∣∣∣ ∞⋃
n=j

(IK − un)
∣∣∣ ≥ |IK | > 0.

So ZK is non-empty.
In the Baire case IK contains some set I \M, where I = (t − δ, t + δ)

is an open interval of length 2δ > 0 with δ < η, and M is meagre. So each
IK−un contains In \Mn, where In = I−un is an open interval of length 2δ
and Mn := Mn − un is meagre. Choosing J so large that |ui − uj | < 2δ for
all i, j ≥ J, the intervals IJ , IJ+1, . . . all overlap each other, and so

⋃∞
n=j I

n,
for j = J, J + 1, . . . , is a decreasing sequence of intervals, all of length ≥ 2δ
and all contained in the interval [u0−2η, u0 + 2η]; hence I0 =

⋂∞
j=1

⋃∞
n=j I

n

is an interval of length ≥ δ. Since ZK contains I0 \
⋃∞
n=jM

n, it follows that
ZK is non-meagre, so non-empty.”

Thus in either case, there is a point z ∈ ZK ⊆ [u0 − 2η, u0 + 2η]. This
means that z ∈ IK − un for infinitely many n, say

z ∈ IK − um for m ∈M.

Without loss of generality, m ∈ M implies m > K. Consider m ∈ M. By
definition, for some y = ym, we have z = ym − um with ym ∈ IK . But this
says that

z + um ∈ IK for m ∈M,
as required.
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Notes. 1. This is the localized, and hence sharper and more useful, ver-
sion of the theorem needed in [BOst1, Section 3], (cf. [BOst3, Theorem 5]).
As noted above, it was gleaned from the proof of [BGT, Theorem 2.0.1]
as the strongest version capable of delivering all of the several uniformity
theorems in regular variation, and goes back to [BG]; it is also meant to
motivate a forthcoming definition (of the SNT functions in Section 2.4).

2. The theorem remains true if T is replaced by a non-null measurable
set or a non-meagre set with the Baire property.

2.2. The Combinatorial Steinhaus and Ostrowski Theorems. We will
need the next two theorems which were proved in [BOst3].

Combinatorial Steinhaus Theorem. For an additive subgroup S
of R, the following are equivalent :

(i) S = R,
(ii) NTA(S),

(iii) NT(S).

The classical version is in [St] in the measurable case, [P] in the Baire
case; see [BGT, Th. 1.1.1]. For the next theorem we need a definition (cf.
[BOst4], where this is used to study subadditivity).

Definition. Let h : R→ R. We will say that h is a weak NT-function,
h ∈ WNT, if NT({Hk : k ∈ ω}) holds.

Combinatorial Ostrowski Theorem. For h(x) an additive func-
tion: h(x) is continuous and h(x) = cx for some c iff h(x) is a WNT-
function, i.e. NT({Hk : k ∈ ω}) holds.

Recall that the classical version of this result in the measurable case
is in [Ostr], the Baire case in Banach [Ban] and Mehdi [Meh]; see [BGT,
Theorem 1.1.8].

2.3. Uniform Convergence Theorem (UCT). The classical Uniform Con-
vergence Theorem UCT ([BGT, Theorem 1.2.1]), as applied to measur-
able/Baire functions, is the first of the three fundamental theorems on which
the foundations of regular variation rest. The other two are the Character-
isation Theorem ([BGT, Theorem 1.4.1, p. 17]), and the Representation
Theorem ([BGT, Theorem 1.3.1, p. 12]). Our aim is to define a wider class
of functions to which all three theorems apply. Here we recall, from [BOst1],
the combinatorial material which constitutes the departure point for this
paper, a general form of the UCT. This theorem in particular identifies its
own maximal class of functions. We denote by id the sequence id(n) = n.

Uniform Convergence Theorem. For h(x) slowly varying, the fol-
lowing are equivalent:
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(i) hx(t) = h(x + t) − h(x) → 0 uniformly in t on compact sets as
x→∞,

(ii)x NTA({T εk (x) : k ∈ ω}) whenever ε > 0 and x→∞,
(iii)x NTF ({T εk (x) : k ∈ ω}) whenever ε > 0 and x→∞,

(ii) NTA({T εk (id) : k ∈ ω}) whenever ε > 0,
(iii) NTF ({T εk (id) : k ∈ ω}) whenever ε > 0.

The most convenient criterion to test for uniform convergence (and on
which the generalization of UCT rests) is the following result (from [BOst1]).
We will need to invoke it several times.

Bounded Equivalence Principle. For h(x) slowly varying, the fol-
lowing are equivalent :

(i) hx(t) = h(x + t) − h(x) → 0 uniformly in t on compact sets as
x→∞,

(ii) limn→∞ |h(un +xn)−h(xn)| = 0 whenever u is a bounded sequence
and x→∞.

(iii) limn→∞ |h(zn + xn)− h(xn)| = 0 whenever z is a null sequence and
x→∞.

The following simple result, whose short proof we recall, plays a crucial
role in the current paper.

Proposition on Sequence Containment. Suppose the UCT holds
for a function h. Let u be any bounded sequence, and let ε > 0. Then, for
every sequence x tending to infinity, the stabilized ε-level set T εk (x) for some
k contains the sequence u.

Proof. If the sequence {um} lies in the compact interval [a, b] then by
the UCT, for any ε > 0, there is k so large that, for any u in [a, b] and any
n ≥ k, we have

|h(u+ xn)− h(xn)| < ε.

This means that any such u is in T εk (x), so in particular {um : m ∈ ω} ⊂
T εk (x).

2.4. Generically regularly varying functions (GRV)

Definition. Let h : R→ R . We will say that:

(i) h is an NT-function, h ∈ NT, if, for each x → ∞ and each r > 0,
NT({T rk (x) : k ∈ ω}) holds.

(ii) h is an SNT-function, h ∈ SNT, if, for each x → ∞ and each
r > 0, NTL({T rk (x) : k ∈ ω}) holds.

As its name implies, the SNT (Strong No Trumps) strengthens NT (No
Trumps):

Proposition 1. A slowly varying NT-function is an SNT-function.
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Proof. Immediate from the Proposition on Sequence Containment (where
no translation is required), since a slowly varying NT-function satisfies the
UCT.

With these definitions and Proposition 1 the main result from [BOst1]
is that, for h slowly varying, the Uniform Convergence Theorem holds for h
iff h is an NT-function iff h is an SNT-function. It is in the SNT property
that the key to identifying our maximal extension for the theory of regular
variation lies.

Two important examples. (i) If h(t) → c as t → ∞, then h is a slowly
varying NT-function. But (as in Section 1) note that there are no restrictions
on the character of h here; qualitatively, h could be as pathological as the
Axiom of Choice allows.

(ii) Let e : R→ R be continuous. If e(t)→ 0 as t→∞, define

h(t) =
t�

0

e(s) ds.

Then

hx(t) =
x+t�

x

e(s) ds,

and so h is a slowly varying NT-function. In fact given ε > 0, for x large
enough, we have

(8) |hx(t)|/t ≤ ε.

Proposition 2. Let h ∈ NT. Assume that

h∗(t) = lim
x→∞

[h(t+ x)− h(x)]

exists (possibly as ±∞) for all t ∈ R. Then h∗ ∈WNT.

Proof. Note that |h∗(t)| < r iff

|lim
n

(h(t+ n)− h(n))| < r,

iff for some k we have |h(t+ n)− h(n)| < r for n ≥ k. Thus

Hr(h∗) = {t : |h∗(t)| < r} =
⋃
k

⋂
n≥k
{y : |h(t+ n)− h(n)| < r},

or

(9) Hr(h∗) =
⋃
k

T rk .

Given {un}, if NT({T rk : k ∈ ω}) holds, then, for some k, z and an infinite
M, we have {z + un : n ∈M} ⊆ T rk ⊆ Hr(h∗).
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Notes. 1. In [BOst9, Section 3], the Second Character Theorem, refer-
ring to the descriptive character of functions, asserts that if h ∈ ∆1

2 then
h∗ ∈∆1

2 (assuming h∗ exists). Interest there was focussed on automatically
having a slowly varying function h be in NT, by virtue of set-theoretic,
axiomatic, assumptions. In this connection see Theorem 5 at the end of the
paper.

2. In view of the Strong No Trumps Theorem, we may regard WNT-
functions as also having some “uniformity” features common to measurable
functions and functions having the Baire property. This viewpoint is evi-
dently also supported by the equivalence result in our sharp form of Os-
trowski’s Theorem (in Section 2.2 above).

Definition. Let h : R → R be in SNT. Say that h is generically
regularly varying (or h ∈ GRV+) if the limit

h∗(t) = lim
x→∞

[h(t+ x)− h(x)]

exists (possibly as ±∞) for all t ∈ R.

Evidently h∗(0) = 0. The important example is h(x) = %x; here h∗(t)
= %t.

Notes. 1. The above is the additive formulation, whence the super-
script +. As in Section 1, for applications it is the multiplicative formulation
that is used, and there we write f, or ` ∈ GRV�—or, just as a product a · b
is elided to ab, f, or ` ∈ GRV, as in Section 2.5 below. This then directly
extends the classical usage (for which see [BGT]), where one writes RV in
the measurable case, or BRV in the Baire case.

2. Recall that the qualifier “generic” borrows from the usage in analysis
where “behaviour is generic” when it occurs on a set large in the measure
or category sense. Our context includes both the measurable and the Baire
functions.

3. We will see in the Characterization Theorem that, under the “mild”
additional condition h ∈ SNT (see the comment below), h∗(t) is the linear
function %t for some constant %. To aid the intuition, one may think of the
function h∗ as the “derivative” of h at infinity.

4. Comment on the SNT condition. When h ∈ SNT, by (9), we assert
that if t satisfies |h∗(t)| < r, and un → 0, then, for each ε > 0, there are
k ∈ ω, an infinite M ⊆ ω and z ∈ R with |t− z| < ε, such that

{z + un : n ∈M} ⊆
⋂
n≥k
{y : |h(t+ n)− h(n)| < r}.

For the important case h(x) = %x, where h∗(t) = %t (to which all other
cases of interest reduce), the displayed condition simplifies considerably. The
hypothesis |h∗(t)| < r means |%t| < r. The SNT condition then requires that
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there are k ∈ ω, an infinite M ⊆ ω and z ∈ R with |t− z| < ε, such that

{z + un : n ∈M} ⊆ Hr = (−r/|%|, r/|%|).
In the cases of interest, this is indeed a very mild restriction on h.

5. Notice that the SNT condition relates only to the local behaviour of h∗

at the origin (recall h∗(0) = 0). This should come as no surprise: we have said
that the existence of h∗ may be regarded as “a condition of differentiability
at infinity”, and as such naturally restricts attention to approximations for
small increments t.

6. In the classical context when h is measurable, according to Little-
wood’s 2nd Principle, h is “nearly continuous” (see [Lit, Section 4], or [Roy,
Section 3.6, p. 72]). In this case, the Strong No Trump Theorem confirms
the h ∈ SNT condition.

2.5. Generic regular variation with index %. Our initial definition of a
“hierarchy” of classes for the functions of generic regular variation is moti-
vated by technical concerns. We are led to identify first the regularly varying
NT-functions. The payoff is a transparent argument leading to a Char-
acterisation Theorem, which describes the more natural classes of (SNT)
functions of “generic regular variation”.

The two definitions follow, starting with the more natural one. The su-
perscript + in the definitions is to suggest the additive formulation of regular
variation theory, and similarly � is to suggest the multiplicative formulation,
as already noted.

Definition. A function h ∈ SNT such that

h∗(t) = lim
n

(h(t+ n)− h(n)) = %t

is said to be of generic regular variation with index % (in the additive sense),
h ∈ GRV+

% .
The corresponding function f with h(x) = log f(ex) is then said to be

of generic regular variation with index % (in the multiplicative sense), h ∈
GRV�% .

A function h ∈ GRV+
0 is just generic-slowly varying (in the additive

sense), meaning that h satisfies the UCT.
The corresponding f is generic-slowly varying (in the multiplicative

sense).

Definition (NT-regular variation—multiplicative formulation).

(i) For h0 slowly varying, we will say that h0 is NT-slowly varying (in
the additive sense) if h0 ∈ NT.

Recall that by UCT, for h0 slowly varying, h0 ∈ SNT iff h0 ∈ NT, so
this agrees with generic slow variation.
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(ii) We will say that h is NTR+
% , or NT-regularly varying with index %

(in the additive sense) if

h(x) = %x+ h0(x) with h0 slowly varying in NT.

Thus the case % = 0 reduces to the NT-slowly varying functions. So we may
summarize the % = 0 case above as

NTR+
0 = NT.

(Note that the symbol NT applies only to the additive formulation.)

Definition (NT-regular variation—multiplicative formulation).

(i)′ We will say that f(x) is NTR�0 , or NT-slowly varying (in the mul-
tiplicative sense) if h(x) = log f(ex) is in NT.

(ii)′ We will say that f(x) is NTR�% , or NT-regularly varying of index
% (in the multiplicative sense) if

h(x) = log f(ex) ∈ NTR+
% .

This case reduces to (i)′ when % = 0.

To sum up: our objective is to show that generic regular variation with
index % is the same as NT-regular variation with index %, i.e. GRV% =
NTR%. This will be the content of Theorem 3 in Section 3.

Proposition 3. If h0, k0 are NT-slowly varying, then so is h0 + k0,
and if h ∈ NTR+

% and k ∈ NTR+
σ , then h+ k ∈ NTR+

%+σ.

Proof. Plainly h0 + k0 is slowly varying. By the UCT for slowly varying
functions, as h0, k0 satisfy Bounded Equivalence (see Section 2.2), so does
h0 + k0, and so h0 + k0 is NT-slowly varying. The conclusion follows by the
definition of NTR+

% .

We may now generalize the Uniform Convergence Theorem to a form
which applies to functions of regular variation with index %. We will see
later (after we have proved the Equivalence Theorem) that there is an alter-
native formulation replacing NTR+

% by GRV+
% . Our result is most conve-

niently formulated as a “local uniformity” (which, via compactness, implies
uniformity on compact sets).

Theorem 1 (UCT-%: Uniform Convergence Theorem for regular varia-
tion). We have h ∈ NTR+

% iff the following uniformity condition holds:

lim
δ→0+

lim sup
x→∞

sup
|u|≤δ

|h(t+ u+m)− h(m)− %t| = 0.

Proof. For the direct implication, we may take % 6= 0, as the case % = 0
has already been proved in [BOst1]. Suppose h ∈ NTR+

% , i.e. that for some
h0 ∈ NT,

h(t) = %t+ h0(t).
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Suppose there are ε > 0, un → 0, mn →∞ so that

|h(t+ un +mn)− h(mn)− %t| > 4ε.

By UCT, since h0 ∈ SNT there are z with |%(z − t)| < ε, k ∈ ω, and an
infinite M such that

{z + un : n ∈M} ⊆ T εk ({mn}) =
⋂
n≥k
{y : |h0(y +mn)− h0(mn)| < ε}.

So for large enough n in M,

|h0(z + un +mn)− h0(mn)| < ε.

Also since h0 is slowly varying, reference to the pointwise limits at t and at
z − t shows that for all n large enough,

|h0(t+ (z − t) + un +mn)− h0((z − t) + un +mn)| < ε,

and
|h0((z − t) + un +mn)− h0(mn)| < ε,

by the bounded equivalence principle. Now we may write

h(z + un +mn)− h(mn)− %t
= [%(z + un +mn) + h0(z + un +mn)]− [%mn + h0(mn)]− %t
= %(z − t) + %un + [h0(t+ (z − t) + un +mn)− h0((z − t) + un +mn)]

+ [h0((z − t) + un +mn)− h0(mn)].

But, for all n large enough |%un| < ε, so for large enough n in M,

|h(z + un +mn)− h(mn)− %t|
≤ |%(z − t)|+ |%un|

+ |h0(t+ (z − t) + un +mn)− h0((z − t) + un +mn)|
+ |h0((z − t) + un +mn)− h0(mn)|

< 4ε,

a contradiction.
For the converse, assume the uniformity condition holds. Then h∗(t)

= %t. Define h0(t) = h(t)− %t. The condition may now be rewritten thus:

0 = lim
δ→0+

lim sup
x→∞

sup
|u|≤δ

|h0(t+ u+m)− h0(m)− %u|

= lim
δ→0+

lim sup
x→∞

sup
|u|≤δ

|h0(t+ u+m)− h0(m)|.

Thus h0 is slowly varying and by the Bounded Equivalence Principle we
have h0 in NT. This establishes the converse.



132 N. H. BINGHAM AND A. J. OSTASZEWSKI

Corollary. Let h ∈ SNT. Suppose h∗(t) = limx→∞[h(t + x) − h(x)]
exists with h∗(t) = %t. Then h0(t) = h(t)− %t is in SNT.

Proof. Taking h0(t) = h(t)− %t we obtain

lim
δ→0+

lim sup
x→∞

sup
|u|≤δ

|h0(t+ u+m)− h0(m)| = 0,

so by the Bounded Equivalence Principle h0 satisfies any one of the clauses
in the UCT, and especially the NTF version: some Tk contains the sequence
{un} (“in full”). We conclude from this, or directly from the Proposition on
Sequence Containment, that h0 ∈ SNT.

3. Characterisation and Representation. In this section we gen-
eralize, to a combinatorial form, the other two of the three fundamental
theorems of the classical theory of regular variation: the Characterisation
Theorem ([BGT, Th. 1.4.1, p. 17]), and then the Representation Theorem
([BGT, Th. 1.3.1, p. 12, especially formula 1.3.2]), which for us is a corollary
of the Characterisation result. As a first step, we prove Theorem 2, in which
only the inclusion GRV+

% ⊆ NT+
% is asserted. The reverse inclusion forms

the substance of Theorem 3.

Theorem 2 (Characterisation Theorem for GRV). Let h ∈ GRV, i.e.
h is an SNT-function and

h∗(t) = lim
x→∞

(h(t+ x)− h(x))

is assumed to exists (possibly as ±∞) for all t. Then:

(i) h∗(t) is finite for all t,
(ii) for some constant %, h∗(t) ≡ %t and h ∈ GRV+

% ,

(iii) GRV+ =
⋃
% GRV+

% and GRV+
% ⊆ NT+

% .

Comment. To place this in context: this result says, for any ε > 0 and
all z large enough, that

%t− ε ≤ h(t+ z)− h(z) ≤ %t+ ε.

Put h(z) = log f(ez), λ = et, x = ez and η = eε − 1. Then

(1− η)λ% ≤ f(λx)/f(x) ≤ e%teε = (1 + η)λ%,

for all large enough x. This justifies the definitions in Section 2.5 above.
We shall see later that the asserted inclusion in (iii) may be improved to

an equality.

Proof of Theorem 2. Let

S = {t : |h∗(t)| <∞} =
⋃
k∈ω
{t : |h∗(t)| < k} =

⋃
k

Hk.
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For s, t ∈ S we have

h∗(s+ t) = lim
n

([h(s+ t+ n)− h(t+ n)] + [h(t+ n)− h(n)])

= lim
n

([h(s+ t+ n)− h(t+ n)] + lim
n

[h(t+ n)− h(n)])

= h∗(s) + h∗(t).

Thus h∗ is additive on S, and so S is a subgroup of R. By Proposition 2,
since h ∈ NT, h∗ ∈WNT, i.e. NT(Hk) holds for each k > 0, and so NT(S)
holds. Hence S = R by the Combinatorial Steinhaus Theorem. Thus by the
Combinatorial Ostrowski Theorem we see that for some % we have

h∗(t) = %t ∀t ∈ R.

Now put h0(t) = h(t)− %t; then evidently

h∗0(t) = lim
x→∞

[h0(t+ x)− h0(x)] = lim
x→∞

[h(t+ x)− h(x)− %t] = 0.

So h0 is slowly varying. By the Corollary to the UCT of Section 2.5, we
deduce that h0 is NT. So h(t) = %t+ h0(t) ∈ NT+

% .

As a corollary we now have the following result.

Theorem 3 (Equivalence Theorem). The functions of generic regular
variation with index % coincide with their NT-counterparts, i.e.

GRV+
% = NTR+

% , GRV% = NTR%.

Proof. We know from the last theorem that functions of generic regular
variation with index % are in NT+

% .

Now if h is in NT+
% , put

h(t) = %t+ h0(t),

with h0 NT-slowly varying. We are to show that h is in SNT and that

h∗(t) = lim
x→∞

[h(t+ x)− h(x)] = %t.

Evidently,

h∗(t) = lim
x

[h(t+ x)− h(x)] = lim
x

[%t+ h0(t+ x)− h0(x)]

= %t+ lim
x

[h0(t+ x)− h0(x)] = %t.

To show that h is in SNT, we are to show that given t with |h∗(t)| < r,
and u → 0, x → ∞, and ε > 0, there are z with |z − t| < ε, k ∈ ω, and an
infinite M such that

{z + un : n ∈M} ⊆ T rk =
⋂
n≥k
{y : |h(y + xn)− h(xn)| < r}.
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To understand the proof consider first the case h0 = 0. In this case we are
to show that

{z + un : n ∈M} ⊆ T rk =
⋂
n≥k
{y : |%y| < r} = (−r/|%|, r/|%|).

For some M we have

{un : n > M} ⊆ (−r/|%|, r/|%|).
The requirement may thus be met iff t ∈ (−r/|%|, r/|%|).

For general slowly varying h0 in NT, we have

|h(t+ xn)− h(xn)| = |%t+ h0(t+ xn)− h0(xn)|.
Here again (cf. Note 4 of Subsection 2.4) we show the same result for a
fixed t under the hypothesis that |%t| < r. In this case r − |%t| > 0, so we
restrict attention to ε with 0 < ε < r − |%t|.

Now, since h0 is in SNT there are k ∈ ω, an infinite M ⊆ ω and z ∈ R
with |t− z| < ε, such that |%(z − t)| < ε/3 and

(10) {z + un : n ∈M} ⊆ T rk =
⋂
n≥k
{y : |h0(y + xn)− h0(xn)| < ε/3}.

We may assume that for n ∈M we have n > k, and that k is so large that

|%un| < ε/3.

For such n, by (10), we have

|h0(z + un + xn)− h0(xn)| < ε/3.

Hence, for n ∈M, we have

|h(z + un + xn)− h(xn)|
= |%z + %un + h0(z + un + xn)− h0(xn)|
= |%(z − t) + %t+ %un + h0(z + un + xn)− h0(xn)|
≤ |%(z − t)|+ |%un|+ |%t|+ |h0(z + un + xn)− h0(xn)| ≤ ε+ |%t| < r.

Thus

{z + un : n ∈M} ⊆ T rk =
⋂
n≥k
{y : |h(y + xn)− h(xn)| < r},

that is, h is in SNT. This completes the proof.

Theorem 4 (Karamata Representation Theorem for GRV). A function
h : R→ R is of generic regular variation iff, for some constants % and c,

(11) h(t) = %t+ hc(t) +
t�

0

e(x) dx,

where hc(t)→ c, so is NT, and e(x)→ 0 in C∞(R) as x→∞.
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Proof. By Theorem 3, one readily checks that any function with this rep-
resentation is generic of regular variation with index % (see the two important
examples in Section 2.4). For the other direction: by the Characterization
Theorem h(t) = %t+h0(t), for some constant % and slowly varying h0 in NT.
After de Bruijn [dB] (see [BGT, Theorem 1.3.3, p. 14)] we will apply (as
mollifier) any p(x) in C∞[0, 1] which is a probability density on [0, 1]. Put

e(x) = (h0([x] + 1)− h0([x]))p(x− [x]),

where the first factor is constant in any interval n ≤ x < n + 1 with n an
integer. This is a mollification of h, as e is actually C∞ ([BGT, ibid.]). Now
write

h1(t) = h0(0) +
t�

0

e(x) dx.

Noting that

h1(t) = h0(0) + [h0(1)− h0(0)] +
t�

1

e(x) dx = · · · = h0([t]) +
t�

[t]

e(x) dx,

we infer, by the Bounded Equivalence Principle, as h0 is slowly varying and
in NT, that

h0(t) := h0(t)− h1(t) = h0(t)− h0([t])−
t�

[t]

e(x) dx→ 0

as t→∞. The result follows on taking c = h0(0) and hc(t) = c+ h0(t).

Notes. 1. As the proof shows, the Representation Theorem is primarily
about slowly varying functions.

2. The generic functions of regular variation are thus the largest class
of functions to which the three fundamental theorems of regular variation
apply.

3. We revisit our comment in Section 2.4 about the qualitative character
of hc(t). We note that Theorem 4 has an immediate corollary in Theorem 5
below, which is of particular relevance to the (descriptive) set-theoretic iden-
tification of a natural context for regular variation theory (natural domain
of functions). See the discussion in Section 3 of [BOst9] (where the notation
below is fully explained).

Theorem 5 (GRV Character Theorem for ∆1
2). If h ∈ ∆1

2 and h ∈
GRV+

% , then

h(t) = %t+ hc(t) +
t�

0

e(x) dx,

where hc(t)→ c is in ∆1
2 and e(x)→ 0 in C∞[b,∞) as x→∞.
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We will derive this result as a corollary of the following.

Theorem 6 (General Character Theorem). For h slowly varying satisfy-
ing UCT, and Γ a pointclass of functions closed under addition of continuous
functions, h ∈ Γ holds iff the representation equation

h(t) = hc(t) +
t�

0

e(x) dx, with e(x)→ 0 in C∞[b,∞) as x→∞,

holds with hc ∈ Γ.

Proof. This is immediate from the Representation Theorem and the clo-
sure hypothesis:

h = hc + g ∈ Γ ⇔ hc = h− g ∈ Γ,

where g(t) denotes the continuous function
	t
0 e(x) dx. The closure condition

is met in the cases where Γ is either the class of measurable functions or
the class of Baire functions. In turn this yields the character information in
the corresponding Representation Theorems for measurable/Baire regular
variation.

Proof of Theorem 5. To deduce the ∆1
2 case we need to check the closure

hypothesis when Γ = ∆1
2. Identify functions with their graphs. Thus y =

h(t) + g(t) iff (y, t) ∈ h+ g. The assumption is that h has a ∆1
2 graph and

that g, being continuous, has a closed graph. The two formulas defining the
graph of g + h and its complement, namely

y = h(t) + g(t) ⇔ (∃u, v)[(t, u) ∈ h& (t, v) ∈ g & y = u+ v],
y 6= h(t) + g(t) ⇔ (∃u, v)[(t, u) ∈ h& (t, v) ∈ g & y 6= u+ v],

show both sets to be Σ1
2, because (t, u) ∈ h is a Σ1

2 statement (see [BOst1]
for an explanation). Thus h+ g is in ∆1

2, giving the closure hypothesis.

Our final result affirms what is self-evident in the classical context—that
the product of two regularly varying functions is regularly varying (working
in the multiplicative formulation). For the generic variation context, this
follows by an application of the UCT, so is less obvious.

Proposition 4. If h, k ∈ GRV+, then h+ k ∈ GRV+.

Proof. This follows from Proposition 3. Indeed, if h ∈ GRV+
% and k ∈

GRV+
σ , then writing h0(t) = h(t)− %t and k0(t) = k(t)− σt, we obtain

h(t) + k(t) = (%+ σ)t+ [h0(t) + k0(t)].

But h0 + k0 is slowly varying and satisfies UCT, so is in NT. Hence h+ k
is GRV+

%+σ.

Postscript. Here we have handled the measure and Baire cases of the
theory by finding their maximal common generalisation. Another way to
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proceed is to reduce the first to the second. This is done in [BOst8], where
we proceed bitopologically, treating the measure case by switching from the
Euclidean to the density topology. Note that this reverses the traditional
approach, which treats the measure case as primary and the Baire case as
secondary.
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