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Abstract. We prove that there exists a continuous regular, positive homogeneous
extension operator for the family of all uniformly continuous bounded real-valued functions
whose domains are closed subsets of a bounded metric space (X, d). In particular, this
operator preserves Lipschitz functions. A similar result is obtained for partial metrics and
ultrametrics.

1. Introduction. The theory of extensions of continuous functions and
(pseudo)metrics has a long history. The Tietze–Urysohn theorem asserts
that every continuous real-valued function on a closed subset of a metric
space X admits a continuous extension to X. Hausdorff [7] proved an anal-
ogous theorem for metrics. McShane [9] showed that every uniformly con-
tinuous real-valued function from a closed subset of a metric space X which
admits a concave modulus function ϕ such that limt→0 ϕ(t) = 0 has a uni-
formly continuous extension to X. It is easy to see that the above condition
on the modulus function is necessary. The chief contribution of this paper is
to show that McShane’s technique may be modified to give a continuous ex-
tension operator for several classes of functions. We also use a modification
of Bing’s formula [4] to construct continuous operators extending uniformly
continuous metrics and ultrametics defined on the family of closed subsets
of a metric (ultrametric) space.

Dugundji [5] proved that one could extend continuously all functions
with a fixed domain.

Theorem 1.1 (Dugundji, 1951). Let X be a metric space and A its
closed subset. Let C∗(A) denote the space of all bounded real-valued contin-
uous functions with supnorm metric. There exists a continuous, regular (of
unit norm), linear extension operator Φ : C∗(A)→ C∗(X).

The question of existence of linear operators extending cones of (pseu-
do)metrics was raised and solved for some special cases by C. Bessaga [3].
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T. Banakh [1] was the first to obtain a complete solution of this prob-
lem. Linear extension operators preserving metrics were also constructed
by O. Pikhurko [10] and M. Zarichnyi [15]. We may summarize the results
obtained by these authors as follows.

Theorem 1.2 (C. Bessaga, 1993, T. Banakh, 1994, O. Pikhurko, 1994,
M. Zarichnyi, 1996). Let (X, d) be a metric space and A a closed subset
of X. There exists a continuous, regular , linear extension operator from the
set of continuous (pseudo)metrics on A to the set of continuous (pseudo)me-
trics on X.

Stepanova [12] first considered simultaneous extension of functions with
variable domains.

Theorem 1.3 (Stepanova, 1993). Let (X, d) be a metric space. There
exists a continuous extension operator from the space of real-valued functions
whose domains are compact subsets of X to C∗(X).

Stepanova showed that metrizability of X was a necessary condition.
In 1997 Künzi and Shapiro [8] improved Stepanova’s result by obtain-

ing an extension operator which was also linear. In 2004 Tymchatyn and
Zarichnyi [13] obtained a weak version of the Künzi–Shapiro result for pseu-
dometrics.

Theorem 1.4 (Tymchatyn, Zarichnyi, 2004). Let (X, d) be a metric
compactum. There exists a regular , linear , continuous (with respect to the
uniform topology) operator extending continuous pseudometrics defined on
closed subsets of X.

In this paper we drop the compactness assumptions in Theorems 1.3
and 1.4 and obtain some partial generalizations of those theorems on si-
multaneous extension operators for functions and metrics defined on closed
subsets of a bounded metric space.

2. Preliminaries. A function ϕ : [0,∞)→ [0,∞) is said to be concave
if ϕ is continuous and the set {(x, t) : 0 ≤ x and 0 ≤ t ≤ ϕ(x)} is a convex
subset of R× R. Let

J = {ϕ∈C([0,∞)) : ϕ is bounded, concave, non-decreasing and ϕ(0) = 0}.
Note that each ϕ ∈ J is uniformly continuous because it is both non-
decreasing and bounded. Note also that J is closed in the space C∗u([0,∞))
of bounded uniformly continuous real-valued functions with supnorm metric.
Also note that if ϕ ∈ J and a, b ≥ 0 then ϕ(a+ b) ≤ ϕ(a) + ϕ(b).

For the remainder of this paper (X, d) will be a bounded metric space
(in Section 5 we will assume that d is an ultrametric). If A ⊂ X, f : A→ R
is a function and ϕ ∈ J so that |f(x) − f(y)| ≤ ϕ(d(x, y)) for all x, y ∈ A
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then we call ϕ a modulus function for f . Similarly, if ρ is a metric on A and
ϕ ∈ J so that ρ(x, y) ≤ ϕ(d(x, y)) for all x, y ∈ A then we call ϕ a modulus
function for ρ. Note that we require a modulus function to be bounded,
concave, non-decreasing with fixed point 0.

Let exp(X) stand for the set of closed non-empty subsets of X. For every
A ∈ exp(X) let C∗u(A) be the set of uniformly continuous and bounded
real-valued functions on A. We will write dom f = A if f ∈ C∗u(A) and
A ∈ exp(X). Let

C∗u =
⋃
{C∗u(A) | A ∈ exp(X)}.

Assume that each f ∈ C∗u is identified with its graph Γf = {(x, f(x)) : x ∈
dom f} which is a bounded and closed subset of X × R. Let d̃ be the l1
metric on X × R given by the formula

d̃[(x, t), (x′, t′)] = d(x, x′) + |t− t′|.
For f, g ∈ C∗u define H(f, g) to be the Hausdorff distance between Γf and Γg
induced by d̃. Let ‖f‖ denote the supnorm of f , that is, ‖f‖ = sup{|f(x)| :
x ∈ dom f}. For any set M in the real plane R × R let co(M) denote the
closed convex hull of M .

The next proposition was essentially proved in [6, p. 116].

Proposition 2.1. Let A ∈ exp(X) and f : A → R a continuous func-
tion. Then f ∈ C∗u if and only if there exists ϕf ∈ J which is the least
modulus function for f .

Proof. Sufficiency is trivial. To prove necessity suppose f ∈ C∗u. If f is a
constant function let ϕf ≡ 0. If f is not constant let

Df =
⋃

x,y∈dom f

[d(x, y),∞)× [0, |f(x)− f(y)|].

Then Df is a subset of [0,∞) × [0,∞) of bounded height. We obtain
co(Df ) ∩ {0} × [0,∞) = {(0, 0)} because f is uniformly continuous. Let
ϕf be the function whose graph Γϕf

is the upper boundary of co(Df ).

Lemma 2.2. Let f ∈ C∗u and ε > 0. There exists δ > 0 such that for
g ∈ C∗u with H(f, g) < δ, x ∈ dom g, y ∈ dom f , and d(x, y) < δ we have
|g(x)− f(y)| < ε.

Proof. Let 0 < δ < ε/2 so ϕf (2δ) < ε/2. Let g ∈ C∗u, x ∈ dom g
and y ∈ dom f with H(f, g) < δ and d(x, y) < δ. Let z ∈ dom f with
d̃((x, g(x)), (z, f(z))) = d(x, z) + |g(x) − f(z)| < δ. Then d(z, y) < 2δ so
|g(x)− f(y)| ≤ |g(x)− f(z)|+ |f(z)− f(y)| < δ + ε/2 < ε.

Proposition 2.3. If {fi}∞i=1 ⊂ C∗u with limi→∞ fi = f0 in C∗u then ϕf0
is the uniform limit of {ϕfi

}∞i=1.
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Proof. By Lemma 2.2, co(Df0)=limi→∞ co(Dfi
). Since the sets {co(Dfi

)}
converge to co(Df0) their upper boundaries {Γϕfi

} converge to the upper
boundary of co(Df0), which is Γϕf0

.

For every A ∈ exp(X) denote by L(A) the set of all Lipschitz real-valued
functions on A. It is clear that the set L(A) can be considered as a subspace
of C∗u(A). Then the set

L =
⋃
{L(A) : A ∈ exp(X)}

of all partial Lipschitz functions can be viewed as a subspace of C∗u. For
every f ∈ L let

‖f‖lip = sup
x,y∈dom f, x 6=y

|f(x)− f(y)|
d(x, y)

denote the Lipschitz seminorm of f , i.e. the greatest lower bound over all
constants λ for which the inequality |f(x) − f(y)| ≤ λd(x, y) is true for all
x, y ∈ dom f .

3. Extension of functions

Theorem 3.1. There exists an operator v : C∗u → C∗u(X) which satisfies
the following conditions for every f ∈ C∗u:

• v(f) is an extension of f over X;
• v is regular , i.e. ‖v(f)‖ = ‖f‖;
• v is positive homogeneous, i.e. v(cf) = cv(f) for every c > 0;
• v is a continuous map;

Proof. For every f ∈ C∗u let ϕf be the least concave modulus function
for f . Define an operator v : C∗u → RX by letting

v(f)(x) = min{ inf
y∈dom f

(f(y) + ϕf (d(x, y))), ‖f‖}

for every x ∈ X (here RX denotes the set of all real functions on X).
It is clear that v(f) is a bounded function on X for every f ∈ C∗u. Let

us prove that v(f) is a uniformly continuous function on X. Let w(f)(x) =
infy∈dom f (f(y) + ϕf (d(x, y))) for every f ∈ C∗u and x ∈ X. To show that
w(f) is uniformly continuous on X let ε > 0 and let δ = δ(ε) > 0 be
such that ϕf (d(x, y)) < ε whenever d(x, y) < δ. Take any x, y ∈ X with
d(x, y) < δ and suppose that w(f)(x) ≥ w(f)(y). There exists b ∈ dom f
such that w(f)(y) + ε > f(b) + ϕf (d(y, b)). We obtain

w(f)(y) + ε > f(b) + ϕf (d(y, b)) ≥ f(b) + ϕf (d(x, b))− ϕf (d(x, y))
≥ w(f)(x)− ϕf (d(x, y)) > w(f)(x)− ε ≥ w(f)(y)− ε.

Therefore, w(f)(y) + 2ε > w(f)(x) ≥ w(f)(y). Similarly one can obtain the
needed inequality for the case when w(f)(x) < w(f)(y). Hence, the function
w(f) is uniformly continuous on X and so too is v(f) = min{w(f), ‖f‖}.



CONTINUOUS EXTENSION FUNCTIONS 195

Let us show that v(f)|dom f = f . If x, y ∈ dom f then v(f)(x) ≤ f(y) +
ϕf (d(x, y)), in particular, v(f)(x) ≤ f(x) ≤ ‖f‖. Now suppose there exists
y ∈ dom f , y 6= x such that f(y) + ϕf (d(x, y)) < f(x). Then f(x)− f(y) >
ϕf (d(x, y)), which contradicts the definition of ϕf . Therefore, v(f)(x) =
f(x) for x ∈ dom f and, hence, v is an extension operator.

It is easily seen that v is regular since ‖v(f)‖ ≤ ‖f‖ by the definition of
v and ‖v(f)‖ ≥ ‖f‖ because v(f)|dom f = f . Thus ‖f‖ = ‖v(f)‖.

To show that v is positive homogeneous note that for c > 0 and f ∈ C∗u
we have ϕcf = cϕf and ‖cf‖ = c‖f‖. This implies v(cf) = cv(f).

We are going to prove that v is a continuous operator. Suppose that {fn}
is a sequence of functions from C∗u which converges to f ∈ C∗u for some f . Let
dom fn = Bn and dom f = B. Then ϕfn converges to ϕf uniformly on [0,∞)
by Proposition 2.3. Let ε > 0. There exists δ > 0 such that ϕf (δ) < ε/4.
For all sufficiently large n the following conditions are satisfied:

(i) the Hausdorff distance between B and Bn is less than δ;
(ii) |f(x)− fn(y)| < ε/4 for x ∈ B, y ∈ Bn with d(x, y) < δ;

(iii) |ϕfn(t)− ϕf (t)| < ε/4 for every t ∈ [0,∞);
(iv) ϕfn(δ) < ε/4;
(v)

∣∣‖f‖ − ‖fn‖∣∣ < ε.

Take any point x ∈ X and choose arbitrary n ∈ N which satisfies (i)–(v).
We are going to prove that |v(f)(x)− v(fn)(x)| < ε.

If v(f)(x) = ‖f‖ then v(fn)(x) ≤ ‖fn‖ < ‖f‖+ ε = v(f)(x) + ε.
Now suppose that v(f)(x) < ‖f‖. Then there is y ∈ B such that

v(f)(x) + ε/4 > f(y) + ϕf (d(x, y)). Let y′ ∈ Bnbe such that d(y, y′) < δ.
We obtain

v(fn)(x) ≤ fn(y′)+ϕfn(d(x, y′)) < f(y)+ε/4+ϕfn(d(x, y))+ϕfn(d(y, y′))
< f(y) + ε/4 + ϕf (d(x, y)) + ε/4 + ε/4 < v(f)(x) + ε.

Similarly one can prove that v(f)(x) < v(fn)(x) + ε. This shows that v is a
continuous operator.

Corollary 3.2. The restriction v|L : L → C∗u(X) preserves Lipschitz
functions and Lipschitz constants.

Proof. Take any function f from L. By the definition of v we have
v(f)(x) = min{w(f)(x), ‖f‖} where

w(f)(x) = inf
z∈dom f

(f(z) + ϕf (d(x, z))).

Note that for every Lipschitz function g and a constant c ∈ R the function
h(x) = min{g(x), c} is Lipschitz with ‖h‖lip ≤ ‖g‖lip. Indeed, this inequality
is clear when h(x) = g(x) and h(y) = g(y) or g(x) = c and g(y) = c for
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x, y ∈ X. If h(x) = g(x) and h(y) = c then g(x) ≤ c ≤ g(y). We obtain

|h(x)− h(y)| = |g(x)− c| = c− g(x) ≤ g(y)− g(x) ≤ ‖g‖lipd(x, y).

So it suffices to show that w(f) is a Lipschitz function on X. Let x, y ∈ X
and ε > 0. Take a, b ∈ dom f such that

w(f)(x) + ε/3 ≥ f(a) + ϕf (d(x, a))

and
w(f)(y) + ε/3 ≥ f(b) + ϕf (d(y, b)).

Suppose that f(a) + ϕf (d(x, a)) ≥ f(b) + ϕf (d(y, b)). Then

|w(f)(x)− w(f)(y)| ≤ |f(a) + ϕf (d(x, a))− f(b)− ϕf (d(y, b)|+ 2ε/3
≤ w(f)(x) + ε/3− f(b)− ϕf (d(y, b)) + 2ε/3
≤ f(b) + ϕf (d(x, b))− f(b)− ϕf (d(y, b)) + ε

≤ ϕf (d(x, y)) + ε ≤ ‖f‖lipd(x, y) + ε.

Since ε was arbitrary we obtain the needed inequality for w(f) and therefore
for v(f). It is obvious that ‖v(f)‖lip ≥ ‖f‖lip because v(f) is an extension
of f . Therefore, we obtain ‖v(f)‖lip = ‖f‖lip.

4. Extension of metrics. For every A ∈ exp(X) with |A| ≥ 2 denote
byM(A) the set of all uniformly continuous bounded metrics on A. Just as
for functions we assume that each partial metric is identified with its graph
which is a closed and bounded subset of the space X × X × R. Hence the
set of all uniformly continuous partial metrics

M =
⋃
{M(A) : A ∈ exp(X), |A| ≥ 2}

is considered as a subspace of the metric space (exp(X×X×R), H) (here H
denotes the Hausdorff metric, generated by the l1 metric on X×X×R). We
will write dom ρ = A if ρ ∈M(A). For every ρ ∈M let ‖ρ‖ = sup{ρ(x, y) :
x, y ∈ dom ρ}. Clearly, the counterparts of Lemma 2.2 and Proposition 2.3
are also true for the case of metrics.

For every A ∈ exp(X) with |A| ≥ 2 denote by LM(A) the set of all
Lipschitz metrics on A. Recall that a metric ρ ∈M(A) is Lipschitz if there
is a constant λ > 0 such that ρ(x, y) ≤ λd(x, y) for all x, y ∈ A. Then the
set LM(A) can be viewed as a subspace of M(A) and the set

LM =
⋃
{LM(A) : A ∈ exp(X), |A| ≥ 2}

is a subspace of M. For every ρ ∈ LM let

‖ρ‖lip = sup
x,y∈dom ρ, x 6=y

ρ(x, y)
d(x, y)

.
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Theorem 4.1. Let (X, d) be a bounded metric space. There exists an op-
erator u : M→M(X) which has the following properties for every ρ ∈M:

• u(ρ) is an extension of ρ over X;
• u is regular , that is, ‖u(ρ)‖ = ‖ρ‖;
• u is positive homogeneous, that is, u(cρ) = cu(ρ) for every c > 0;
• u is a continuous map;
• the restriction u|LM : LM → M(X) preserves Lipschitz metrics and

Lipschitz norms.

Proof. For ρ ∈M let ϕρ be the smallest concave modulus function of ρ,
i.e. ϕρ : [0,∞) → [0,∞) is the least concave function such that ϕρ(t) ≥
sup{ρ(x, y) : x, y ∈ dom ρ, d(x, y) ≤ t}. Define a metric σρ : X ×X → R by
letting σρ(x, y) = ϕρ(d(x, y)) for all x, y ∈ X. Clearly, σρ(x, x) = 0, σρ is
symmetric and satisfies the triangle inequality because d is a metric and ϕρ
is concave and non-decreasing.

For x, y ∈ X let

u(ρ)(x, y) = min{ inf
a,b∈dom ρ

(σρ(x, a) + ρ(a, b) + σρ(b, y)), σρ(x, y)}.

Let us show that u(ρ) ∈ M(X) and u(ρ)|dom ρ×dom ρ = ρ. It is easy to
see that u(ρ) is symmetric and u(ρ)(x, x) = 0 since σρ(x, x) = 0 for every
x ∈ X. Note also that u(ρ)(x, y) > 0 for x 6= y. To show that u(ρ) satisfies
the triangle inequality let x, y, z ∈ X. Consider several cases.

(a) Suppose u(ρ)(x, z) = σρ(x, z) and u(ρ)(z, y) = σρ(z, y). We obtain

u(ρ)(x, y) ≤ σρ(x, y) ≤ σρ(x, z) + σρ(z, y) = u(ρ)(x, z) + u(ρ)(z, y).

(b) Suppose u(ρ)(x, z) < σρ(x, z) and u(ρ)(z, y) = σρ(z, y). Let ε > 0
and a, b ∈ dom ρ be such that σρ(x, a) + ρ(a, b) + σρ(z, b) < u(ρ)(x, z) + ε.
Then

u(ρ)(x, z) + ε+ u(ρ)(z, y) > σρ(x, a) + ρ(a, b) + σρ(z, b) + σρ(z, y)
≥ σρ(x, a) + ρ(a, b) + σρ(y, b) ≥ u(ρ)(x, y).

Since ε > 0 was arbitrary we obtain u(ρ)(x, y) ≤ u(ρ)(x, z) + u(ρ)(z, y).
(c) Suppose u(ρ)(x, z) < σρ(x, z) and u(ρ)(z, y) < σρ(z, y). Let ε > 0 and

a, b, a′, b′ ∈ dom ρ be such that σρ(x, a)+ρ(a, b)+σρ(b, z) < u(ρ)(x, z)+ε/2
and σρ(z, a′) + ρ(a′, b′) + σρ(b′, y) < u(ρ)(z, y) + ε/2. We obtain

u(ρ)(x, y) ≤ σρ(x, a) + ρ(a, b′) + σρ(b′, y)
≤ σρ(x, a) + ρ(a, b) + ρ(b, a′) + ρ(a′, b′) + σρ(b′, y)
≤ σρ(x, a) + ρ(a, b) + σρ(b, a′) + ρ(a′, b′) + σρ(b′, y)
≤ σρ(x, a) + ρ(a, b) + σρ(b, z) + σρ(z, a′) + ρ(a′, b′) + σρ(b′, y)
≤ u(ρ)(x, z) + ε/2 + u(ρ)(z, y) + ε/2.
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Since ε > 0 was arbitrary we obtain u(ρ)(x, y) ≤ u(ρ)(x, z) + u(ρ)(z, y).
Therefore, u(ρ) is a metric on X.

It is easy to see that u(ρ) is uniformly continuous for every ρ ∈ M.
Take any ε > 0. There exists δ = δ(ε) > 0 such that ϕρ(d(x, y)) < ε
whenever d(x, y) < ε. Then for any x, y ∈ X with d(x, y) < δ we have
u(ρ)(x, y) ≤ σρ(x, y) = ϕρ(d(x, y)) < ε. The boundedness of u(ρ) is an easy
consequence of the definition of u.

Let x, y, a, b ∈ dom ρ. Then σρ(x, a) + ρ(a, b) + σρ(b, y) ≥ ρ(x, a) +
ρ(a, b) + ρ(b, y) ≥ ρ(x, y). Also ρ(x, y) ≤ σρ(x, y) by the definition of σρ.
So u(ρ)(x, y) = ρ(x, y). Hence u(ρ) is a metric which extends ρ over X.

It is clear that v is regular since for every ρ ∈ M, ‖u(ρ)‖ ≤ ‖σρ‖ = ‖ρ‖
by the definition of u and ‖u(ρ)‖ ≥ ‖ρ‖ because u(ρ)|dom ρ×dom ρ = ρ. Thus
‖ρ‖ = ‖u(ρ)‖.

To show that u is positive homogeneous note that for c > 0 and ρ ∈ M
we have ϕcρ = cϕρ. This implies u(cρ) = cu(ρ).

Let us prove that the operator u is continuous. Let {ρn} be a sequence
in M which converges to some ρ ∈ M. Let dom ρn = Bn, dom ρ = B and
ε > 0. Choose δ > 0 such that ϕρ(δ) < ε/16. Then for sufficiently large n
the following conditions are satisfied:

(1) the Hausdorff distance between B and Bn is less than δ/4;
(2) |ρ(x, y)−ρn(x′, y′)| < ε/16 for x, y ∈ B, x′, y′ ∈ Bn with d(x, x′) < δ

and d(y, y′) < δ;
(3) |σρ(x, y) − σρn(x, y)| < ε/16 for all x, y ∈ X since ϕρn converges to

ϕρ uniformly;
(4) ϕρn(δ) < ε/16.

Take any x, y ∈ X and choose an n ∈ N which satisfies (1)–(4). We are
going to prove that |u(ρ)(x, y)−u(ρn)(x, y)| < ε. We consider several cases.

Case 1. Suppose x, y ∈ B. Then u(ρ)(x, y) = ρ(x, y). Let xn, yn ∈ Bn
be such that d(x, xn) < δ and d(y, yn) < δ. We obtain

u(ρn)(x, y) ≤ σρn(x, xn) + ρn(xn, yn) + σρn(yn, y)
< ϕρn(δ) + ρ(x, y) + ε/16 + ϕρn(δ)
< ρ(x, y) + ε/16 + ε/16 + ε/16 < u(ρ)(x, y) + ε.

Now

u(ρ)(x, y) = ρ(x, y) < ρn(xn, yn) + ε/16
≤ u(ρn)(x, y) + σρn(x, xn) + σρn(y, yn) + ε/16
≤ u(ρn)(x, y) + ϕρn(δ) + ϕρn(δ) + ε/16 < u(ρn)(x, y) + ε.

Case 2. Suppose x ∈ B and y /∈ B. We first prove that u(ρn)(x, y) <
u(ρ)(x, y) + ε. Take b ∈ B such that σρ(y, b) + ρ(b, x) < u(ρ)(x, y) + ε/16.
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Choose points bn ∈ Bn and xn ∈ Bn such that d(x, xn) < δ, d(b, bn) < δ.
We obtain

u(ρn)(x, y) ≤ σρn(x, xn) + ρn(xn, bn) + σρn(bn, y)
≤ σρn(x, xn) + ρn(xn, bn) + σρn(b, bn) + σρn(b, y)
< ϕρn(δ) + ρ(x, b) + ε/16 + ϕρn(δ) + σρ(b, y) + ε/16
< ε/16 + ρ(x, b) + ε/16 + ε/16 + σρ(b, y) + ε/16
= ρ(x, b) + σρ(b, y) + ε/4 < u(ρ)(x, y) + ε.

Now we prove that u(ρ)(x, y) < u(ρn)(x, y) + ε. We may suppose that
x, y 6∈ Bn or we are back in the first part of Case 2 or in Case 1 with the
roles of ρn and ρ interchanged. Suppose first that u(ρn)(x, y) = σρn(x, y).
Then

u(ρ)(x, y) ≤ σρ(x, y) < σρn(x, y) + ε/16 < u(ρn)(x, y) + ε.

Now let u(ρn)(x, y) < σρn(x, y). There are an, bn ∈ Bn such that

u(ρn)(x, y) + ε/8 > σρn(x, an) + ρn(an, bn) + σρn(bn, y).

Choose b ∈ B and xn ∈ Bn such that d(x, xn) < δ and d(b, bn) < δ. Note
that

ρn(an, xn) ≤ σρn(an, xn) ≤ σρn(x, xn) + σρn(x, an) < σρn(x, an) + ε/16.

We obtain

u(ρ)(x, y) ≤ σρ(b, y) + ρ(b, x) ≤ σρ(y, bn) + σρ(b, bn) + ρ(b, x)
< σρn(y, bn) + ε/16 + ε/16 + ρn(xn, bn) + ε/16
≤ σρn(y, bn) + ρn(xn, an) + ρn(an, bn) + 3ε/16
< σρn(y, bn) + σρn(x, an) + ε/16 + ρn(an, bn) + 3ε/16
< u(ρn)(x, y) + ε.

Case 3. Suppose x, y 6∈ B ∪ Bn. First suppose u(ρ)(x, y) < σρ(x, y).
Choose a, b ∈ B such that

u(ρ)(x, y) + ε/2 > σρ(x, a) + ρ(a, b) + σρ(y, b).

Take an, bn ∈ Bn such that d(a, an) < δ and d(b, bn) < δ. We obtain

u(ρn)(x, y) ≤ σρn(x, an) + ρn(an, bn) + σρn(y, bn)
≤ σρn(x, a) + σρn(a, an) + ρn(an, bn) + σρn(y, b) + σρn(b, bn)
< σρn(x, a) + ε/16 + ρn(an, bn) + ε/16 + σρn(y, b)
< σρ(x, a)+ε/16+ε/16+ρ(a, b)+ε/16+ε/16+σρ(y, b)+ε/16
< u(ρ)(x, y) + ε.

Now let u(ρ)(x, y) = σρ(x, y). Then

u(ρn)(x, y) ≤ σρn(x, y) < σρ(x, y) + ε/16 < u(ρ)(x, y) + ε.
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Similarly interchanging the roles of ρ and ρn we can prove that u(ρ)(x, y) <
u(ρn)(x, y) + ε.

To prove that the operator u preserves Lipschitz metrics let ρ ∈ LM.
Then

u(ρ)(x, y) ≤ σρ(x, y) = ϕρ(d(x, y)) ≤ ‖ρ‖lipd(x, y)

by Lipschitzness of ρ and the definition of ϕρ.

5. Extension of ultrametrics. In this section we are going to use a
modification of the extension operator for uniformly continuous metrics to
obtain its counterpart for uniformly continuous partial ultrametrics defined
on closed subsets of a bounded ultrametric space. It is proved in [11] that
there exists a continuous positive homogeneous extension operator for the
family of all uniformly continuous ultrametrics defined on closed subsets
of a bounded complete ultrametric space. This operator has an additional
property of preserving maxima of ultrametrics with a common domain. The
operator constructed in this section in general does not preserve maxima
but preserves Lipschitz ultrametrics. Moreover, we drop the completeness
assumption for the space (X, d).

Recall that a metric r on a set Y is called an ultrametric if it satis-
fies the strong triangle inequality, i.e. r(x, y) ≤ max{r(x, z), r(y, z)} for all
x, y, z ∈ Y . Let (X, d) be a bounded ultrametric space. For everyA ∈ exp(X)
with |A| ≥ 2 denote by UM(A) the set of all uniformly continuous bounded
ultrametrics defined on A. Similarly, UM=

⋃
{UM(A):A∈ exp(X), |A|≥2}

stands for the set of all partial ultrametrics. It is clear that UM can be
viewed as a subspace of the space M of all uniformly continuous bounded
metrics defined on closed subsets of the ultrametric space (X, d).

Theorem 5.1. Let (X, d) be a bounded ultrametric space. There exists
an operator α : UM→ UM(X) which has the following properties for every
ρ ∈ UM:

• α(ρ) is an extension of ρ over X;
• α is regular , that is, ‖α(ρ)‖ = ‖ρ‖;
• α is positive homogeneous, that is, α(cρ) = cα(ρ) for every c > 0;
• α is a continuous map;
• α preserves Lipschitz ultrametrics and Lipschitz norms.

Proof. Recall that for ρ ∈ UM ϕρ denotes the smallest concave modulus
function for ρ and σρ : X ×X → R is a metric on X defined by σρ(x, y) =
ϕρ(d(x, y)) for all x, y ∈ X. It is easy to see that σρ is in fact an ultrametric.
Indeed,

σρ(x, y) = ϕρ(d(x, y)) ≤ ϕρ(max{d(x, z), d(z, y)})
= max{ϕρ(d(x, z)), ϕρ(d(y, z))} = max{σρ(x, z), σρ(y, z)}.
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For x, y ∈ X let

α(ρ)(x, y) = min{ inf
a,b∈dom ρ

max{σρ(x, a), ρ(a, b), σρ(b, y)}, σρ(x, y)}.

One can show that α(ρ) ∈ UM(X) in much the same way as for metrics. It
is easy to see that α(ρ) is symmetric and α(ρ)(x, x) = 0 since σρ(x, x) = 0
for every x ∈ X. Note also that α(ρ)(x, y) > 0 for x 6= y. To show that α(ρ)
satisfies the strong triangle inequality let x, y, z ∈ X. Consider several cases.

(a) Suppose α(ρ)(x, z) = σρ(x, z) and α(ρ)(z, y) = σρ(z, y). We obtain

α(ρ)(x, y)≤ σρ(x, y)≤max{σρ(x, z), σρ(z, y)}= max{α(ρ)(x, z), α(ρ)(z, y)}.
(b) Suppose α(ρ)(x, z) < σρ(x, z) and α(ρ)(z, y) = σρ(z, y). Let ε > 0

and a, b ∈ dom ρ be such that max{σρ(x, a), ρ(a, b), σρ(z, b)} < α(ρ)(x, z)+ε.
Then

max{α(ρ)(x, z)+ε, α(ρ)(z, y)}>max{σρ(x, a), ρ(a, b), σρ(z, b), σρ(z, y)}
≥max{σρ(x, a), ρ(a, b), σρ(y, b)}≥α(ρ)(x, y).

Since ε> 0 was arbitrary we obtain α(ρ)(x, y)≤max{α(ρ)(x, z), α(ρ)(z, y)}.
(c) Suppose α(ρ)(x, z) < σρ(x, z) and α(ρ)(z, y) < σρ(z, y). Let ε > 0 and

a, b, a′, b′ ∈ dom ρ be such that max{σρ(x, a), ρ(a, b), σρ(b, z)} < α(ρ)(x, z)
+ ε and max{σρ(z, a′), ρ(a′, b′), σρ(b′, y)} < α(ρ)(z, y) + ε. We obtain

α(ρ)(x, y) ≤ max{σρ(x, a), ρ(a, b′), σρ(b′, y)}
≤ max{σρ(x, a), ρ(a, b), ρ(b, a′), ρ(a′, b′), σρ(b′, y)}
≤ max{σρ(x, a), ρ(a, b), σρ(b, a′), ρ(a′, b′), σρ(b′, y)}
≤ max{σρ(x, a), ρ(a, b), σρ(b, z), σρ(z, a′), ρ(a′, b′), σρ(b′, y)}
≤ max{α(ρ)(x, z) + ε, α(ρ)(z, y) + ε}.

Since ε> 0 was arbitrary we obtain α(ρ)(x, y)≤max{α(ρ)(x, z), α(ρ)(z, y)}.
Therefore, α(ρ) is an ultrametric on X.

The remaining properties of the operator α can be proved similarly to
those of the extension operator from the previous theorem.
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