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LEFT SECTIONS AND THE LEFT PART OF AN ARTIN ALGEBRA

BY

IBRAHIM ASSEM (Sherbrooke)

Abstract. We define a notion of left section in an Auslander–Reiten component, by
weakening one of the axioms for sections. We derive a generalisation of the Liu–Skowroński
criterion for tilted algebras, then apply our results to describe the Auslander–Reiten com-
ponents lying in the left part of an artin algebra.

Introduction. Let A be an artin algebra. We are interested in studying
the representation theory of A, thus the category modA of finitely generated
right A-modules. For this purpose, we fix a full subcategory indA of modA
having as objects exactly one representative from each isomorphism class
of indecomposable modules. Following Happel, Reiten and Smalø [19], we
define the left part LA to be the full subcategory of indA with objects
those modules whose predecessors have projective dimension at most one.
The right part is defined dually. These classes, whose definition suggests the
interplay between homological properties of an algebra and representation
theoretic ones, were heavily investigated and applied (see, for instance, the
survey [4]).

The initial motivation for this paper comes from the observations, made
in [5, 2, 1], that the left part of an arbitrary artin algebra closely resem-
bles that of a tilted algebra. Tilted algebras, introduced by Happel and
Ringel in [20], are among the most important and best understood classes
of algebras. Many criteria allow one to recognise whether a given algebra
is tilted or not. Most of them revolve around the existence of a combina-
torial configuration, called “complete slice” or “section” inside the module
category (see [20, 15, 22, 13, 28, 29, 7]). Perhaps the most efficient is the
Liu–Skowroński criterion: they define (combinatorially) a so-called section
in an Auslander–Reiten component and prove that, if there exists a sec-
tion satisfying reasonable algebraic conditions, then the algebra is tilted
(see [26, 30] or [9, Chapter VIII]). Surprisingly, however, as is shown in [1],
none of the known criteria seems to apply directly to the tilted algebras
arising from the study of the left part.
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The first aim of this paper is to derive a more suitable version of the
Liu–Skowroński criterion, easier to apply in our case. For this purpose, we
define a notion of left section in a translation quiver by weakening one of
the Liu–Skowroński axioms for section (see 2.1). Several known results for
sections carry over to left sections, sometimes in a restricted form (see, for
instance, 2.2 and 3.2). We thus obtain our first main theorem.

Theorem A. Let A be an artin algebra, and Σ be a left section in a com-
ponent Γ of the Auslander–Reiten quiver of A such that HomA(τ−1

A E′, E′′)
= 0 for all E′, E′′ in Σ. Then A/AnnAΣ is a tilted algebra having Σ as
complete slice.

If Σ is a section, then the condition that HomA(τ−1
A E′, E′′) = 0 for

all E′, E′′ in Σ is equivalent to several other conditions, notably that the
component Γ which contains it is generalised standard (see [26, 30]). This is
not true for left sections. However, if Σ is a left section, then this condition
implies (but is not equivalent to saying) that the full translation subquiver
Γ≤Σ of Γ consisting of the predecessors of Σ in Γ is generalised standard.

As corollaries of the above theorem, we obtain, not only the Liu–Sko-
wroński criterion, but also the statements necessary for the study of the
left part. If, in particular, Σ is a left section which is convex in indA, then
the condition of the theorem is satisfied so A/AnnAΣ is tilted (see 4.3).
Also, if A is an algebra over an algebraically closed field, then A/AnnAΣ
coincides with the support algebra of Σ, which is a full convex subcategory
of A (see 4.5).

We next apply our criterion to the study of the left part. As shown in [5,
6, 2, 1], the main tool in the proofs of the known results is the description of
the Ext-injectives (in the sense of [12]) in the left part LA. Here, we rather
work with a full subcategory C of LA which is closed under predecessors,
and we prove that the most useful statements about Ext-injectives in LA

carry over to this context. This approach allows us to work with connected
subcategories of LA (which is not connected in general). Also, this hypothesis
is optimal: easy examples show that the known techniques about LA do
not carry over to subcategories closed under predecessors which are not
contained in LA (this more general situation is addressed in a forthcoming
work with Coelho and Trepode). This leads to our second main theorem.

Theorem B. Let A be an artin algebra, and C ⊆ LA be a full subcat-
egory closed under predecessors, having E as subcategory of Ext-injectives.
Let Γ be a component of the Auslander–Reiten quiver of A. Then:

(a) If Γ ∩ E = ∅, then either Γ ⊆ C or Γ ∩ C = ∅.
(b) If Σ = Γ ∩ E 6= ∅, then Σ is a left section of Γ , convex in indA.

Moreover , A/AnnAΣ is a tilted algebra having Σ as complete slice.
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As corollaries, we obtain the first two main results of [1]. Following this
line, we define the support algebra of a subcategory C as above, thus gen-
eralising the notion of left support algebra [5, 32]. As a consequence of the
theorem, we describe completely the Auslander–Reiten components which
lie entirely inside C and, for those which intersect C , the part which pre-
cedes the left section Σ. This is contained in 7.4–7.6, which generalise the
remaining results of [1]. In the last section, we introduce a new class of al-
gebras, called C -supported, modeled after the left supported algebras of [5]
and we obtain, in 8.2 and 8.8, generalisations of the results of [5, 2].

Clearly, the dual results, for right sections and the right part, hold as well.
For the sake of brevity, we refrain from stating them, leaving the primal-dual
translation to the reader.

1. Preliminaries

1.1. Notation. Throughout this paper, all our algebras are basic and
connected artin algebras. For an algebra A, we denote by modA its cat-
egory of finitely generated right modules and by indA a full subcategory
of modA consisting of one representative from each isomorphism class of
indecomposable modules. Whenever we speak about a module (or an inde-
composable module), we always mean implicitly that it belongs to modA
(or to indA, respectively). Also, all subcategories of modA are full and so
are identified with their object classes. We sometimes consider an algebra A
as a category, in which the object class A0 is a complete set {e1, . . . , en} of
primitive orthogonal idempotents and the set of morphisms from ei to ej is
eiAej . An algebra B is a full subcategory of A if there is an idempotent e ∈ A,
sum of some of the distinguished idempotents ei, such that B = eAe. It is
convex in A if, for any sequence ei = ei0 , ei1 , . . . , eit = ej of objects in A such
that ei`Aei`+1

6= 0 (with 0 ≤ ` < t) and ei, ej objects in B, all ei` lie in B.
We denote by Px (or Ix, or Sx) the indecomposable projective (or injective,
or simple, respectively) A-module corresponding to the idempotent ex.

A subcategory C of indA is called finite if it has only finitely many
objects. We sometimes write M ∈ C to express that M is an object in a
subcategory C . We denote by add C the subcategory of modA with objects
the direct sums of summands of modules in C . Given a module M , we let
pdM (or idM) stand for its projective (or injective, respectively) dimension.
The global dimension of A is denoted by gl.dim. A and its Grothendieck
group by K0(A). For a module M , the support Supp(M,−) (or Supp(−,M))
of the functor HomA(M,−) (or HomA(−,M)) is the subcategory of indA
consisting of all X such that HomA(M,X) 6= 0 (or HomA(X,M) 6= 0,
respectively). We denote by GenM (or CogenM) the subcategory of modA
having as objects all modules generated (or cogenerated, respectively) by M .
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For an algebra A, we denote by Γ (modA) its Auslander–Reiten quiver
and by τA = DTr , τ−1

A = Tr D its Auslander–Reiten translations. For further
definitions and facts on modA or Γ (modA), we refer to [9, 11]. For tilting
theory, we refer to [9].

1.2. Paths. Let A be an algebra. Given M,N ∈ indA, a path from M
to N in indA (denoted by M  N) is a sequence of non-zero morphisms

(∗) M = X0
f1−→ X1

f2−→ · · · → Xt−1
ft−→ Xt = N

(t ≥ 1) where Xi ∈ indA for all i. We then say that M is a predecessor of N
and N is a successor of M . A path from M to M involving at least one
non-isomorphism is a cycle. A module M ∈ indA which lies on no cycle is
directed. If each fi in (∗) is irreducible, we say that (∗) is a path of irreducible
morphisms, or path in Γ (modA). A path (∗) of irreducible morphisms is
sectional if τAXi+1 6= Xi−1 for all i with 0 < i < t. A refinement of (∗) is a
path in indA

M = X ′0 → X ′1 → · · · → X ′s−1 → X ′s = N

such that there exists an order-preserving injection σ : {1, . . . , t− 1} →
{1, . . . , s− 1} satisfying Xi = X ′σ(i) for all i with 0 < i < t.

A subcategory C is closed under predecessors if, whenever M  N is a
path in indA with N ∈ C , then M ∈ C . Equivalently, add C is the torsion-
free class of a split torsion pair. We define dually subcategories closed under
successors, which generate torsion classes of split torsion pairs.

Important examples are the left and right parts of modA, defined in [19].
The left part is the full subcategory of indA with object class

LA = {M ∈ indA | for any L with L M , we have pdL ≤ 1} .

Thus, LA is closed under predecessors. The right part RA is defined du-
ally and is closed under successors. For properties of LA and RA, we refer
to [4, 19].

2. Left sections in translation quivers

2.1. In this section, (Γ, τ), or briefly Γ , denotes a translation quiver.
Given x, y ∈ Γ0, a path from x to y (denoted by x  y) is a sequence of
arrows

(∗) x = x0 → x1 → · · · → xt−1 → xt = y.

We say that x is a predecessor of y, or y is a successor of x. If y = x and
t ≥ 1, this path is a cycle. A full subquiver Σ of Γ is acyclic if it contains
no cycle. It is convex (in Γ ) if, for any path (∗) with x, y ∈ Σ0, we have
xi ∈ Σ0 for all i.
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Definition. A full subquiver Σ of a translation quiver Γ is called a left
section if:

(LS1) Σ is acyclic.
(LS2) For any x ∈ Γ0 such that there exist y ∈ Σ0 and a path x  y,

there exists a unique n ≥ 0 such that τ−nx ∈ Σ0.
(LS3) Σ is convex in Γ .

Examples.

(a) A full connected subquiver Σ of Γ is a section (see [25, 30] or else [9])
if it satisfies (LS1), (LS3) and:

(S2) For any x ∈ Γ0, there exists a unique n ∈ Z such that τnx ∈ Σ0.

Thus, any section is a left section.
(b) Our second example is the motivating one: let A be an artin algebra,

LA be the left part of modA, EA be the class of indecomposable
Ext-injectives in add LA and Γ be a component of Γ (modA) such
that Γ ∩ EA 6= ∅. Then Γ ∩ EA is a left section in Γ , but generally
not a section [1].

(c) Other examples can be found in the directed part of a semiregular
tube (or coil) containing projectives. Let A be given by the quiver

◦
1

◦
2
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3

αoo //◦
4

//◦
5

bound by αβ = 0. The projective module P5 lies in a tube of the
form
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where modules are represented by their Loewy series and one iden-
tifies along the vertical dotted lines. The full subquiver with points
{ 4

5 , 4 } is a left section, but not a section.

Lemma. Let Σ be a left section in a translation quiver Γ . Then:

(a) Σ intersects at most once each τ -orbit in Γ .
(b) Every path between two points of Σ is sectional.
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(c) If x ∈ Γ0 is injective and precedes Σ, then x ∈ Σ0.
(d) If x→ y, x ∈ Σ0 and y is non-projective, then y ∈ Σ0 or τy ∈ Σ0.
(e) If x→ y, y ∈ Σ0, then x ∈ Σ0 or τ−1x ∈ Σ0.
(f) If x ∈ Σ0 and y precedes Σ, then every path from x to y is sectional

and y ∈ Σ0.

Proof. (a) Follows from the uniqueness in (LS2).
(b) Follows from (a).
(c) There exists n ≥ 0 such that τ−nx ∈ Σ0. Since x is injective, n = 0.
(d) Since y is non-projective, there is an arrow τy → x. By (LS2), there

exists a unique n ≥ 0 such that τ−n(τy) = τ1−ny ∈ Σ0. If n > 1, the
path x → y  τ1−ny and convexity yield y ∈ Σ0. Since τ1−ny ∈ Σ0, this
contradicts (a). Hence n ∈ {0, 1}, as required.

(e) This is clear if x is injective. Otherwise, τ−1x is non-projective and
we apply (d) to the arrow y → τ−1x.

(f) Since y precedes Σ, there exists n ≥ 0 such that τ−ny ∈ Σ0. Thus,
a path x  y induces a path x  y  τ−ny. By convexity, y ∈ Σ0. Hence
n = 0 and the sectionality of the path follows from (b).

2.2. Lemma. Let Σ be a left section in Γ . The full subquiver Γ≤Σ of Γ
consisting of all predecessors of Σ in Γ is isomorphic to a full translation
subquiver of ZΣ (and , in particular , is acyclic).

Proof. Repeat the proof of [25, 3.2] (or [9, VIII.1.5]) with the obvious
changes.

2.3. We give necessary and sufficient conditions for a left section to be
a section.

Proposition. Let Σ be a left section in Γ . The following are equivalent :

(a) Σ is a section.
(b) Every projective in Γ precedes Σ.
(c) For any projective p ∈ Γ0 such that there exist x ∈ Σ0 and a path

x p, we have p ∈ Σ0.

Proof. (a)⇒(b). Since Σ is a section, Γ is fully embedded in ZΣ, and
Σ cuts each τ -orbit of Γ (see [25, 3.2] or [9, VII.1.5]).

(b)⇒(c). This follows from convexity.
(c)⇒(a). We must show that Σ cuts each τ -orbit of Γ . For this, it suffices

to prove that, if x ∈ Σ0 and z ∈ Γ0 are in two neighbouring orbits, then
Σ cuts the τ -orbit of z (the statement then follows by induction). Assume
that there exist m ∈ Z and y in the τ -orbit of x such that we have an arrow
τmx → y or y → τmx. Assume also, without loss of generality, that |m| is
minimal. There are three cases:
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1) Suppose m > 0. If there is an arrow y → τmx, then there is a path
y → τmx  x, so Σ cuts the τ -orbit of y. If, on the other hand, there
is an arrow τmx → y, then there is an arrow y → τm−1x, contradicting
minimality.

2) Suppose m < 0. If there is an arrow y → τmx, then there is an
arrow τm+1x → y, contradicting minimality. If, on the other hand, there
is an arrow τmx → y, then we have two cases. If y is projective, then the
path x  τmx → y and the hypothesis imply y ∈ Σ0, hence m = 0, a
contradiction. If y is non-projective, then there is an arrow τy → τmx,
hence an arrow τm+1x→ τy, contradicting minimality.

3) Suppose m = 0. If there is an arrow y → x, then y ∈ Σ0 or τ−1y ∈ Σ0.
If, on the other hand, there is an arrow x→ y, then we have two cases. If y
is projective, then y ∈ Σ0 by hypothesis. If y is non-projective, there is an
arrow τy → x which, by 2.1(e), yields τy ∈ Σ0 or y ∈ Σ0.

3. Left sections and tilted algebras

3.1. Let A be an artin algebra and Γ be a component of Γ (modA).
Recall that the annihilator of a full subcategory C of indA is defined by
AnnAC =

⋂
X∈C AnnAX.

Lemma. If Σ is a finite left section of Γ , then:

(a) AnnAΣ = AnnAΓ≤Σ.
(b) Σ cogenerates Γ≤Σ.

Proof. (a) Repeat the proof of [26, 2.1], [30, Lemma 3], with the obvious
changes.

(b) Let X ∈ Γ≤Σ and j : X ↪→ I be an injective envelope. Since no
indecomposable summand of I is a proper predecessor of Σ, it follows that
j factors through Σ.

3.2. The following is a “left” version of [26, 1.3], [30, Theorem 2].

Proposition. Let Σ be a left section of Γ . The following are equivalent :

(a) HomA(E′, τAE′′) = 0 for all E′, E′′ ∈ Σ0.
(b) |Σ0| ≤ rkK0(A) and rad∞A (E′, E′′) = 0 for all E′, E′′ ∈ Σ0.
(c) Γ≤Σ is generalised standard.

Proof. (a)⇒(b). The first statement follows from Skowroński’s lemma
[9, VIII.5.3], [31, Lemma 1], and the second from the fact that, by [9,
VIII.5.4], any non-zero morphism in rad∞A (E′, E′′) factors through τAΣ.

(b)⇒(c). Let X,Y ∈ Γ≤Σ be such that rad∞A (X,Y ) 6= 0. For each i ≥ 0,
there exists a path in indA

X = X0
f1−→ X1

f2−→ · · · fi−→ Xi
gi−→ Y
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with all fj irreducible and gi ∈ rad∞A (Xi, Y ) such that gif1 · · · f1 6= 0
(see [27]). We claim that there exists i such that Xi ∈ Σ0. Indeed, since
Σ is finite, there exists m ≥ 0 such that Xm ∈ Γ≤Σ and Xm+1 /∈ Γ≤Σ .
We show that Xm ∈ Σ. If Xm is injective, this follows from 2.1(c). If not,
consider the almost split sequence

0→ Xm → Xm+1 ⊕ Z → τ−1
A Xm → 0.

Since Xm+1 /∈ Γ≤Σ , τ−1
A Xm /∈ Γ≤Σ . The conclusion follows from the fact

that Xm ∈ Γ≤Σ , and so Σ cuts the τA-orbit of Xm.
We thus have rad∞A (Xm, Y ) 6= 0. By 3.1(b), Y is cogenerated by Σ.

Therefore there exists E′ ∈ Σ such that rad∞A (Xm, E
′) 6= 0, a contradiction.

(c)⇒(a). Suppose that there exists a non-zero morphism E′ → τAE
′′

with E′, E′′ ∈ Σ. The hypothesis implies the existence of a path E′  τAE
′′

in Γ , hence a path E′  τAE
′′ → ∗ → E′′. The convexity of Σ in Γ yields

τAE
′′ ∈ Σ, a contradiction.

Remark. If Σ is a section then, by [26, 1.3], [30, Theorem 2], the condi-
tions of the proposition are equivalent to saying that HomA(τ−1

A E′, E′′) = 0
for all E′, E′′ ∈ Σ, or to the condition that Γ be generalised standard. How-
ever, there exist left sections lying in non-generalised standard components
but satisfying the condition of the proposition. Let A be given by the quiver

◦ 4

◦
1

◦
2

βoooo ◦
3

αoo

66mmmmmmm

((QQQQQQQ

◦ 5

bound by αβ = 0. The component containing the projective P3 is not gen-
eralised standard, by [10, 3.2], but the simple modules {S4, S5} form a left
section in that component satisfying the conditions of the proposition.

3.3. Clearly, if Γ is generalised standard, so is Γ≤Σ , hence Σ satisfies
the equivalent conditions of 3.2. We also have the following lemma.

Lemma. Let Σ be a left section of Γ such that HomA(τ−1
A E′, E′′) = 0

for all E′, E′′ ∈ Σ, then Σ satisfies the equivalent conditions of 3.2.

Proof. Indeed, Skowroński’s lemma [9, VIII.5.3], [31, Lemma 1], en-
sures that |Σ0| ≤ rkK0(A). Let E′, E′′ ∈ Σ. Since, by [9, VIII.5.4], any
non-zero morphism in rad∞A (E′, E′′) factors through τ−1

A Σ, we infer that
rad∞A (E′, E′′) = 0.

3.4. Lemma. Let Σ be a left section of Γ satisfying the equivalent condi-
tions of 3.2 and let C = A/I, where I ⊆ AnnAΣ. Then all indecomposables
in Σ lie in the same component Γ ′ of Γ (modC), Σ is a left section of Γ ′

and Γ ′≤Σ = Γ≤Σ is generalised standard in modC.
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Proof. Since I ⊆ AnnAΣ, all indecomposables in Σ are C-modules. Now,
recall that, if C is a quotient of A and X, Y are two indecomposable C-
modules such that there is an irreducible morphism f : X → Y in modA,
then f remains irreducible in modC. Therefore, all indecomposables in Σ lie
on the same component Γ ′ of Γ (modC). On the other hand, by 3.1, Γ≤Σ ⊆
indC, hence Γ≤Σ = Γ ′≤Σ and consequently Σ is a left section in Γ ′ as well.
The last statement follows from the fact that rad∞C is contained in rad∞A .

3.5. We recall the Liu–Skowroński criterion (see [26, 3.2], [30, Theo-
rem 3] or [9, VIII.5.6]. Let A be an artin algebra having a section Σ such
that HomA(E′, τAE′′) = 0 for all E′, E′′ ∈ Σ. Then A/AnnAΣ is a tilted
algebra having Σ as complete slice. If in particular, Σ is faithful, then A
is tilted having Σ as complete slice, and the component in which Σ lies as
connecting component.

Theorem. Let Σ be a left section in a component Γ of Γ (modA) such
that HomA(τ−1

A E′, E′′) = 0 for all E′, E′′ in Σ. Then B = A/AnnAΣ is a
tilted algebra having Σ as complete slice.

Proof. By 3.3, Σ satisfies the conditions of 3.2. In particular, Σ is fi-
nite so we can set E =

⊕
U∈Σ U . By 3.4, all indecomposables in Σ lie

in the same component Γ ′ of Γ (modB) in which Σ is a left section such
that Γ ′≤Σ = Γ≤Σ and moreover, by 3.2, HomB(E, τBE) = 0. We also
have HomB(τ−1

B E,E) = 0: indeed, assume to the contrary that there exist
E′, E′′ ∈ Σ and a non-zero morphism τ−1

B E′ → E′′. Then, since by [11,
pp. 186–187], there exists an epimorphism τ−1

A E′ → τ−1
B E′, we get upon

composing a non-zero morphism τ−1
A E′ → E′′, a contradiction. In order to

complete the proof, it suffices to show that EB is a tilting B-module with
H = EndEB hereditary. This is done as in [9, VIII.5.6], but we include the
proof for the benefit of the reader.

Since EB is faithful, we have pdEB ≤ 1 and idEB ≤ 1, by [9,
VIII.5.1]. Moreover, Ext1B(E,E) = 0, whence E is a partial tilting module.
Let f1, . . . , fd be a generating set of the B-module HomB(B,E). Setting
f = [f1, . . . , fd] : B → Ed, we have an exact sequence

0→ BB
f−→ Ed → X → 0.

We claim that E ⊕ X is a tilting B-module. Since BB is projective,
we have pdX ≤ 1. Applying successively HomB(−, E), HomB(X,−)
and HomB(E,−) to the preceding exact sequence yields respectively
Ext1B(X,E) = 0, Ext1B(X,X) = 0 and Ext1B(E,X) = 0. This establishes
our claim.

Assume now that Y is an indecomposable summand of X such that Y /∈
addE. The exact sequence above yields a non-zero morphism E → Y . By [9,
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VIII.5.4], HomB(τ−1
B E, Y ) 6= 0, hence Ext1B(Y, T ) 6= 0, a contradiction. This

shows that X ∈ addE and therefore EB is a tilting module.
We now prove that H is hereditary. Let PH be an indecomposable pro-

jective H-module and f : M → P be a monomorphism with M indecom-
posable. The tilting module E determines a torsion pair (T (E),F (E))
in modB and another (X (E),Y (E)) in modH. Since P ∈ Y (E), we
have M ∈ Y (E) and hence there exist g : V → E′ with V ∈ T (E),
E′ ∈ Σ ⊆ T (E) such that M ∼= HomB(E, V ), P ∼= HomB(E,E′) and
f ∼= HomB(E, g). Now, since M 6= 0, there exist an indecomposable projec-
tive H-module P ′ and a non-zero morphism f ′ : P ′ →M . Again, there exist
E′′ ∈ Σ and g′ : E′′ → V such that P ′ ∼= HomB(E,E′′), f ′ ∼= HomB(E, g′).
Since ff ′ 6= 0, we have gg′ 6= 0. If now V /∈ Σ, then by [9, VIII.5.4], gg′

factors through τAE. But then HomH(E′′, τAE) 6= 0, a contradiction which
shows that V ∈ Σ, and thus completes the proof.

3.6. Clearly, the Liu–Skowroński criterion follows directly from the
above theorem. We also have the following easy corollary.

Corollary. Let Σ be a left section in a generalised standard compo-
nent Γ of Γ (modA). Then A/AnnAΣ is a tilted algebra having Σ as com-
plete slice.

3.7. Corollary. An algebra A is tilted if and only if it admits a faithful
left section Σ such that HomA(τ−1

A E′, E′′) = 0 for all E′, E′′ ∈ Σ.

3.8. Corollary. Let Σ be a left section in a component Γ of Γ (modA)
such that every projective in Γ precedes Σ and moreover HomA(E′, τAE′′)
= 0 for all E′, E′′ ∈ Σ. Then A/AnnAΣ is a tilted algebra having Σ as
complete slice and Γ as connecting component.

Proof. By 2.3, Σ is a section. We apply the Liu–Skowroński criterion.

4. Left sections convex in indA

4.1. A full subcategory C of indA is called convex in indA if, for any
path

X = X0 → X1 → · · · → Xt = Y

in indA, whenever X,Y ∈ C , then Xi ∈ C for all i.

Lemma. Let Σ be a left section convex in indA. Then HomA(τ−1
A E′, E′′)

= 0 for all E′, E′′ ∈ Σ.

Proof. If E′, E′′ ∈ Σ are such that HomA(τ−1
A E′, E′′) 6= 0, then we have

a path E′ → ∗ → τ−1
A E′ → E′′ in indA. Convexity yields τ−1

A E′ ∈ Σ, a
contradiction to (LS2).
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Remark. It is easy to find examples of left sections (even of sections)
which satisfy the conditions of 3.2, but are not convex in indA. For instance,
let A be the radical square zero algebra with quiver

2◦

��;;;;;;;;

��;;;;;;;;

◦
3

AA��������

AA�������� ◦
1

oo oo

and E = I1⊕S2⊕P3. The set {I1, S2, P3} is a section in its component, and
satisfies HomA(τ−1

A E,E′) = 0, but is not convex in indA.

4.2. Corollary. Let A be an algebra having a left section convex in
indA. Then A/AnnAΣ is tilted having Σ as complete slice.

4.3. Recall from [21] that an A-module L (not necessarily indecompos-
able) is called directed if there do not exist two indecomposable summands
L′, L′′ of L, an indecomposable non-projective module Nand a path in indA
of the form

L′  τAN → ∗ → N  L′′.

Lemma. Let Σ be a left section convex in indA, and E =
⊕

U∈Σ U .
Then:

(a) E is a directed A-module.
(b) If E is sincere, then Σ is a section (and , actually , a complete slice).
(c) E is sincere if and only if it is faithful.

Proof. (a) If there exist E′, E′′ ∈ Σ, an indecomposable non-projective
module N and a path in indA of the form

E′  τAN → ∗ → N  E′′,

then convexity implies N, τAN ∈ Σ, a contradiction.
(b) To show that Σ is a section, it suffices, by 2.3, to prove that, if P is

a projective module such that there exist E′ ∈ Σ and a path of irreducible
morphisms E′  P , then P ∈ Σ. Since E is sincere, there exists E′′ ∈ Σ
such that HomA(P,E′′) 6= 0. Thus we have a path E′  P → E′′ in indA
and convexity forces P ∈ Σ. Hence Σ is a section. The second statement
follows from the observation that any sincere section which is convex in
indA is a complete slice (see [28, 29]).

(c) This follows from (b).

4.4. Let Σ be a finite left section and E =
⊕

U∈Σ U . The support of Σ
is the full subcategory SuppΣ = eAe where e is the sum of those primitive
idempotents ex of A such that Eex 6= 0.
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Lemma. Assume A is a finite dimensional algebra over an algebraically
closed field , and Σ is a left section convex in indA. Then SuppΣ is a full
convex subcategory of A.

Proof. We slightly modify Bongartz’ convexity argument [16]. If SuppΣ
is not convex, there exists a path x0

α1−→ x1 → · · · → xm−1
αm−−→ xm in

the quiver of A such that m ≥ 2, x0, xm ∈ SuppΣ and xi /∈ SuppΣ for
1 ≤ i < m. Let α1 = β1, . . . , βs be all the arrows from x0 to x1 and
αm = γ1, . . . , γt be all those from xm−1 to xm. Let J be the two-sided
ideal of SuppΣ generated by all paths of the forms βiδ or δγj , and consider
A′ = SuppΣ/J . Since EJ = 0, E is an A′-module. Denoting by P ′x0

, I ′xm
,

respectively, the indecomposable projective A′-module at x0 and injective
A′-module at xm, we have HomA′(P ′x0

, E) 6= 0 and HomA′(E, I ′xm
) 6= 0. Let( Sy

Sz

)
be the uniserial module of length two having the simple Sy as top and

Sz as socle. We get E′, E′′ ∈ Σ and a path in indA′ (hence in indA) of the
form

E′ → I ′xm
→ Sxm−1 →

(
Sxm−2

Sxm−1

)
→ · · · →

(
Sx1

Sx2

)
→ Sx1 → P ′x0

→ E′′.

Since Σ is convex in indA, we get Sxi ∈ Σ for all i, a contradiction.

4.5. Theorem. Let A be a finite dimensional algebra over an alge-
braically closed field, and Σ be a left section convex in indA. Then SuppΣ ∼=
A/AnnAΣ is a tilted algebra having Σ as complete slice and is a full convex
subcategory of A.

Proof. By 4.2, A/AnnAΣ is tilted and has Σ as complete slice. Also,
by 4.4, SuppΣ is a full convex subcategory of A. In particular, SuppΣ ∼=
A/I(Σ), where I(Σ) is the two-sided ideal of A generated by those primitive
idempotents ex such that Eex = 0. Since I(Σ) ⊆ AnnAΣ, it follows from 3.4
that all points of Σ lie in the same component Γ ′ of Γ (modA/I(Σ)) and Σ
is a left section in Γ ′. Further, Σ is convex in indA/I(Σ), because it is so
in indA. By 4.2, Σ is a complete slice in A/I(Σ). We have established that
each of A/AnnAΣ and SuppΣ ∼= A/I(Σ) is tilted and that these algebras
have Σ as common complete slice. Therefore they are isomorphic (see, for
instance, [9, VIII.5.6]).

5. Subcategories closed under predecessors

5.1. Throughout this section, C is a full subcategory of indA, closed un-
der predecessors. We first characterise the relative projectives and injectives
in add C .

Lemma. Let P0 ∈ C . The following are equivalent :

(a) P0 is Ext-projective in add C (that is, Ext1A(P0,−)|C = 0).
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(b) If 0 → L → M → N → 0 is a short exact sequence lying in add C ,
then the induced sequence 0 → HomA(P0, L) → HomA(P0,M) →
HomA(P0, N)→ 0 is exact.

(c) Every short exact sequence of the form 0 → L → M → P0 → 0
splits.

(d) P0 is a projective A-module.

Proof. We prove that (c) implies (d) (the other implications are trivial).
Let f : P → P0 be a projective cover in modA. By hypothesis, the sequence
0→ Ker f → P

f−→ P0 → 0 splits, so P0 is projective.

5.2. Lemma. Let E0 ∈ C . The following are equivalent :

(a) E0 is Ext-injective in add C (that is, Ext1A(−, E0)|C = 0).
(b) If 0 → L → M → N → 0 is a short exact sequence lying in add C ,

then the induced sequence 0 → HomA(N,E0) → HomA(M,E0) →
HomA(L,E0)→ 0 is exact.

(c) Every short exact sequence of the form 0→ E0 →M → N → 0 with
N ∈ add C splits.

(d) τ−1
A E0 /∈ C .

Proof. The equivalence of (a), (b), (c) is trivial and that of (a), (d)
follows from [12, 3.4].

5.3. While the Ext-projectives in add C are perfectly characterised
above, the same is not true of the Ext-injectives. Let E denote the full
subcategory of C (hence of indA) with objects the Ext-injectives in add C .
Clearly, any injective A-module lying in C belongs to E , but the converse is
generally not true. Note also that we may have E = ∅ (take, for instance, A
hereditary and representation-infinite, and C consisting of all postprojective
modules).

Lemma.

(a) For every E′, E′′ ∈ E , we have HomA(τ−1
A E′, E′′) = 0.

(b) |E | ≤ rkK0(A).
(c) E cuts each τA-orbit in Γ (modA) at most once.
(d) Every path of irreducible morphisms contained in E is sectional.
(e) E contains no cycle of irreducible morphisms.

Proof. (a) Indeed, E′′ ∈ C , while τ−1
A E′ /∈ C .

(b) Follows from (a) and Skowroński’s lemma [9, VIII.5.3], [31, Lemma 1].
(c) Assume E′, τ−tA E′ ∈ E (with t > 0). We have a path of irreducible

morphisms E′ → ∗ → τ−1
A E′  τ−tA E′. Since τ−tA E′ ∈ C , we have τ−1

A E′

∈ C , a contradiction.
(d) Follows from (c).



286 I. ASSEM

(e) Let E0 → E1 → · · · → Et = E0 be a cycle of irreducible morphisms
in E . By the Bautista–Smalø theorem [14, 17], it is not sectional. Hence
E1 = τ−1

A Et−1 or there exists i with 1 ≤ i < t such that Ei+1 = τ−1
A Ei−1,

thus contradicting (a).

5.4. Lemma.

(a) Let E′ = M0
f1−→M1 → · · ·

ft−→Mt be a path in indA, with E′ ∈ E and
Mt ∈ C . If no fi factors through an injective module, then Mi ∈ E
for all i.

(b) Let Γ be a component of Γ (modA) not containing injectives and
such that Γ ∩ E 6= ∅. Then, for every M ∈ C , there exists a unique
m ≥ 0 such that τ−mA M ∈ E .

Proof. (a) Since Mt ∈ C , we have Mi ∈ C for all i. Also, no Mi is in-
jective and the Auslander–Reiten isomorphism HomA(τ−1

A Mi−1, τ
−1
A Mi) ∼=

HomA(Mi−1,Mi) yields a non-zero morphism τ−1
A Mi−1 → τ−1

A Mi (for
each i). This yields a path τ−1

A E′ = τ−1
A M0 → τ−1

A M1 → · · · → τ−1
A Mt.

Since τ−1
A E′ /∈ C , we have τ−1

A Mi /∈ C for all i. Consequently, Mi ∈ E for
all i.

(b) Since Γ contains no injectives (hence is right stable) but contains at
least one Ext-injective in add C (the set of which is finite, by 5.3(b)), we
may take ` > 0 so that τ−`A M succedes τ−1

A E′ /∈ C (for every E′ ∈ Γ ∩ E );
then τ−`A M /∈ C . Hence there exists m ≥ 0 such that τ−mA M ∈ C but
τ−m−1
A M /∈ C . Thus τ−mA M ∈ E . Uniqueness of m follows from 5.3(c).

5.5. Proposition. Let Γ be a component of Γ (modA) not containing
injectives and such that Σ = Γ ∩ E 6= ∅. Then Σ is a left section in Γ and
A/AnnAΣ is a tilted algebra having Σ as complete slice.

Proof. We check the axioms for a left section. (LS1) follows from 5.3(e)
and (LS3) from 5.4(a). If M is a predecessor of Σ in Γ , we have M ∈ Γ ∩C
and so (LS2) follows from 5.4(b). The statement then follows from 5.3(a)
and 3.5.

Remark. The statement is false if Γ contains injectives. Let A be given
by the quiver

◦
1

◦
2

δoo ◦
3

βoo
γ
oo ◦

4

αoo

bound by αβ = 0, βδ = 0 and C be the full subcategory of indA having as
objects all non-preinjective modules. Then the only Ext-injective in add C
is the projective-injective module P4 = I1 which lies in a tube
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Clearly, Γ ∩ E satisfies neither (LS2) nor (LS3).

This raises the question of finding the right conditions so that the state-
ment of 5.5 stays valid in a component containing injectives. As is easy to
see, the condition is that every object in C should have projective dimension
at most one (or, equivalently, C ⊆ LA).

6. Full subcategories of LA

6.1. In this section, we assume that C is a full subcategory of LA, closed
under predecessors. The first result generalises [3, 1.5].

Lemma. Let I be an indecomposable injective A-module.

(a) There exist at most rkK0(A) indecomposable modules N ∈ C such
that there exists a path I  N in indA.

(b) Every such path is refinable to a path of irreducible morphisms.
(c) Every such path of irreducible morphisms is sectional.
(d) Every such module N ∈ C is Ext-injective in add C .

Proof. If I /∈ C , then no successor of I lies in C and the statement holds
trivially. Assume that I ∈ C has infinitely many successors in C . Then, for
each s ≥ 0, there exists a path in indA

I = L0 → L1 → · · · → Ls−1 → Ls

with Li ∈ C for all i. An easy induction (as in [3, 1.5]) shows that this path
induces another one

(∗) I = M0
f1−→M1 → · · ·

fi−→Mi
f ′i−→ Lj

with j ≤ i, M` ∈ C and f` irreducible for all `, and f ′i 6= 0.
We prove that (∗) is sectional. If this is not the case, there exists a least

i such that the subpath I = M0  Mi is sectional and Mi+1 = τ−1
A Mi−1.

In particular, by [17], HomA(I,Mi−1) 6= 0, hence pd τ−1
A Mi−1 > 1. But

Mi+1 ∈ C implies pdMi+1 ≤ 1, a contradiction.
Since I is injective, it is Ext-injective in add C . Moreover, HomA(I,Mi)

6= 0 implies τ−1
A Mi /∈ C (because either Mi is injective or pd τ−1

A Mi > 1).
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Since Mi ∈ C , we infer that Mi is Ext-injective for each i. Invoking 5.3(b)
finishes the proof.

6.2. A module M ∈ C is called Ext-injective of the first kind if there
exist an injective module I and a path I  M in indA. We denote by E1

the class of Ext-injectives of the first kind. An Ext-injective which is not
of the first kind is of the second kind, and the class of Ext-injectives of the
second kind is denoted by E2 (= E \ E1). The following result generalises
part of [5, 3.1], [6, 3.1].

Corollary. Let M ∈ C . The following are equivalent :

(a) M is Ext-injective of the first kind.
(b) There exists an injective module I and a path of irreducible mor-

phisms I  M .
(c) There exists an injective module I and a sectional path of irreducible

morphisms I  M .
(d) There exists an injective module I such that HomA(I,M) 6= 0.

Proof. That (a) implies (b) and that (b) implies (c) follow from 6.1,
that (c) implies (d) follows from [17], and finally (d) implies (a) is trivial.

Remark. If C = LA, then Ext-injectives of the second kind are char-
acterised as being for instance, those M ∈ LA \ E1 such that there exists a
projective module P /∈ LA satisfying HomA(P, τ−1

A M) 6= 0 (see [5, 3.1], [6,
3.1]). No such characterisation is known in general.

6.3. The next result generalises [5, 3.4].

Proposition. Assume that E′ ∈ E and M ∈ C are such that there ex-
ists a path E′  M in indA. Then this path can be refined to a sectional path
of irreducible morphisms and M ∈ E . In particular , E is convex in indA.

Proof. Let E′ = X0
f1−→ X1 → · · ·

ft−→ Xt = M be the given path. We
first show that Xi ∈ E for each i. If no fi factors through an injective, this
follows from 5.4(a). Otherwise, let i be minimal such that fi : Xi−1 → Xi

factors through an injective I. We thus have a subpath I → Xi  Xt

= M . By 6.1, Xj ∈ E for j ≥ i. But, on the other hand, we have another
subpath E′ = X0  Xi−1 where, because of the minimality of i, none of
the morphisms factors through an injective. Since, for every j < i, we have
Xj ∈ C , we deduce from 5.4(a) that Xj ∈ E .

This establishes the convexity of E in indA. It remains to show that
each fi lies in a finite power of the radical of modA. Indeed, if this is not
the case for some fi, then, for every s ≥ 1, the given path has a refinement

E′ = X0  Xi−1 = Y0 → Y1 → · · · → Ys = Xi  Xt = M.

By convexity in indA, we have Y` ∈ E for each `. This contradicts 5.3(b).
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6.4. Corollary. The modules in E are directed in indA.

Proof. Let E′ = M0 → M1 → · · · → Mt = E′ be a cycle with E′ ∈ E .
By 6.3, it can be refined to a cycle of irreducible morphisms contained in E ,
contradicting 5.3(e).

6.5. Corollary. Let Γ be a component of Γ (modA) containing an
injective. Then every module of Γ ∩ C is directed.

Proof. Let M0 → M1 → · · · → Mt = M0 be a cycle with M0 ∈ Γ ∩ C .
By [3, 1.4], there exist an injective module I ∈ Γ and a path I  M0. We
compose this path with two copies of the cycle to get a longer path from I to
M0 which, by 6.3, is refinable to a sectional path of irreducible morphisms,
yielding a contradiction to [14].

6.6. Proposition. Let Γ be a component of Γ (modA) such that Γ ∩
E 6= ∅. Then:

(a) For every M ∈ Γ ∩ C , there exists a unique m ≥ 0 such that τ−mA M
∈ E .

(b) The number of τA-orbits of Γ ∩ C equals |Γ ∩ E | (hence is finite).
(c) Γ ∩ C contains no modules on a cycle between modules in Γ .

Proof. (a) By 5.4, we may assume that Γ contains an injective. Suppose
that, for any ` ≥ 0, we have τ−`A M ∈ C . Then M is right stable (and not
periodic, by 6.5). Since Γ contains an injective, there is a walk from this
injective to the τA-orbit of M . Among all such injectives, choose one, say
I, such that there is a walk of least length from I to the τA-orbit of M .
Minimality implies that all modules on this walk, except I, are right stable.
Hence there exist s ≥ 0 and a path of irreducible morphisms I  τ−sA M .
Since I ∈ E , we have τ−sA M ∈ E by 6.3, hence τ−s−1

A M /∈ C , a contradiction.
Thus there exists m ≥ 0 such that τ−mA M ∈ C but τ−m−1

A M /∈ C , so
τ−mA M ∈ E . Uniqueness of m follows from 5.3.

(b) Let n be the number of τA-orbits of Γ ∩ C . By (a), n ≤ |Γ ∩ E | ≤
rkK0(A). The statement follows because each element of Γ∩E lies in exactly
one τA-orbit of Γ ∩ C .

(c) By 6.5, we may assume that Γ contains no injectives. Let

M0 →M1 → · · · →Mt = M0

be a cycle with M0 ∈ Γ ∩ C and all Mi ∈ Γ . Clearly, Mi ∈ C for all i.
By 6.4, Mi /∈ E for all i, and also no fi factors through an injective. Thus
this cycle induces a new one

τ−1
A M0 → τ−1

A M1 → · · · → τ−1
A Mt = τ−1

A M0

with τ−1
A Mi ∈ Γ ∩C for all i. Repeating this procedure indefinitely, we infer
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that, for all m ≥ 0, the module τ−mA M0 lies in Γ ∩ C and in a cycle. This
contradicts (a).

6.7. Theorem. Let A be an artin algebra, and C ⊆ LA be a full subcat-
egory closed under predecessors, having E as subcategory of Ext-injectives.
Let Γ be a component of Γ (modA). Then:

(a) If Γ ∩ E = ∅, then either Γ ⊆ C or Γ ∩ C = ∅.
(b) If Σ = Γ ∩ E 6= ∅, then Σ is a left section of Γ , convex in indA.

Moreover A/AnnAΣ is tilted having Σ as complete section.

Proof. (a) Assume Γ ∩ E = ∅. If Γ contains a module in C and one not
in C , then there exists an irreducible morphism X → Y with X ∈ Γ ∩ C
and Y ∈ Γ \C . Since Γ ∩E = ∅, X is not injective, so we have an irreducible
morphism Y → τ−1

A X. Since Y /∈ C , it follows that τ−1
A X /∈ C . Thus X ∈ E ,

a contradiction.
(b) If Γ contains no injective, then Σ is a left section by 5.5 and is convex

in indA by 6.3. If Γ contains an injective, then (LS1) follows from 5.3(e),
convexity in indA (hence (LS3)) follows from (6.3) and finally (LS2) follows
easily from 6.6(a) (for, if M precedes Σ in Γ , then M ∈ Γ ∩ C ).

The last statement follows from 4.2.

6.8. Corollary. Let A be a finite dimensional algebra over an alge-
braically closed field , C ⊆ LA be a full subcategory closed under predeces-
sors, having E as subcategory of Ext-injectives and Γ be a component of
Γ (modA) such that Σ = Γ ∩ E 6= ∅. Then SuppΣ ∼= A/AnnAΣ is a tilted
algebra having Σ as complete slice and is a full convex subcategory of A
closed under successors.

Proof. By 4.5 and 6.7, it suffices to prove that SuppΣ is closed under
successors. Let x → y be an arrow with x ∈ SuppΣ. Then we have a non-
zero morphism Py → Px. Also, there exists an embedding Px ↪→ Ē, with
Ē ∈ addΣ. This yields a non-zero morphism Py → E′ for some E′ ∈ Σ.
Thus y ∈ SuppΣ.

6.9. The next result generalises [1, Theorem A].

Corollary. Let A be an artin algebra, and Γ be a component of
Γ (modA) which intersects the class EA of Ext-injective indecomposables in
add LA. Then:

(a) Each τA-orbit of Γ ∩LA intersects EA exactly once.
(b) The number of τA-orbits of Γ ∩LA equals |Γ ∩ EA|.
(c) Γ ∩LA contains no modules lying on a cycle between modules in Γ .
(d) A/AnnA(Γ ∩ EA) is a tilted algebra having Γ ∩ EA as complete slice.

If , on the other hand , Γ ∩ EA = ∅ then either Γ ⊆ LA or Γ ∩LA = ∅.
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Proof. This follows from 6.6 and 6.7.

6.10. The following corollary generalises [1, Theorem B].

Corollary. With the notation of 6.7, if Σ = Γ ∩ E 6= ∅ and all pro-
jectives in Γ belong to C , then:

(a) Σ is a section in Γ .
(b) Γ is generalised standard.
(c) A/AnnAΣ is a tilted algebra having Γ as connecting component and

Σ as complete slice.

Proof. By 6.7 and 2.3, Σ is a section in Γ . The rest follows.

7. The support algebra

7.1. Definition. Let C be a full subcategory of LA, closed under pre-
decessors. Its support algebra A(C ) is the endomorphism algebra of the
direct sum of all indecomposable projectives lying in C (that is, A(C ) =
End

(⊕
Px∈C Px

)
).

Clearly, this generalises the left support of an artin algebra [5, 2.2], [32,
3.1]. Note that A(C ) is a full subcategory of A, closed under successors (and
hence convex).

Lemma. The support algebra A(C ) is a direct product of connected
quasi-tilted algebras.

Proof. By the above remark, A may be written in matrix form[
A(C ) 0
M B

]
where M is a B-A(C )-bimodule. Moreover, C ⊆ indA(C ) for, if L ∈ C
and Px is an indecomposable projective such that HomA(Px, L) 6= 0, then
Px ∈ C . By [5, 2.1], LA ⊆ LA(C ). Hence C ⊆ LA(C ). The statement
follows because any indecomposable projective A(C )-module (= projective
A-module lying in C ) belongs to LA(C ).

7.2. Let E denote the full subcategory of C consisting of the Ext-
injectives in add C and E =

⊕
U∈E U . Denote by F the direct sum of all

indecomposable projectives which are not (!) in C , and set T = E ⊕ F .
We call a partial tilting A-module convex if the class of its indecomposable
summands is convex in indA (see [7]).

Lemma.

(a) E is a convex partial tilting A-module.
(b) E is a convex partial tilting A(C )-module. In particular , |E | ≤

rkK0(A(C )).



292 I. ASSEM

(c) T is a partial tilting module.
(d) T is a tilting A-module if and only if |E | equals the number of pro-

jectives in C or if and only if E is a tilting A(C )-module.
(e) If T is a tilting A-module, then the associated torsion pair

(T (T ),F (T )) is given by F (T ) = add(C \ E ) and T (T ) =
add(indA \F (T )).

Proof. (a) Since C ⊆ LA, we have pdE ≤ 1. Clearly, Ext1A(E,E) = 0
so E is partial tilting. Its convexity follows from 6.3.

(b) Since A(C ) is a full convex subcategory of A, and C ⊆ LA, it follows
that E is a partial tilting A(C )-module. It is convex because any path in
indA(C ) induces one in indA.

(c) Since pdT ≤ 1, it suffices to observe that Ext1A(E,F ) ∼=
DHomA(F, τAE) = 0, because τAE ∈ add C while no indecomposable sum-
mand of F lies in C .

(d) This is clear.
(e) Assume M ∈ C \ E . If M /∈ F (T ), then HomA(T,M) 6= 0. Since

no summand of F lies in C , HomA(F,M) = 0. Hence there exists E0 ∈
E such that HomA(E0,M) 6= 0. By 6.3, M ∈ E , a contradiction. Thus
C \E ⊆ F (T ). Conversely, let M ∈ F (T ) = Cogen τAT . There exist E′ ∈ E
and a path M → τAE

′ → ∗ → E′. In particular, M ∈ E . On the other
hand, M /∈ E since E ⊆ addT . This shows the first statement. The second
follows.

7.3. Lemma. If an indecomposable injective A(C )-module I precedes E ,
then I ∈ E .

Proof. This is clear if I is injective in modA. Assume it is not. Since I
precedes E , we have I ∈ C . But then τ−1

A I /∈ C (for, otherwise, τ−1
A I =

τ−1
A(C )I, a contradiction to the injectivity of I in modA(C )). Therefore
I ∈ E .

7.4. The following result generalises [1, Theorem C].

Theorem. Let A be an artin algebra and C ⊆ LA be a full convex sub-
category closed under predecessors, having E as subcategory of Ext-injectives.
Let Γ be a component of Γ (modA(C )) such that Σ = Γ ∩ E 6= ∅. Then:

(a) Σ is a section in Γ , convex in indA(C ).
(b) Γ is directed , and generalised standard.
(c) A(C )/AnnAΣ is a tilted algebra having Γ as connecting component

and Σ as complete slice.

Proof. (a) First, we show that there exists a unique component Γ ′ of
Γ (modA) which contains Σ. Let indeed E1 → E2 be an irreducible mor-
phism in modA(C ) with E1, E2 ∈ Σ. By 6.3, it induces a path of irreducible
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morphisms E1  E2 in modA. In particular, E1 and E2 lie in the same com-
ponent.

We next show that Γ ′≤Σ = Γ≤Σ . Indeed, if X → Y is irreducible in
Γ ′≤Σ , it stays so in Γ≤Σ . Conversely, let X → Y be irreducible in Γ≤Σ . If
X /∈ E , then X is not injective and τ−1

A X = τ−1
A(C )X. Therefore the almost

split sequence starting with X is the same in both categories, and X → Y
is irreducible in Γ ′≤Σ . If X ∈ E then, by 6.3, Y ∈ E . If Y is not projective,
the almost split sequence ending with Y is the same in both categories. If Y
is projective, then radY is the same in both categories. In any case, X → Y
remains irreducible in Γ ′≤Σ . This establishes the claim.

By 6.7, Σ = Γ ∩ E = Γ ′ ∩ E is a left section and, by 7.2(b), is convex in
indA(C ). In order to show that Σ is a section, consider, according to 2.3,
a projective P such that there exist E′ ∈ Σ and a path E′  P in Γ . Since
P is a projective A(C )-module, it lies in C . But then 6.3 yields P ∈ E .

(b) Since Γ contains a section, it is directed by [25, 3.2], [9, VIII.1.5]. It
is generalised standard because so are the directed Auslander–Reiten com-
ponents of a quasi-tilted algebra [18].

(c) Follows from (a) and the Liu–Skowroński criterion.

7.5. The following result generalises [1, 4.6].

Theorem. Let A be an artin algebra and C ⊆ LA be a full convex sub-
category closed under predecessors, having E as subcategory of Ext-injectives.
Let B be a connected component of A(C ) such that modB ∩ E 6= ∅ and Γ
be a component of Γ (modB) such that Σ = Γ ∩ E 6= ∅. Then B is tilted
having Γ as connecting component and Σ as complete slice.

If A is a finite dimensional algebra over an algebraically closed field , then
B ∼= SuppΣ.

Proof. In order to show that Γ is a connecting component, we start by
assuming that Γ is postprojective non-connecting. We claim that there exists
an indecomposable projective B-module not in Γ . Otherwise, indeed, the
number of τB-orbits in Γ equals rkK0(B), so Γ is connecting, a contradiction
which establishes the claim.

Suppose Q /∈ Γ is indecomposable projective. There exists a walk of in-
decomposable projective B-modules P0 P1 · · · Ps ∼= Q with P0 ∈ Γ
and therefore there exist Pi ∈ Γ and Pi+1 /∈ Γ such that HomB(Pi, Pi+1) 6=
0. By [27], there exists, for each t > 0, a path

Pi = M0
f1−→M1 → · · ·

ft−→Mt
f−→ Pi+1

with all Mi indecomposable, all fi irreducible and fft · · · f1 6= 0. Since t
is arbitrary, we may assume Mt successor of τ−1

B Σ. But then Pi+1 /∈ C , a
contradiction.
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Assume now that Γ is preinjective non-connecting. The same argument
yields an M ∈ Γ , proper predecessor of Σ, and an indecomposable injective
I /∈ Γ such that HomB(I,M) 6= 0. Since I precedes Σ, it follows that I ∈ E .
By 6.3, M ∈ E , a contradiction.

Since, by 7.4, Γ is directed, it is connecting by [18]. Moreover, again
by 7.4, Σ is a section in Γ , convex in indB. By the Liu–Skowroński criterion,
B is tilted having Γ as connecting component and Σ as complete slice. The
final statement is clear.

7.6. The following corollary generalises [5, 5.4], [1, 2.6].

Corollary. Let A be representation-infinite and C ⊆ LA be a full
subcategory closed under predecessors. The following are equivalent :

(a) There exists a component Γ ⊆ C .
(b) C is infinite.
(c) C contains a postprojective component without injectives.

If , moreover , A is not hereditary , then such a component Γ is postprojective
or regular , or obtained from a stable tube or a component of type ZA∞ by
ray extensions.

Proof. (a)⇒(b). Indeed, otherwise A would be representation-finite, a
contradiction.

(b)⇒(c). Since C is infinite, there exists a connected component B of
A(C ) such that modB∩C is infinite. Also, B is quasi-tilted, by 7.1. Let Γ be
a postprojective component of Γ (modB). Suppose Γ contains an injective.
Then Γ is connecting, it is the only postprojective component and Γ ∩ C
is finite. Since C is infinite, there exists X ∈ C \ Γ and then one can easily
find a morphism from a module in Γ \ C to X, a contradiction. Therefore
Γ has no injectives. Now if Γ 6⊆ C , the existence of an M ∈ Γ ∩ C and an
N ∈ Γ \ C implies the existence of an Ext-injective in Γ . Again, we infer
that C is finite, a contradiction. Hence Γ ⊆ C .

Since (c) implies (a) trivially, and the last statement follows from the
description of the components of quasi-tilted algebras, [23, 24, 18], the proof
is complete.

8. Algebras supported by subcategories

8.1. Definition. Let C be a full subcategory of indA, closed under
predecessors. The algebra A is called C -supported if add C has enough Ext-
injectives (that is, if add C = CogenE, where E =

⊕
U∈E U).

This generalises the left supported algebras of [5] which, in this termi-
nology, are LA-supported.
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Lemma. An algebra A is C -supported if and only if add C is contravari-
antly finite in modA.

Proof. Assume A is C -supported. Since add C is a torsion-free class, it is
contravariantly finite by [33]. Conversely, if add C is contravariantly finite,
then by [33], there exists an Ext-injective N ∈ add C such that add C =
CogenN . Since N ∈ addE, we have

add C = CogenN ⊆ CogenE ⊆ add C

and equality follows.

Remarks. (a) If A is representation-finite, then A is C -supported for
any full subcategory C of indA.

(b) In general, this property depends on the chosen subcategory: if A
is tame hereditary, and C consists of all postprojective modules, then A is
not C -supported. If, on the other hand, C ′ is a finite subcategory of indA
consisting of postprojective modules, then A is C ′-supported.

8.2. From now on, we assume again C ⊆ LA. We denote by PredE
the full subcategory of indA consisting of those X such that there exist
E′ ∈ E and a path X  E′ in indA. Also, an A-module L is called almost
directed [2, 2.2] if there do not exist two indecomposable summands L′, L′′

of L and a path L′  τAL
′′ in indA. The dual notion is that of almost

codirected module.

Theorem. Let A be an artin algebra, and C be a full subcategory of LA

closed under predecessors. The following are equivalent :

(a) A is C -supported.
(b) add C is contravariantly finite.
(c) T = E ⊕ F is a tilting A-module.
(d) |E | equals the number of projectives in C .
(e) E is a tilting A(C )-module.
(f) E is a cotilting A(C )-module.
(g) C = Supp(−, E).
(h) There exists an almost codirected module LA such that C =

Supp(−, L).
(i) There exists a module LA such that HomA(τ−1

A L,L) = 0 and C =
Supp(−, L).

(j) C = PredE.
(k) E is a sincere A(C )-module.
(l) For every connected component B of A(C ), we have modB∩E 6= ∅.
(m) Every connected component B of A(C ) is tilted and has modB ∩ E

as complete slice.
(n) Every projective A-module in C precedes E .
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Proof. The proofs of [2, Theorem A], [1, 2.1], [5, Theorems A, B] carry
over with the obvious changes.

8.3. Corollary. If A is C -supported , then:

(a) The A(C )-modules not in F (T ) are those of GenE.
(b) F is the Bongartz complement of E.

Proof. The proof of [5, 5.3] applies with the obvious changes.

8.4. The following is a new characterisation of supported algebras.

Corollary. An algebra A is C -supported if and only if every morphism
f : L→M with L ∈ C and M /∈ C factors through addE.

Proof. Necessity. If A is C -supported then, by 8.3, T = E⊕F is a tilting
module. Since M /∈ C , we have M ∈ T (T ), by 7.2. Let {g1, . . . , gd} be a
generating set of the EndT -module HomA(T,M). Then g = [g1, . . . , gd] :
T d → M is surjective and K = Ker g belongs to T (T ) (see [9, VI.2.5]).
Applying HomA(L,−) to the exact sequence

0→ K → T d
g−→M → 0

yields an exact sequence

HomA(L, T d)→ HomA(L,M)→ Ext1A(L,K).

Now Ext1A(L,K) ∼= DHomA(K, τAL) = 0 because K ∈ T (T ) while
τAL ∈ C ⊆ F (T ). Hence HomA(L, g) is surjective, so f factors through
addT . Since HomA(L,F ) = 0, we conclude that, in fact, f factors through
addE.

Sufficiency. The inclusion of any L ∈ C into its injective envelope factors
through addE. Therefore add C = CogenE.

8.5. A particular case of LA-supported algebras was studied in [8]. Re-
call that a full subcategory C of indA, closed under predecessors, is abelian
exact if add C is abelian and the inclusion add C ↪→ modA is an exact
functor.

Corollary. Let A and C be such that C ⊆ LA is closed under prede-
cessors and abelian exact.

(a) A ∼=
[
A(C ) 0
X B

]
, with A(C ) hereditary and XA(C ) injective.

(b) A is C -supported.
(c) If A is triangular , then A = A(C ) (in particular , is hereditary).



LEFT PART OF AN ARTIN ALGEBRA 297

Proof. (a) By [8, 2.5], A ∼=
[
C 0
X B

]
with C hereditary, XC injective and

add C ∼= modC. Therefore C = A(C ).
(b) Since modA(C ) is cogenerated by its minimal injective cogenerator,

it follows from [33] that add C is contravariantly finite.
(c) This follows from [8, 3.2].

8.6. Denote by C c = indA \ C the complement of C in indA and by
E1 the subcategory of Ext-injectives of the first kind (see 6.2). We define
the almost complement of C to be the full subcategory C ∗ = C c ∪ E1 of
indA. If, for instance, C = LA, then C ∗ is the class R0 consisting of all
M ∈ indA such that there exist an injective module I and a path I  M
in indA (see [2, 5.1]).

Lemma. C ∗ is closed under successors.

Proof. Assume X ∈ C ∗ and we have a path X  Y in indA. If X ∈ C c,
then Y ∈ indA. If X ∈ E1, then there is an injective I and a path I  X.
If Y ∈ C c there is nothing to show while, if Y ∈ C , the composed path
I  X  Y yields Y ∈ E1, by 6.1.

8.7. We set E1 =
⊕

X∈E1
X, E2 =

⊕
Y ∈E2

Y and U = E1 ⊕ τ−1
A E2 ⊕ F

(note that, by definition, no summand of E2 is injective).

Lemma.

(a) Let M ∈ indA. Then:

(i) M is Ext-projective in add C ∗ if and only if M ∈ addU .
(ii) M is Ext-injective in add C ∗ if and only if M is injective.

(b) U is a partial tilting module.
(c) U is a tilting module if and only if T = E1 ⊕ E2 ⊕ F is a tilting

module.
(d) If U is a tilting module, then the resulting torsion pair (T (U),F (U))

is given by T (U) = add C ∗ and F (U) = add(indA \ C ∗).

Proof. The proofs of [2, 5.3–5.5] apply with the obvious changes.

8.8. We now generalise [2, Theorem B]. For a functor F on modA, we
denote by KerF the full subcategory of modA consisting of the modules M
such that FM = 0.

Theorem. Let A be an artin algebra and C ⊆ LA be a full subcategory
closed under predecessors. The following are equivalent :

(a) A is C -supported.
(b) add C ∗ is covariantly finite.
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(c) add C ∗ = GenU .
(d) U is a tilting A-module.
(e) C ∗ = Supp(U,−).
(f) There exists an almost directed module RA such that C ∗ =

Supp(R,−).
(g) There exists a module RA such that HomA(R, τAR) = 0 and C ∗ =

Supp(R,−).
(h) add C ∗ = Ker Ext1A(U,−).
(i) Ker HomA(U,−) = add(C \ E1).

Proof. The proof of [2, 5.6] applies with the obvious changes.

8.9. Corollary. Let C ⊆ LA be a full subcategory closed under pre-
decessors. Then add C is contravariantly finite if and only if add C c is co-
variantly finite.

Proof. The proof of [2, 5.8] applies with the obvious changes.

8.10. Corollary. Let A be C -supported. Then F is the Bongartz com-
plement of E1 ⊕ τ−1

A E2.

Proof. The proof of [2, 5.10] applies with the obvious changes.
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[23] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math.

71 (1996), 161–181.
[24] S. Liu, The connected components of the Auslander–Reiten quiver of a tilted algebra,

J. Algebra 161 (1993), 505–523.
[25] —, Semi-stable components of an Auslander–Reiten quiver, J. London Math. Soc.

(2) 47 (1993), 405–416.
[26] —, Tilted algebras and generalized standard Auslander–Reiten components, Arch.

Math. (Basel) 61 (1993), 12–19.
[27] C. M. Ringel, On algorithms for solving vector space problems. I. Report on the

Brauer–Thrall conjectures: Rojter’s theorem and the theorem of Nazarova and Roj-
ter, in: Representation Theory, I (Ottawa, 1979), Lecture Notes in Math. 831,
Springer, Berlin, 1980, 104–136.

[28] —, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099,
Springer, Berlin, 1984.

[29] —, The regular components of the Auslander–Reiten quiver of a tilted algebra, Chi-
nese Ann. Math. Ser. B 9 (1988), 1–18.
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