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RELATIVE THEORY IN SUBCATEGORIES

BY

SOUD KHALIFA MOHAMED (Trondheim)

Abstract. We generalize the relative (co)tilting theory of Auslander–Solberg in the
category modΛ of finitely generated left modules over an artin algebra Λ to certain sub-
categories of modΛ. We then use the theory (relative (co)tilting theory in subcategories)
to generalize one of the main result of Marcos et al. [Comm. Algebra 33 (2005)].

Introduction. Let Λ be an artin algebra, and let modΛ denote the
category of finitely generated left Λ-modules. Auslander and Solberg [9, 10]
developed a relative (co)tilting theory in modΛ which is a generalization of
standard (co)tilting theory [3], [12], [14], [23]. In this paper we develop a rel-
ative (co)tilting theory in extension-closed functorially finite subcategories
of modΛ.

Let T be an ordinary tilting module over Λ. Then the module DT , where
D is the usual duality between left and right modules, is a cotilting module
over the endomorphism ring Γ � EndΛpT qop. If T is a relative tilting module,
in the sense of [9, 10], then the Γ -module DT is a direct summand of the
cotilting module T 0 � HomΛpT, Iq over Γ , where add I are the relative
injective modules for the relative theory. Here we define relative (co)tilting
modules relative to a subcategory C of modΛ. The module HomΛpT, Iq,
where I is as above, is not a cotilting module in general. However, we will
show that when the C-approximation dimension of modΛ is finite (see below
for the definition), then HomΛpT, Iq is a cotilting module. In addition, DT
does not need to be a direct summand of T 0, but it has a finite resolution in
addT 0. Another main result is that for a relative tilting and cotilting module
in C, there exists an equivalence between the full subcategory {addTC of C
consisting of all modules having a finite resolution in addT and the full
subcategory �addT 0 consisting of all Γ -modules with finite coresolution in
addT 0. This is used to generalize Theorem 0.1 in [17].

Let T be an ordinary tilting Λ-module. Then the classical tilting
functor HomΛpT, q induces an equivalence between TK, the category of
all Λ-modules Y such that ExtiΛpT, Y q � 0 for all i ¡ 0, and its image
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HomΛpT, T
Kq in modΓ , where the category HomΛpT, T

Kq is identified with
KDT , the category of all Γ -modules X such that ExtiΓ pX,DT q � 0 for all
i ¡ 0. Similar results were established by Auslander–Solberg [10] for a rel-
ative tilting module T in modΛ. We want to establish a similar result for
a relative tilting module in subcategories of modΛ. To do this we need to
develop a relative theory in subcategories.

Let C1 be an additive category which is closed under kernels and coker-
nels, and suppose C is a functorially finite subcategory of C1. Iyama [15] in-
troduced an invariant of C1 given by C, namely the right and left C-resolution
dimensions of C1. When C1 is modΛ, we refer to the right and left C-resolution
dimensions as the right and left C-approximation dimensions. Let us call the
maximum of the two invariants (the right and left C-approximation dimen-
sions) the C-approximation dimension of modΛ.

Suppose C is closed under extensions, and assume that the C-approxi-
mation dimension of modΛ is zero. Then it will be shown that C is naturally
equivalent to a module category over an artin algebra. This means that a
relative theory in C can be developed in the sense of [9, 10]. Let us refer to
this theory as the relative theory in dimension “0”. We develop a relative
theory in dimension “n” for certain subfunctors F of the bifunctor Ext1Λp , q,
where n is the C-approximation dimension of modΛ.

Let C be a functorially finite subcategory of modΛ which is closed un-
der extensions, and let X be a generator subcategory of C in the sense
of [2] (i.e. X contains the Ext-projectives in C). In Section 2 we investigate
the subfunctors F � FX in C. Denote by CX (resp. CX) the right (resp.
left) C-approximation of X. Then we show that PCpF q, the category of F -
projectives in C, and ICpF q, the category of F -injectives in C, are related
by the formulas PCpF q � CTrD ICpF qYPpCq and ICpF q � CDTr ICpF qY IpCq,
where PpCq and IpCq denote the categories of Ext-projectives and Ext-
injectives in C respectively. In Section 3 we state some results relating to
approximation dimension. In particular, we show that the subcategories C
of modΛ with C-approximation dimension zero are equivalent to categories
modΛ{I, where I is an ideal of Λ.

In Section 4 we investigate relative (co)tilting modules in extension-
closed functorially finite subcategories C of modΛ. Consider a subfunctor F
in C with enough projectives and injectives in C. Also suppose that T is an
F -tilting module in C with pdF T � r. In this setting we will generalize the
classical tilting equivalence. Suppose that the C-approximation dimension of
modΛ is a nonnegative integer n. Then, if there is an F -tilting module in C,
we will show that ICpF q is of finite type. We assume from now on that ICpF q
is of finite type. Denote the Γ -module associated to HomΛpT, ICpF qq by T 0

C .
Then we will show that the image of the classical tilting functor restricted
to TKC , HomΛpT, T

K
C q, can be identified with KT 0

C , where TKC denotes the
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category TK X C. Moreover, the Γ -module T 0
C is cotilting. However, the

Γ -module DT is not necessarily cotilting, and we give an example which
shows that DT is not a direct summand of T 0

C either. Nevertheless, we show
that DT has a finite addT 0

C -resolution. We also show that gl.dimF C, the
relative global dimension of C, and gl.dimΓ , the global dimension of Γ , are
related by the formula gl.dimF C � pdF T ≤ gl.dimΓ ≤ gl.dimF C � νpn, rq,
where ν is a function of n and r.

If the C-approximation dimension of modΛ is infinite, then we have many
examples where the Γ -module T 0

C is not cotilting. However, it is not known
whether the C-approximation dimension of modΛ being finite is necessary
for T 0

C to be cotilting.
Consider the subfunctor F � FX in C. Suppose T is an F -tilting F -co-

tilting module in C. In Section 5 we generalize the aforementioned theorem
from [17]. We show that the Γ -module T 0

C is tilting and that the tilting
functor induces an equivalence between the subcategories {addTC of C and�addT 0

C of modΓ .
Unless otherwise stated, throughout this paper Λ is a basic artin algebra

and modΛ denotes the category of all finitely generated left Λ-modules.
Given a subcategory A of modΛ, addA is the full subcategory of modΛ
consisting of all Λ-modules which are direct summands of finite direct sums
of modules in A. Denote by D the duality between left and right modules
as given in [6, II.3].

1. Properties of homological finite subcategories. In this section
we recall some definitions from [7] and give some preliminary results. Among
the results, we show that functorially finite subcategories C of modΛ which
are closed under extensions in modΛ have enough Ext-projectives and Ext-
injectives. Then we look at certain properties of covariantly and contravari-
antly finite subcategories of modΛ which will be used, in the next section,
to develop relative theory in subcategories.

Let C be a subcategory of modΛ. An exact sequence in C is an exact
sequence in modΛ with all terms in C. A module Y in C is said to be Ext-
injective if Ext1ΛpX,Y q � 0 for all X in C. We denote the subcategory of Ext-
injective modules in C by IpCq. A subcategory C is said to have enough Ext-

injectives if for all C in C there is an exact sequence 0 Ñ C
f
ÝÑ I Ñ C1 Ñ 0

with I Ext-injective and C1 in C. Note that if C has enough Ext-injectives
and is closed under extensions in C, then any map g : C Ñ I 1 with I 1 in
IpCq factors through f (i.e. there exists a map h : I Ñ I 1 such that g �
hf). The notions of Ext-projective module and enough Ext-projectives are
defined dually. The subcategory of Ext-projective modules in C is denoted
by PpCq.
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Let D be a subcategory of modΛ containing a subcategory C. Given a
module M in D, a sequence 0 Ñ Y Ñ C

g
ÝÑ M with C in C is said to be a

right C-approximation of M if the sequence

0 Ñ pC 1, Y q Ñ pC 1, Cq
pC1,gq
ÝÝÝÑ pC 1,Mq Ñ 0

is exact in Ab for all C 1 in C. A right C-approximation is called a mini-
mal right C-approximation if g is right minimal, that is, if every endomor-
phism s : C Ñ C satisfying g � gs is an isomorphism. A minimal right
C-approximation is unique up to isomorphism. A module has a right C-
approximation if and only if it has a minimal right C-approximation [5]. We
denote the minimal right C-approximation of M by 0 Ñ YM Ñ CM

gMÝÝÑM .
A subcategory of C of D is said to be contravariantly finite in D if every
Λ-module in D has a right C-approximation. Dually, one defines the notions
of left (minimal) C-approximation and covariantly finite subcategory of D.
A subcategory C of D is said to be functorially finite in D if it is both
contravariantly and covariantly finite in D.

Let C be a contravariantly finite subcategory of modΛ. Then by [7,
Lemma 3.11], C has a finite cocover, that is, there is some Y in add C such
that C is contained in SubY , the subcategory of modΛ consisting of objects
which are submodules of finite direct sums of copies of Y . Suppose C is
closed under extensions in modΛ. Then we have the following analog of
[7, Lemma 3.11].

Proposition 1.1. Let C be a contravariantly finite subcategory of modΛ
which is closed under extensions. Then every X in C has an IpCq-coresolu-
tion.

To prove Proposition 1.1 we need to show that the full subcategory E
of modΛ consisting of all Y such that Ext1ΛpX,Y q � 0 for all X in C is
covariantly finite in modΛ. To do this, we use the following proposition
which is the dual of [5, Proposition 1.8].

Proposition 1.2. Suppose J is a subcategory of modΛ which is closed
under extensions such that Ext1Λp , Aq|J is finitely generated for all A in
modΛ. Then the subcategory K � tY P modΛ | Ext1ΛpJ , Y q � 0u is covari-
antly finite in modΛ.

It is not difficult to see that if C is contravariantly finite in modΛ, then
Ext1Λp , Aq|C is finitely generated for all A in modΛ. Our subcategory C in
Proposition 1.1 satisfies the conditions of Proposition 1.2. Hence the sub-
category E is covariantly finite and contains the injective Λ-modules.

Proof of Proposition 1.1. Let X be in C. Then we have a minimal left
E-approximation 0 Ñ X Ñ EX Ñ ZX Ñ 0 of X, which is a monomorphism,
since DΛ is in E . Then by [5, Corollary 1.7], ZX is in C. Since C is closed
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under extensions, this implies that EX is in C X E � IpCq. Then the result
follows by induction.

The following is a consequence of Propositions 1.1 and its dual.

Corollary 1.3. Let C be a functorially finite subcategory of modΛ
which is closed under extensions. Then:

(a) C has enough Ext-projectives and Ext-injectives.
(b) The subcategory PpCq is contravariantly finite in C.
(c) The subcategory IpCq is covariantly finite in C.

We now want to find Ext-projective and Ext-injective modules in func-
torially finite subcategories. The following lemma is part (b) of [16, Lemma
2.1]. It generalizes Wakamatsu’s lemma [24].

Lemma 1.4. Let C be a contravariantly finite extension-closed subcate-
gory of modΛ and let Z be a Λ-module. Then the natural transformation
Ext1Λp , gZq : Ext1Λp , CZq|C Ñ Ext1Λp , Zq|C restricted to C is a monomor-
phism of contravariant functors.

The following consequence of [16, Theorem 3.4] gives us the Ext-injec-
tives (the Ext-projectives are given dually).

Corollary 1.5. Let C be a contravariantly finite subcategory of modΛ
which is closed under extensions. Let Y be in modΛ, and consider a succes-
sion of minimal right C-approximations Y1 ãÑ C0 Ñ Y , Y2 ãÑ C1 Ñ Y1, . . . .
Then for all i ¡ 0, Ci is Ext-injective in C.

Note that if Y � I is an injective Λ-module, then C0 in Corollary 1.5 is
Ext-injective in C [7, Lemma 3.5].

We recall the notions of a covariant and a contravariant defect of a short
exact sequence [6]: Given a short exact sequence δ : 0 Ñ LÑ M Ñ N Ñ 0
in modΛ, the covariant defect δ� and the contravariant defect δ� of δ are the
subfunctors of Ext1ΛpN, q and Ext1Λp , Lq respectively, defined by the exact
sequences

0 Ñ HomΛpN, q Ñ HomΛpM, q Ñ HomΛpL, q Ñ δ� Ñ 0

and
0 Ñ HomΛp , Lq Ñ HomΛp ,Mq Ñ HomΛp , Nq Ñ δ� Ñ 0.

The next result is given in [16], but we will give a different proof.

Proposition 1.6 ([16, Proposition 2.5(b)]). Let C be a contravariantly
finite subcategory of modΛ which is closed under extensions. Let δ : 0 Ñ

L
f
ÝÑM Ñ N Ñ 0 be an exact sequence in C. For all Z in modΛ, the mor-

phism HomΛpL, gZq : HomΛpL,ZCq Ñ HomΛpL,Zq induces an isomorphism
δ�pCZq

�
ÝÑ δ�pZq.
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The following consequence of Proposition 1.6 will be useful for finding
the relative injectives in subcategories in the next section.

Corollary 1.7. Let 0 Ñ AÑ B Ñ C Ñ 0 be exact in C, and let X be
in modΛ. Then the following are equivalent.

(i) HomΛpX,Bq Ñ HomΛpX,Cq is an epimorphism.
(ii) HomΛpB,CDTrXq Ñ HomΛpA,CDTrXq is an epimorphism.

We recall the following definition from [9]. A subcategory X of C is said
to be a generator for C if it contains PpCq. Dually one defines a cogenerator
subcategory for C.

Lemma 1.8. Let C be a functorially finite subcategory of modΛ which
is closed under extensions. Let X be a contravariantly finite subcategory of
C which is a generator for C. Consider a right X -approximation 0 Ñ Y Ñ

X
g
ÝÑ C Ñ 0 of C in C. Then Y is in C.

Proof. We know that C has enough Ext-projectives by Corollary 1.3. So,
for any C in C, there is an exact sequence 0 Ñ C1 Ñ P

p
ÝÑ C Ñ 0 with P

in PpCq and C1 in C. Therefore, we have the following exact commutative
diagram:

0

��

0

��
C1

��

C1

��
0 // Y // Y ` P //

��

P //

p
��

0

0 // Y // X
g //

��

C //

��

0

0 0

since g is a right X -approximation of C. But since C is closed under exten-
sions and summands, it follows that Y is in C.

2. Subfunctors in subcategories and their properties. Let C be a
functorially finite subcategory of modΛ which is closed under extensions. In
this section we study subfunctors in C. We first recall some background on
subfunctors in modΛ from [9]. Then we study a special subfunctor F � FX
in C, where X is a contravariantly finite subcategory of C.

2.1. Background on subfunctors. Let F be an additive sub-bifunctor
of the additive bifunctor Ext1Λp , q : pmodΛqop � modΛ Ñ Ab, where
pmodΛqop denotes the opposite category of modΛ. Then F is said to be an
additive subfunctor of Ext1Λp , q in modΛ. A short exact sequence η : 0 Ñ
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AÑ B Ñ C Ñ 0 is called an F -exact sequence if η is in F pC,Aq. Any pull-
back, pushout and Baer sum of F -exact sequences are again F -exact [9]. In
particular, a subfunctor F determines a collection of short exact sequences
which is closed under pushouts, pullbacks and Baer sums. Conversely, any
collection of short exact sequences which is closed under pushouts, pullbacks
and Baer sums gives rise to a subfunctor of Ext1Λp , q in the obvious way [9].

Let PpF q be the subcategory of modΛ consisting of all Λ-modules P
such that if 0 Ñ A Ñ B Ñ C Ñ 0 is F -exact, then the sequence 0 Ñ
pP,Aq Ñ pP,Bq Ñ pP,Cq Ñ 0 is exact in Ab. The objects in PpF q are called
projective modules of the subfunctor F or F -projectives. If PpΛq denotes
the category of projective Λ-modules, then PpΛq is contained in PpF q. An
additive subfunctor F is said to have enough projectives if for every A in
modΛ there exists an F -exact sequence 0 Ñ A1 Ñ P Ñ A Ñ 0 with P in
PpF q. The definitions of F -injectives and enough injectives are dual.

Let Z be a subcategory of modΛ. Define

FZpC,Aq � t0 Ñ AÑ B Ñ C Ñ 0 | pZ, Bq Ñ pZ, Cq Ñ 0 is exactu

for each pair of modules A and C in modΛ. Dually, one defines

FZpC,Aq � t0 Ñ AÑ B Ñ C Ñ 0 | pB,Zq Ñ pA,Zq Ñ 0 is exactu

for each pair of modules A and C in modΛ. It is shown in [9, Proposition 1.7]
that these constructions give (additive) subfunctors of Ext1Λp , q.

2.2. Subfunctors F in the subcategory C. Let C be a functorially finite
subcategory of modΛ which is closed under extensions, and let F be a sub-
functor in modΛ. When F -projectives and F -injectives are determined only
by the F -exact sequences in C, we say F is a subfunctor in C. To study such
subfunctors, we first find the subcategories of F -projectives and F -injectives
in C, denoted by PCpF q and ICpF q respectively.

Let 0 Ñ A Ñ B Ñ C Ñ 0 be an exact sequence in C. Then by Corol-
lary 1.7 we know that for all Z P modΛ, the sequence pZ,Bq Ñ pZ,Cq Ñ 0
is exact if and only if pB,CDTrZq Ñ pA,CDTrZq Ñ 0 is exact. This gives the
following proposition.

Proposition 2.1. Let C be a functorially finite subcategory which is
closed under extensions. Then:

(a) ICpF q � CDTrPCpF q Y IpCq.
(b) PCpF q � CTrD ICpF q Y PpCq.
Remark. Nothing can be said about the size of the subcategories PCpF q

and ICpF q at the moment. But later we will see that if there exists an F -
(co)tilting module in C, then PCpF q and ICpF q are of finite type.

Let C be a functorially finite subcategory of modΛ which is closed under
extensions. We now study some properties of subfunctors in C. A subfunctor
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F in C is said to have enough projectives if for each C in C there exists an
F -exact sequence 0 Ñ C1 Ñ P Ñ C Ñ 0 with P in PCpF q and C1 in C. The
notion of enough injectives is defined dually.

Notation. Unless specified otherwise, F denotes a subfunctor FX , where
X is a generator subcategory of C.

Consider a subfunctor F with enough projectives. Then the following
proposition shows that C is closed under kernels of F -epimorphisms.

Proposition 2.2. Let C be a functorially finite subcategory which is
closed under extensions. Let F be a subfunctor in C with enough projectives
in C. Then C is closed under kernels of F -epimorphisms.

Proof. Let 0 Ñ C1 Ñ C2 Ñ C3 Ñ 0 be an F -exact sequence with C2, C3

in C. Then, since F has enough projectives in C, we have an exact sequence
0 Ñ Y Ñ P ÝÑ C3 Ñ 0 with P P PCpF q and Y P C. From the commutative
diagram

0

��

0

��
Y

��

Y

��
0 // C1

// E //

��

P //

��

0

0 // C1
// C2

��

// C3
//

��

0

0 0

we see that E is in C. The exact sequence 0 Ñ C1 Ñ E Ñ P Ñ 0 is F -exact,
and it splits since P P PCpF q, so the claim follows.

Now let F � FX , and consider the subfunctor F ICpF q given by ICpF q.
Let M be a Λ-module with a surjective C-approximation. Then we have the
F -exact sequence η : 0 Ñ YM

g
ÝÑ CM Ñ M Ñ 0. If YM is in C, then it is

in ICpF q since IpCq is contained in ICpF q. Assume YM is nonzero; then the
identity map 1YM does not factor through g. Therefore η is not F ICpF q-exact.
Dually, given N in modΛ, the exact sequence 0 Ñ N Ñ CN Ñ ZN Ñ 0 is
not F -exact whenever ZN is a nonzero Λ-module in C. So outside C we may
not have F � F ICpF q. But inside C we have the following result.

Corollary 2.3. Let C be a functorially finite subcategory of modΛ
which is closed under extensions. Then F |C � F ICpF q|C.

The following result shows that F has enough projectives and injectives
under certain conditions.
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Proposition 2.4. Let C be a functorially finite subcategory of modΛ
which is closed under extensions. Then:

(a) If PCpF q is contravariantly finite in C, then F has enough projectives.
(b) If ICpF q is covariantly finite in C, then F has enough injectives.

Proof. (a) Follows from Lemma 1.8.
(b) Suppose ICpF q is covariantly finite in C. Since ICpF q is a cogenerator

for C, for each C in C there is, by the dual of Lemma 1.8, an exact sequence
η : 0 Ñ C Ñ I Ñ C1 Ñ 0 with I in ICpF q and C1 in C, such that 0 Ñ
pC1, ICpF qq Ñ pI, ICpF qq Ñ pC, ICpF qq Ñ 0 is exact. Hence the sequence η
is F ICpF q-exact. By Corollary 2.3 it follows that η is F -exact, since it is so
in C. Thus F has enough injectives.

Suppose ICpF q, where F � FX , is covariantly finite in C. Then the
following “dual” of Lemma 2.2 shows that C is closed under cokernels of
F ICpF q-monomorphisms.

Proposition 2.5. Let 0 Ñ C1 Ñ C2 Ñ C3 Ñ 0 be an F ICpF q-exact
sequence with C1, C2 in C. Assume ICpF q is covariantly finite in C. Then
C3 is in C.

3. Approximation dimension. Let C be a subcategory of modΛ. In
this section we define C-approximation dimension. Then we characterize the
subcategories C with C-approximation dimension equal to zero. Moreover,
we prove that if the C-approximation dimension of modΛ is finite, then any
long relative exact sequence in modΛ with all middle terms in C is eventually
in C. This will be useful in the next section.

Let C be a contravariantly finite subcategory of modΛ. For any M in
modΛ, consider a succession 0 Ñ Y1 Ñ C0

g0ÝÑM , 0 Ñ Y2 Ñ C1
g1ÝÑ Y1, . . .

of minimal right C-approximations. Then the complex

p�q � � � Ñ Ct
gt
ÝÑ Ct�1 Ñ � � � Ñ C1

g1ÝÑ C0
g0ÝÑM

is called a right C-approximation resolution of M . In [15] this was defined
in general for a contravariantly finite subcategory C in an additive cate-
gory C1 with kernels and cokernels. There, a right C-approximation reso-
lution was called a right C-resolution. Denote Ker gi in p�q by Yi�1. We
write rC-app.dimpMq � n if there exists a nonnegative integer n in a right
C-approximation resolution of M such that Yn�1 � 0 and Yi � 0 for all
i ≤ n. If no such integer exists, we write rC-app.dimpMq � 8. We call
rC-app.dimpMq the right C-approximation dimension of M . Then we de-
fine

rC-app.dimpmodΛq � suptrC-app.dimpMq |M P modΛu.



38 S. K. MOHAMED

Example 3.1. If C is closed under factor modules, then it is known that
every right C-approximation is a monomorphism [7, Proposition 4.8]. Hence
rC-app.dimpmodΛq � 0.

Dually, one can define a left C-approximation resolution of M and left
C-approximation dimension of modΛ, denoted by lC-app.dimpmodΛq, for a
covariantly finite subcategory C of modΛ. We have the following proposition
relating the two approximation dimensions when C is of finite type [15,
Corollary 1.1.2].

Proposition 3.2. Let C be a functorially finite subcategory of modΛ.
Then rC-app.dimpmodΛq is finite if and only if lC-app.dimpmodΛq is finite.
Moreover , in this case they differ by at most 2.

Let C be a functorially finite subcategory of modΛ. The C-approximation
dimension of modΛ, C-app.dimpmodΛq, is defined to be

C-app.dimpmodΛq � maxtlC-app.dimpmodΛq, rC-app.dimpmodΛqu.

The following is a nice corollary of Proposition 3.2.

Corollary 3.3. Let C be a subcategory of modΛ which is closed under
factor modules. Then C-app.dimpmodΛq ≤ 2.

Note. Let C be equal to modΛ. Then C-app.dimpmodΛq � 0. However,
C-app.dimpmodΛq being zero does not necessarily mean that C � modΛ, as
shown below.

In general, A-app.dimpBq can be defined, where A is a functorially finite
subcategory of a category B with kernels and cokernels [15].

3.1. Approximation dimension zero. In this section we want to charac-
terize the functorially finite subcategories C with C-approximation dimension
zero.

The following result shows that functorially finite subcategories with
approximation dimension zero are the same as those which are closed under
factor modules and submodules.

Proposition 3.4. Let C be an additive functorially finite subcategory of
modΛ. Then C-app.dimpmodΛq � 0 if and only if C is closed under factor
modules and submodules.

Now we want to characterize the subcategories of modΛ closed under
factor modules and submodules. But first we recall a well-known concept.

Let C be a subcategory of modΛ. Recall that the annihilator of C,
annΛ C, is equal to the intersection of the annihilators of the modules C P C,
annΛpCq � tλ P Λ | λ �C � 0u. It is well known that annΛ C is an ideal of Λ.
The following result shows that the subcategories of modΛ which are closed
under submodules and factor modules are abelian.
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Proposition 3.5. Let C be an additive subcategory of modΛ which
is closed under factor modules and submodules. Then C is equivalent to
modΛ{I, where I � annΛ C.

Let C and I be as before and consider the algebra morphism ϕ : ΛÑ Λ{I.
Then ϕ induces an exact functor Gϕ : modpΛ{Iq Ñ modΛ, which is an em-
bedding. We have ImGϕ � C. It is easy to see that Gϕ and its inverse pre-
serve exact sequences and exact diagrams. Hence they preserve pushouts,
pullbacks and Baer sums. Since these last three operations determine sub-
functors, it follows that Gϕ and its inverse preserve subfunctors too. Hence
C and modpΛ{Iq have the same relative theory.

Note that the factor category modΛ{I, in Proposition 3.5, is not nec-
essarily closed under extensions in modΛ [4]. However, if C is closed under
extensions, then modΛ{I is also closed under extensions in modΛ (by using
the functor Gϕ above).

Now, we combine Propositions 3.4 and 3.5 to get the following crucial
result for subcategories C with C-app.dimpmodΛq � 0.

Corollary 3.6. Let C be an additive functorially finite subcategory of
modΛ which is closed under extensions. Assume the C-app.dimpmodΛq is
zero. Then C is canonically equivalent to modΣ, where Σ is a quotient
algebra of Λ. Moreover , modΣ inherits the relative theory in C and vice
versa.

3.2. Approximation dimension n ¡ 0. Let C be a functorially finite sub-
category of modΛ which is closed under extensions. Let X be a contravari-
antly finite generator subcategory of C. Consider the subfunctor F � FX
in C. In this subsection we study a relationship between C and modΛ which
will be useful later. We show that any long F -exact sequence in modΛ with
the middle terms in C is eventually in C.

The following lemma is important.

Lemma 3.7. Let C be a functorially finite subcategory of modΛ which is
closed under extensions. Consider a minimal right C-approximation resolu-
tion

� � � Ñ Ci�s�1
gi�s�1
ÝÝÝÝÑ Ci�s Ñ � � � Ñ Ci�1

gi�1
ÝÝÑ Ci

giÝÑMi

of Mi for some i ≥ 0. Denote Ker gi�j by Yi�j�1 for j ≥ 0 and let Mi � Yi.
Let 0 Ñ Mi�j�1 Ñ Ti�j Ñ Mi�j Ñ 0 be an F -exact sequence with Ti�j in
C for j ≥ 0. Then there is a right C-approximation 0 Ñ Y 1

i�j�1 Ñ C 1i�j Ñ
Mi�j with Yi�j�1 � Y 1

i�j�1 for j ≥ 0.

Proof. We prove this by induction on j. For j � 0, we have Mi � Yi, so
Yi�1 � Y 1

i�1.
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For j � 1, consider the commutative F -exact diagram

0

��

0

��
Mi�1

��

Mi�1

��
0 // Yi�1

// Yi�1 ` Ti //

α
��

Ti //

��

0

θ1 : 0 // Yi�1
// Ci //

��

Mi
//

��

0

0 0

and let X p
ÝÑ Ci be an epimorphism with X in X . Since 0 ÑMi�1 Ñ Yi�1`

Ti
α
ÝÑ Ci Ñ 0 is F -exact, we deduce that p factors through α. Moreover,

since
η : 0 Ñ Yi�2 Ñ Ci�1 ` Ti

p gi�1 1Ti qÝÝÝÝÝÝÝÑ Yi�1 ` Ti

is a right C-approximation of Yi�1 ` Ti, we find that p factors through
f � α � pgi 1Tiq. Hence f is onto, since p is onto. Then we use the F -exact
sequence 0 Ñ Mi�1 Ñ Yi�1 ` Ti

α
ÝÑ Ci Ñ 0 to construct the commutative

diagram
0

��

0

��
Yi�2

��

Yi�2

��
0 // C

1

i�1
//

g1i�1��

Ci�1 ` Ti
f //

p gi 1Ti q��

Ci // 0

0 //Mi�1
δ //

��

Yi�1 ` Ti
α //

��

Ci // 0

N

��

N

��
0 0

By the earlier discussion, the exact sequence 0 Ñ C 1i�1 Ñ Ci�1 ` Ti
f
ÝÑ Ci

Ñ 0 is F -exact. Then by Proposition 2.2, C 1i�1 is in C.

Our aim is to show that θ2 : 0 Ñ Yi�2 Ñ C 1i�1

g1i�1
ÝÝÑ Mi�1 is a right

C-approximation of Mi�1. If C 1i�1 were a pullback of δ and pgi 1Tiq, then by
the universal property of pullbacks, θ2 would be a right C-approximation,
since η is a right C-approximation of Yi�1 ` Ti. But it can be shown that
C 1i�1 is indeed a pullback of δ and pgi 1Tiq. Hence the sequence θ2 is a right
C-approximation, and we have Y 1

i�2 � Yi�2.
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For j ¡ 1 we replace the sequence θ1 in the first diagram by θj and
continue as above. Then the result follows by induction.

The following consequence of Lemma 3.7 shows that any long F -exact
sequence in modΛ with the middle terms in C is eventually in C. This will
be useful in the next section.

Corollary 3.8. Let C be a functorially finite subcategory of modΛ
which is closed under extensions. Assume C-app.dimpmodΛq � n   8.
Fix an integer t ≥ 0, and let 0 Ñ Mi�1 Ñ Ti Ñ Mi Ñ 0 be F -exact in
modΛ with Ti in C for all i ≥ t. Then Mt�n is in C. In general , Mi is in C
for all i ≥ t� n.

Proof. By Lemma 3.7 we have the commutative exact diagram

0

��

0

��
0 // C 1t�n //

g1t�n
��

Ci�n ` Tt�n�1
//

��

C 1t�n�1
// 0

0 //Mt�n
// Yt�n ` Tt�n�1

// C 1t�n�1
// 0

where g1t�n is a right C-approximation of Mt�n. Since Tt�n maps onto Mt�n,
it follows that g1t�n is an epimorphism, and hence an isomorphism. Therefore
Mt�n is in C. Then by Lemma 2.2, Mi is in C for all i ≥ t� n.

4. Relative theory, approximation and global dimension. In this
section, C is a functorially finite extension-closed subcategory of modΛ,
and X is a contravariantly finite generator subcategory of C. Consider the
subfunctor F � FX in C. In this section we investigate a relative (co)tilting
theory in C. Suppose T is an F -tilting module in C and let Γ � EndΛpT qop.
In 4.1 we show that the tilting functor HomΛpT, q induces an equivalence
between the subcategories TKC of C and pT, TKC q of modΓ . Then we prove that
pPCpF q, T q is a tilting Γ op-module and use this to show that PCpF q is of finite
type. In 4.2 we show that the image of the tilting functor restricted to TKC ,
pT, TKC q, can be identified with the category KpT, ICpF qq. Moreover, we prove
that the Γ -module pT, ICpF qq is cotilting. In 4.3 we look at the relationship
between the relative global dimension of C and the global dimension of Γ .

4.1. Relative tilting in subcategories. Consider the subfunctor F � FX
in C. We know that F has enough projectives in C (since PCpF q � X ).
Suppose ICpF q is covariantly finite in C. Then by Proposition 2.4 we know
that F has enough injectives in C. So, from now on we assume that ICpF q
is covariantly finite in C.

First we define the concept of F -tilting in C.
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Definition. A Λ-module T is called F -tilting in C if:

(i) T is in C.
(ii) ExtiF pT, T q � 0 for all i ¡ 0.
(iii) pdF T   8.
(iv) For all P in PCpF q there is an F -exact sequence 0 Ñ P Ñ T0 Ñ

T1 Ñ � � � Ñ Ts Ñ 0 with Ti in addT .

An F -cotilting module in C is defined dually.

Let ω be a subcategory of modΛ. Then ω is said to be F -selforthogonal
if ExtiF pω, ωq � 0 for all i ¡ 0.

Let T be an F -selforthogonal Λ-module in C . Define TK to be the full
subcategory of modΛ consisting of all modules Y with ExtiF pT, Y q � 0 for
all i ¡ 0. It has been shown in [10] that TK is F -coresolving in modΛ.
Denote TK X C by TKC , and let YCT be the full subcategory of all Λ-modules
A in TKC such that there is an F -exact sequence

� � � Ñ Ts
fs
ÝÑ Ts�1 Ñ � � � Ñ T1

f1ÝÑ T0 Ñ AÑ 0

with Ti in addT and Im fi in TKC .
A subcategory J of C is said to be closed under F -extensions in C if for

each F -exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 in C with A and C in J ,
also B is in J . Then we have the following generalization of [5, dual of
Proposition 5.1].

Proposition 4.1. Let C be a functorially finite subcategory of modΛ
which is closed under extensions. For an F -selforthogonal Λ-module T in C
the subcategory YCT is closed under

(a) F -extensions,
(b) cokernels of F -monomorphisms,
(c) direct summands.

A subcategory Z of C is said to be F -resolving in C if it satisfies the
following conditions: (a) it is closed under F -extensions, (b) if 0 Ñ A Ñ
B Ñ C Ñ 0 is F -exact and B and C are in Z, then A is in Z, and (c) it
contains PCpF q. Dually, one defines F -coresolving subcategories in C.

Let Y be F -covariantly finite and F -coresolving in C. Then the F -
coresolution dimension of a Λ-module C with respect to Y is defined to
be the minimum of all n including infinity such that there exists an F -exact
sequence 0 Ñ C Ñ Y 0 Ñ Y 1 Ñ � � � Ñ Y n�1 Ñ Y n Ñ 0 with Y i in Y. We
denote this dimension by Y-coresdimF M . If W is a subcategory of modΛ,
then Y-coresdimF pWq is defined to be suptY-coresdimF Z | Z PWu.

When our F -selforthogonal module T is F -tilting in C we have the fol-
lowing generalization of [10, dual of Theorem 3.2]. Denote �addT X C by�addTC .
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Proposition 4.2. Let C be a functorially finite subcategory of modΛ
which is closed under extensions. Let T be an F -tilting module in C. Then:

(a) The subcategory YCT � TKC is F -coresolving and covariantly finite in
C with YCT -coresdimF C finite.

(b) The subcategory �addTC � KpYCT q X C is F -resolving and contravari-
antly finite in C with pdF �addTC finite.

Proof. The proof is similar to [10, dual of Theorem 3.2]. The only chal-
lenge is to ensure that some of the modules involved in the proof are in C.
We do that by using Proposition 2.2.

We restate [20, Lemma 2.2] for the relative theory in subcategories. The
proof is similar, so it will not be given. We denote {addT X C by {addTC .

Lemma 4.3. Let T be an F -tilting module in C. Then TKC X P 8C pF q �{addTC.

Next we show that the tilting functor is fully faithful on the category YCT .
Let T be in C and Γ � EndΛpT qop. Consider the tilting functor

HomΛpT, q : modΛÑ modΓ.

Then we have the following analog of [10, dual of Lemma 3.3].

Lemma 4.4. Let C be a functorially finite subcategory of modΛ which is
closed under extensions. If T is an F -tilting Λ-module in C, then the functor
HomΛpT, q : YCT Ñ modΓ is an F -exact fully faithful covariant functor.

The following is a consequence of Lemma 4.4.

Corollary 4.5. Let T be an F -tilting module in C and Γ � EndΛpT qop.
Then HomΛpT, q : ExtiF pY, Y

1q Ñ ExtiΓ ppT, Y q, pT, Y
1qq is an isomorphism

for all Y and Y 1 in YCT , functorial in both variables.

Let T be a tilting module in modΛ, Γ � EndΛpT qop and DT the cor-
responding cotilting Γ -module. It is well known that the tilting functor
pT, q : modΛ Ñ modΓ induces an equivalence between the categories TK

p� YT by the dual of [5, Theorem 5.4]) of modΛ and pT, TKq of modΓ ,
where the image pT, TKq is identified with the subcategory KDT . This was
also established for relative tilting modules in modΛ [10].

Let F be a subfunctor in modΛ. Let T be an F -tilting module in modΛ
and denote EndΛpT qop by Γ . Then it can be shown (by using duality in [10])
that the tilting functor induces the same equivalence as in the standard case.
But this time the image pT, TKq is identified with the category KpT, IpF qq,
where pT, IpF qq is a cotilting Γ -module.

Our aim is to show that the same also holds for relative tilting modules
T in subcategories. In the present subsection we prove the existence of an
equivalence between the subcategory YCT of C and its image pT,YCT q in modΓ .
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Assume that C-app.dimpmodΛq is finite. In 4.2 we identify the subcategory
which corresponds to the image pT,YCT q of pT, q.

Let T be an F -tilting Λ-module in C and Γ � EndΛpT qop. We have seen
that YCT � TKC . Since HomΛpT, q : YCT Ñ modΓ is a fully faithful functor by
Lemma 4.4, we have

DY � HomΛpY,DΛq � HomΓ ppT, Y q, pT,DΛqq � HomΓ ppT, Y q, DT q

for all Y in YCT . Applying the duality D to the above isomorphism we get
the isomorphism Y � DHomΓ ppT, Y q, DT q � T bΓ HomΛpT, Y q. Hence
YCT � T bΓ pT,YCT q. Therefore YCT is equivalent to pT,YCT q in modΓ . The
following result, which summarizes the above discussion, shows that there
is an equivalence between the subcategories YCT of C and pT,YCT q of modΓ .
This is a generalization of the dual of [10, Corollary 3.6].

Theorem 4.6. Let C be a functorially finite subcategory of modΛ which
is closed under extensions. Let T be an F -tilting module in C and Γ �
EndΛpT qop.

(a) The functor HomΛpT, q : C Ñ modΓ induces an equivalence between
YCT and pT,YCT q.

(b) The functor HomΛpT, q : C Ñ modΓ induces an equivalence between
ICpF q and pT, ICpF qq.

If T is a standard tilting Λ-module, then the Γ -modules pT,DΛΛq and
DpΛ, T q coincide. But for relative tilting modules this is not always the case.

We want to show that the Γ op-module pPCpF q, T q is a tilting Γ op-module.
This will imply that the module DpPCpF q, T q is a cotilting Γ -module by
duality. But first we need the following results.

Lemma 4.7. For all W in �addTC and all C in modΛ the homomorphism
HomΛp , T q : pC,W q Ñ Γ opppW,T q, pC, T qq is an isomorphism functorial in
both variables.

The following is a consequence of the above result; the proof is similar
to that of [10, Proposition 3.7].

Corollary 4.8. For W in �addTC and C in KTC the homomorphism

HomΛp , T q : ExtiF pC,W q Ñ ExtiΓ opppW,T q, pC, T qq for all i ¡ 0

is an isomorphism functorial in both variables.

Now we show that pPCpF q, T q is a tilting Γ op-module.

Proposition 4.9. Let C be a subcategory of modΛ which is closed un-
der extensions. Let T be an F -tilting Λ-module in C with pdF T � r. De-
note EndΛpT qop by Γ . Then pPCpF q, T q is a tilting Γ op-module. Moreover ,
pPCpF q, T q is of finite type.
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Proof. Since PCpF q � �addTC � KTC , we have 0 � ExtiF pPCpF q,PCpF qq
� ExtiΓ opppPCpF q, T q, pPCpF q, T qq for all i ¡ 0. Hence pPCpF q, T q is self-
orthogonal. Since T is F -tilting we infer that pdΓ oppPCpF q, T q is finite. Since
pdF T is finite it is not difficult to see that Γ op is in �addpPCpF q, T q. There-
fore pPCpF q, T q is a tilting Γ op-module.

By the corollary to [19, Proposition 1.18], for all P in PCpF q, the module
pP, T q is a direct summand of

add
rà
i�0

pPi, T q,

where the Pi are in PCpF q. Hence pPCpF q, T q is of finite type.

Now we want to show that PCpF q is of finite type whenever there is an
F -tilting module in C. We need the following analog of [10, Proposition 5.4].

Lemma 4.10. Consider the functor HomΛp , T q : modΛ Ñ modΓ .
Then:

(a) HomΛp , T q induces a duality between �addTC and p�addTC , T q.
(b) HomΛp , T q induces a duality between PCpF q and pPCpF q, T q.
The following result is a consequence of Proposition 4.9.

Corollary 4.11. The subcategory PCpF q is of finite type.

4.2. Relative tilting and finite approximation dimension. Consider the
subfunctor F � FX in C. Suppose T is an F -tilting module in C and let
Γ � EndΛpT qop. In this section we show that the image of the equivalence
given in the previous section, namely pT,YCT q, can be identified with the
subcategory KpT, ICpF qq. Moreover, we show that the Γ -module pT, ICpF qq
is cotilting.

Let C be a functorially finite subcategory of modΛ which is closed under
extensions and assume the C-approximation dimension of modΛ is zero.
Then, by Corollary 3.6, C is canonically equivalent to modΣ, where Σ is
a quotient algebra of Λ. Moreover, C and modΣ have the same relative
theory. Let T be an F -tilting module in C and denote EndΛpT qop by Γ .
Then by the duals of [10, Proposition 3.8] and [10, Theorem 3.13] we know
that pT,YCT q � KpT, ICpF qq and pT, ICpF qq is a cotilting Γ -module.

For C-app.dimpmodΛq�8, we give examples which show that pT, ICpF qq
is not always a cotilting Γ -module.

Now assume that the C-approximation of modΛ is greater than zero,
but finite. Let T be an F -tilting module in C and denote EndΛpT qop by Γ .
We want to show that pT,YCT q � KpT, ICpF qq and pT, ICpF qq is a cotilting
Γ -module.

But first we need several preliminary results. The following is an analog
of [10, dual of Lemma 2.9].
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Lemma 4.12. Let C be a functorially finite extension-closed subcategory
of modΛ. Let T be an F -tilting module in C and let Γ � EndΛpT qop.
Then the map Ψ : HomΛpW,T q bΓ HomΛpT, Y q Ñ HomΛpW,Y q given by
ψpf b gq � g � f is an isomorphism for all W in �addTC and Y in YCT and
is functorial in both variables.

The following result is an analog of [10, dual of Lemma 3.10].

Lemma 4.13. Let C be a functorially finite subcategory of modΛ which
is closed under extensions. If T is F -tilting in C, then idΓ Dp�addTC , T q ≤
pdF T , where Γ � EndΛpT qop. In particular , idΓ DpPpCq, T q ≤ pdF T .

We have the following nice corollary.

Corollary 4.14. Let C be a functorially finite subcategory of modΛ
and assume that C-app.dimpmodΛq � n   8. Let T be an F -tilting module
in C with pdF T � r and let Γ � EndΛpT qop. Then idΓ DT ≤ r � n.

Proof. We prove this by induction on n. For n � 0, see Corollary 3.6 and
the dual of [10, Lemma 3.10]. For n � 1, we have a left C-approximation

resolution (presentation) Λ f0

ÝÑ C0 f1

ÝÑ C1 Ñ 0 of Λ. The dual of Corol-
lary 1.5 shows that C0 and C1 are in PpCq. Applying Dp , T q to the sequence
we get the exact sequence 0 Ñ DpΛ, T q Ñ DpC0, T q Ñ DpC1, T q Ñ 0. By
Lemma 4.13 we have idΓ DpCi, T q ≤ r for i � 0, 1. Hence, by [19, Lemma 2.1]
(see also [22]) we conclude that idΓ DT ≤ r � 1.

Now suppose that n ¡ 1. Then we have a left C-approximation resolution

Λ
f0

ÝÑ C0 f1

ÝÑ C1 Ñ � � � Ñ Cn Ñ 0 of Λ. Applying Dp , T q to it we get the
exact sequence 0 Ñ DT Ñ DpC0, T q Ñ DpC1, T q Ñ � � � Ñ DpCn, T q Ñ 0.
Denote KerDpf i, T q by Li. Then by induction we find that idΓ L1 ≤ r�n�1.
Again by [19, Lemma 2.1] it follows that idΓ DT ≤ r � n.

The following lemma will be useful.

Lemma 4.15. Let C be a functorially finite subcategory of modΛ which
is closed under extensions and assume C-app.dimpmodΛq � n   8. Let
T be an F -tilting module in C with pdF T � r. Let M be a Λ-module and
consider a succession M1 ãÑ T0 Ñ M , M2 ãÑ T1 Ñ M1, . . . of minimal
right addT -approximations. Then 0 Ñ Mi�1 Ñ Ti Ñ Mi Ñ 0 is F -exact
for i ≥ r � n� 1.

Proof. Denote EndΛpT qop by Γ . From the complex � � � Ñ T2 Ñ T1 Ñ
T0 Ñ M we get a minimal projective resolution � � � Ñ pT, T1q Ñ pT, T0q Ñ

pT,Mq Ñ 0 of pT,Mq over Γ . We see that ExtjΓ ppT,Miq, Dp�addTC , T qq � 0
for all j ¡ 0 and i ¡ r, by Lemma 4.13. So if one applies the functor
HomΓ p , DpW,T qq, for W P �addTC , to the sequence � � � Ñ pT, Tr�1q Ñ

� � � Ñ pT, Trq Ñ pT,Mrq Ñ 0 it remains exact. Let W P �addTC . Then we
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have the following commutative diagram by the adjoint isomorphism and
Lemma 4.12:

ppT,Mrq, DpW,T qq //

o
��

ppT, Trq, DpW,T qq //

o
��

ppT, Tr�1q, DpW,T qq //

o
��

� � �

DppW,T q bΓ pT,Mrqq // DppW,T q bΓ pT, Trqq // DppW,T q bΓ pT, Tr�1qq // � � �

DppW,Mrqq

OO

// DppW,Trqq

o
OO

// DppW,Tr�1qq

o
OO

// � � �

Since the middle row in the above diagram is exact, the sequence

(1) 0 Ñ pW,Mi�1q Ñ pW,Tiq Ñ pW,Miq Ñ 0

is exact for i ≥ r � 1. In particular, (1) is exact for Q P PCpF q, since
PCpF q � �addTC .

Now, since C-app.dimpmodΛq � n, for any P P PpΛq we have a minimal

left C-approximation resolution P
f0

ÝÑ C0 f1

ÝÑ C1 Ñ � � � Ñ C l�1 f l
ÝÑ C l Ñ 0

with l ≤ n. Denote Coker f i�1 by Zi for 0   i   l. Note that by the dual of
Corollary 1.5 the Ci are in PCpF q for 0 ≤ i ≤ n. We want to show that the
sequence 0 Ñ pP,Mi�1q Ñ pP, Tiq Ñ pP,Miq Ñ 0 is exact for all i ≥ r�n�1
by using induction on n. For n � 0, this follows from Corollary 3.6 and the
dual of [10, Proposition 3.8].

For n � 1, we combine (1) and the resolution of P to get the exact
sequence of complexes

...

��

...

��

...

��
0 // pC1, Tr�2q //

��

pC0, Tr�2q //

��

pP, Tr�2q //

��

0

0 // pC1, Tr�1q //

��

pC0, Tr�1q //

��

pP, Tr�1q //

��

0

0 // pC1,Mr�1q //

��

pC0,Mr�1q //

��

pP,Mr�1q

0 0

By the long exact sequence (of complexes) [22], the sequence 0 Ñ pP,Mi�1q
Ñ pP, Tiq Ñ pP,Miq Ñ 0 is exact for all i ≥ r � 2. Therefore the sequence
0 Ñ Mi�1 Ñ Ti Ñ Mi Ñ 0 is exact for i ≥ r � 2. Then by (1) it is
F -exact.

Suppose n ¡ 1. By induction and using (1) and the resolution of P , we
find that the sequence 0 Ñ pZn�k,Mi�1q Ñ pZn�k, Tiq Ñ pZn�k,Miq Ñ 0
is exact for i ≥ r � 1 � k and 0   k ≤ n. In particular, for k � n, the
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sequence 0 ÑMi�1 Ñ Ti ÑMi Ñ 0 is exact for i ≥ r � n� 1. Then by (1)
it is F -exact.

Remark. Let B be in modΓ and consider a projective resolution of B.
Then the Γ -module Ωj

Γ pBq has a preimage in modΛ for j ≥ 2. However,
Ω1
Γ pBq does not necessarily have a preimage in modΛ.

Now we show that pT,YCT q � KpT, ICpF qq for a functorially finite subcat-
egory C of modΛ which is closed under extensions and has the property that
C-app.dimpmodΛq is finite. This is a generalization of [10, dual of Proposi-
tion 3.8].

Proposition 4.16. Let C be a functorially finite extension-closed sub-
category of modΛ and assume C-app.dimpmodΛq � n   8. Let T be
an F -tilting module in C with pdF T � r and let Γ � EndΛpT qop. Then
ExtiΓ pB, pT, ICpF qqq � 0 for all i ¡ 0 if and only if B P HomΛpT,YCT q.

Proof. We have 0 � ExtiF pY, ICpF qq � ExtiΓ ppT, Y q, pT, ICpF qqq for Y P
YCT , by Corollary 4.5. So pT, Y q � B P KpT, ICpF qq.

Conversely, let B be a Γ -module such that ExtiΓ pB, pT, ICpF qqq � 0

for i ¡ 0. Let HomΛpT, T1q
pT,f1q
ÝÝÝÝÑ HomΛpT, T0q Ñ B Ñ 0 be a minimal

projective presentation of B. By Lemma 4.4 this sequence is induced by
T1

f1ÝÑ T0. Denote Ker f1 by M2. Let 0 Ñ M3 Ñ T2 Ñ M2, 0 Ñ M4 Ñ T3

Ñ M3, . . . be a succession of minimal left addT -approximations. Then we
get a complex � � � Ñ T4

f4ÝÑ T3
f3ÝÑ T2 ÑM2, and the exact sequence

(2) � � � Ñ pT, Tsq Ñ pT, Ts�1q Ñ � � � Ñ pT, T1q Ñ pT, T0q Ñ B Ñ 0

is a minimal projective resolution of B over Γ . Denote Ω1
Γ pBq by B1. Ap-

plying HomΓ p , pT, Iqq, with I P ICpF q, to the resolution of B, we get the
exact commutative diagram

0 //
Γ pB, pT, Iqq //

Γ ppT, T0q, pT, Iqq //
Γ ppT, T1q, pT, Iqq // � � �

0 // HomΛpT bΓ B, Iq

o
OO

// HomΛpT0, Iq

o
OO

// HomΛpT1, Iq

o
OO

// � � �

by Lemma 4.4 and the adjoint isomorphism. The cohomology of the upper
row is ExtiΓ pB, pT, ICpF qq � 0 for i ¡ 0. So the sequence

(3) 0 Ñ pT bΓ B, Iq Ñ pT0, Iq Ñ � � � Ñ pTr, Iq Ñ pTr�1, Iq Ñ � � �

is exact.
On the other hand, since C-app.dimpIpΛqq � n, we have, for all I P IpΛq,

a minimal right C-approximation resolution 0 Ñ Cl
glÝÑ � � � Ñ C1

g1ÝÑ C0
g0ÝÑ

I with l ≤ n. Denote Ker gi by Yi�1 for 0 ≤ i   n. By Corollary 1.5 the
modules Ci are in IpF q for 0 ≤ i ≤ n. Then by the adjoint isomorphism, we
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have the commutative diagram

0 // pT bΓ B,Clq //

o
��

� � � // pT bΓ B,C0q //

o
��

pT bΓ B, Iq

o
��

0 // pB, pT,Clqq // � � � // pB, pT,C0qq // pB, pT, Iqq // Ext1Γ pB, pT, Y1qq

with l ≤ n. We then have Ext1Γ pB, pT, Y1qq � ExtnΓ pB, pT,Cnqq � 0 since
Cn P ICpF q. So the top row in the above diagram is exact.

Now, combining (3) and the resolution of I we get the exact sequence of
complexes

0

��

0

��

0

��
0 // pT bΓ B,Clq //

��

� � � // pT bΓ B,C0q

��

// pT bΓ B, Iq //

��

0

0 // pT0, Clq

��

// � � � // pT0, C0q

��

// pT0, Iq

��

// 0

0 // pT1, Clq //

��

� � � // pT1, C0q //

��

pT1, Iq //

��

0

...
...

...

with l ≤ n. By the long exact sequence (of complexes) [22], the sequence
0 Ñ pT bΓ B, Iq Ñ pT0, Iq Ñ � � � Ñ pTr, Iq Ñ � � � is exact for all I P IpΛq.
Hence

(4) 0 ÑMr�2n Ñ Tr�2n�1 Ñ � � � Ñ T0 Ñ T bΓ B Ñ 0

is exact.
By Lemma 4.15 the sequence 0 Ñ Mi�1 Ñ Ti Ñ Mi Ñ 0 is F -exact for

all i ≥ r�n�1. Hence Corollary 3.8 shows that Mi P C for i ≥ r�2n�1. But
then by (3) the sequence (4) is F ICpF q-exact. Hence by Proposition 2.5, Mi

for 2 ≤ i ≤ r� 2n� 1, T bΓ B1 and T bΓ B are in C. Since FX |C � F ICpF q|C
by Corollary 2.3, we infer that (4) is F -exact.

We deduce from (2) and (4) that Ext1F pT,Miq � 0 for 2   i ≤ r�2n�1.
The F -exact sequence 0 ÑMi�1 Ñ Ti ÑMi Ñ 0 gives

Extj�1
F pT,Mi�1q � ExtjF pT,Miq for j ¡ 0 and 2   i ≤ r � 2n� 1.

By dimension shift, we have ExtjF pT,Mr�2n�1q � 0 for 0   j   r � 1.
Since pdF T � r, it follows that Mr�2n�1 P YCT � TKC . By Proposition 4.2,
the subcategory YCT is F -coresolving, hence, by using the fact that (4) is
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F -exact we find that T bΓ B, T bΓ B1 and Mi, for i � 2, . . . , r� 2n� 1, are
in YCT . Let V � Ext1F pT, T bΓ B1q. Then the commutative exact diagram

� � � // pT, T2q // pT, T1q // pT, T0q // pT, T bΓ Bq // V // 0

� � � // pT, T2q // pT, T1q // pT, T0q // B //

OO

0

OO

yields pT, T bΓ Bq � B, since V � 0. Therefore B is in pT,YCT q, and the
result follows.

Remark. Note that C-app.dimpmodΛq being finite is sufficient but not
necessary for the equality pT,YCT q � KpT, ICpF qq to hold, as illustrated be-
low.

Example 4.17. Let Λ be an algebra given by the quiver

1α 99

β1
)) 2

β2

hh

with radical square-zero relations. Denote by Pi, Ii and Si the indecompos-
able projective, injective and simple Λ-modules corresponding to the vertex
i (the notations are fixed throughout the paper). Let C � FpΘq where
Θ � tP1{S2, P2u. Note that C is closed under summands, so it is closed un-
der extensions by [21]. C is functorially finite since it is of finite type. A right
C-approximation resolution of S1 is � � � Ñ P1{S2 Ñ P1{S2 Ñ S1 Ñ 0, so
Proposition 3.2 yields C-app.dimpmodΛq � 8. We have PpCq � IpCq � C.
Let F � FPpCq. Then the only F -tilting module up to isomorphism is T �
P1{S2`P2. Let Γ � EndΛpT qop and denote by Qi and Ji the projective and
injective Γ -modules corresponding to the vertex i (the notations are fixed
throughout the paper). It can be shown that pT,YCT q � pT, Cq � KpT, ICpF qq.

Next we want to show that pT, ICpF qq is a standard cotilting Γ -module.
The following result will help us to achieve our goal. The result also shows
that pT,YCT q-coresdimpmodΓ q is finite when C is a functorially finite subcat-
egory of modΛ which is closed under extensions and has C-app.dimpmodΛq
finite. This is a generalization of [10, Proposition 3.11].

Proposition 4.18. Let C be a functorially finite subcategory of modΛ
which is closed under extensions and assume C-app.dimpmodΛq � n   8.
Let T be an F -tilting module in C with pdF T � r and let Γ � EndΛpT qop.
Then {pT,YCT q � modΓ and

pT,YCT q-resdimpmodΓ q ≤ νpn, rq �

$&
%

2� n, r � 0,
3� 2n, r � 1,
r � 2n� 1, r ≥ 2.
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Proof. Let pT, T�1q Ñ pT, T�2q Ñ B Ñ 0 be a minimal projective pre-
sentation of B in modΓ . By Lemma 4.4 the presentation is induced by
T�1

f
ÝÑ T�2. Denote Ker f by M0. Then Ω2

Γ pBq � pT,M0q.
For r � 0, we have T � PCpF q, so that YCT � C. From the right C-

approximation resolution of M0, we have the sequence

0 // Cl // � � � // C1
f1

  AAAAA
// C0

f0

!!CCCCC
// T�1

f // T�2

Y1

. �

>>}}}}}
M0

- 

<<yyyyy

with l ≤ n, since C-app.dimpmodΛq � n. This yields the exact sequence

0 Ñ pT,Clq Ñ � � � Ñ pT,C0q Ñ pT, T�1q Ñ pT, T�2q Ñ B Ñ 0.

But since YCT � C, it follows that {pT,YCT q � modΓ and

pT,YCT q-resdimpmodΓ q ≤ 2� n.

For r ¡ 0, let 0 Ñ M1 Ñ T0 Ñ M0, 0 Ñ M2 Ñ T1 Ñ M1, . . . be a
succession of minimal right addT -approximations. Then we get a complex
� � � Ñ T2 Ñ T1 Ñ T0 Ñ M0, and the exact sequence � � � Ñ pT, T1q Ñ
pT, T0q Ñ pT, T�1q Ñ pT, T�2q Ñ B Ñ is a minimal projective resolution of
B in modΓ .

Assume that r ≥ 2. Since C-app.dimpmodΛq � n, it follows by Lemma
4.15 that the sequence 0 Ñ Mi�1 Ñ Ti Ñ Mi Ñ 0 is F -exact for all
i ≥ r � n � 1. Then Corollary 3.8 shows that Mi P C for i ≥ r � 2n � 1.
Moreover, by (1) in the proof of Lemma 4.15, we have Ext1F p�addTC ,Miq � 0
for i ¡ r�2n�1. Using the fact that 0 ÑMi�1 Ñ Ti ÑMi Ñ 0 is F -exact
for i ≥ r � 2n� 1 and �addTC � KT , we obtain

ExtjF p�addTC ,Miq � Extj�1
F p�addTC ,Mi�1q

for j ¡ 0 and i ≥ r�2n�1. By dimension shift, ExtiF p�addTC ,M2r�2n�1q � 0
for 0   i   r � 1. Since �addTC � PrpF q we have M2r�2n�1 P p�addTCqK

� YCT . But since YCT is F -coresolving and 0 Ñ Mi�1 Ñ Ti Ñ Mi Ñ 0
is F -exact for i ≥ r � 2n, it follows that Mi P YCT for r � 2n � 1 ≤
i ≤ 2r � 2n � 1. Hence pT,Mr�2n�1q � Ωr�2n�1

Γ pBq P pT,YCT q. There-
fore pT,YCT q-resdimpmodΓ q ≤ r � 2n � 1. If r � 1, the proof of the case
r ≥ 2 plus the remark after Lemma 4.15 can be used to show that M2n�1

P YCT . Hence pT,M2n�1q � Ω3�2n
Γ pBq P pT,YCT q and we conclude that

pT,YCT q-resdimpmodΓ q ≤ 3� 2n.

Remark. C-app.dimpmodΛq being finite is sufficient for the equality{pT,YCT q � modΓ to hold, but it is not known if the assumption is necessary.
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We are now in a position to show that HomΛpT, ICpF qq is a cotilting
module in modΓ when C is a functorially finite subcategory of modΛ which
is closed under extensions and C-app.dimpmodΛq is finite. This is a gener-
alization of [10, dual of Theorem 3.13].

Theorem 4.19. Let C be a functorially finite subcategory of modΛ which
is closed under extensions and assume C-app.dimpmodΛq � n   8. Let
T be an F -tilting module in C with pdF T � r and let Γ � EndΛpT qop.
Then:

(a) The subcategory pT,YCT q � KpT, ICpF qq is resolving and contravari-
antly finite in modΓ with pT,YCT q-resdimpmodΓ q ≤ νpn, rq.

(b) The subcategory pT,YCT qK � {pT, ICpF qq is coresolving and covariantly
finite in modΓ with idΓ pT, ICpF qq ≤ νpn, rq.

(c) pT,YCT q X pT,YCT qK � pT, ICpF qq.
(d) The subcategory pT, ICpF qq equals addT 0

C for a cotilting Γ -module
T 0
C with idΓ T 0

C ≤ νpn, rq. In particular , pT,YCT q � YT 0
C
� KT 0

C .

Proof. (a), (b) and (d) are similar to [10, dual of Theorem 3.13].

(c) We have pT,YCT q X pT,YCT qK � pT,YCT q X {pT, ICpF qq. So pT, ICpF qq �
pT,YCT q X pT,YCT qK. Let pT, Y q P pT,YCT q X pT,YCT qK. Then there is an exact
sequence

(1) 0 Ñ pT, Isq Ñ � � �
pT,f2q
ÝÝÝÝÑ pT, I1q

pT,f1q
ÝÝÝÝÑ pT, I0q

pT,f0q
ÝÝÝÝÑ pT, Y q Ñ 0

with Ij P ICpF q for all j ≤ s. Since pT,YCT q is resolving, we deduce that
CokerpT, fiq � pT, Yi�1q with Yi�1 P YCT for all i ¡ 0. Since pT, Y q P
KpT, ICpF qq, the functor p , pT, ICpF qqq is exact on (1). Applying p , pT, Jqq,
for J P ICpF q, to (1) we get the commutative diagram

0 // ppT, Y q, pT, Jqq // ppT, I0q, pT, Jqq // � � � // ppT, Isq, pT, Jqq // 0

0 // pY, Jq //

OO

pI0, Jq //

OO

� � � // pIs, Jq

OO

By Lemma 4.4 the sequence

(2) 0 Ñ pY, Jq Ñ pI0, Jq Ñ � � � Ñ pIs, Jq Ñ 0

is exact.
Now, since C-app.dimpmodΛq � n   8, we have a right C-appro-

ximation resolution 0 Ñ Cl Ñ � � � Ñ C1 Ñ C0 Ñ DΛ of DΛ with
l ≤ n. Combining (2) and the resolution of DΛ we get the commutative
diagram



RELATIVE THEORY IN SUBCATEGORIES 53

0

��

0

��

0

���
�
�

0 // pY,Clq //

��

� � � // pY,C0q //

��

pY,DΛq //

��

0

0 // pI0, Clq //

��

� � � // pI0, C0q //

��

pI0, DΛq //

��

0

...

��

...

��

...

��
0 // pIs, Clq //

��

� � � // pIs, C0q //

��

pIs, DΛq //

���
�
� 0

0 0 0
which is exact by the snake lemma. Hence the sequence

(3) 0 Ñ Is Ñ � � � Ñ I1 Ñ I0 Ñ Y Ñ 0

is exact. Actually, it is F -exact by using (2) and Corollary 2.3. Since Is P
ICpF q, the sequence 0 Ñ Is Ñ Is�1 Ñ Ys�1 Ñ 0 splits and hence Ys�1 P
ICpF q. By induction we have Y P ICpF q. Therefore pT,YCT q X pT,YCT qK �
pT, ICpF qq.

The following example illustrates the above theorem.

Example 4.20. Let Λ be an algebra given by the quiver

1 α // 2

β

�� γ // 3

with relations γα � 0 � β2 and γβα � 0. Let C be equal to the subcate-
gory addtS2, P2, I2, L,M,Nu, where L, M and N are given by the radical
filtration 2

2
, 2

3 2
, and 2

3
respectively. Then C is closed under extensions.

Moreover, C is functorially finite, since Λ is of finite type. It can be shown
that C-app.dimpmodΛq ≤ 1. Let F � FX , where X � PpCq Y addM . Then
we have ICpF q � IpCqYaddN . The Λ-module T � I3`L`M is an F -tilting
module in C with pdF T � 1. It can be shown that idF T � 8, hence T is
not F -cotilting in C. Let Γ � EndΛpT qop. It is easy to see that the Γ -module
V � P1 ` P2 ` S3, where addV � pT, ICpF qq, is cotilting with idΓ V � 2.

The following immediate consequence of Theorem 4.19 is an analog of
the dual of [10, Corollary 3.14].

Corollary 4.21. The subcategory ICpF q is of finite type.



54 S. K. MOHAMED

Proof. Since ICpF q is equivalent to pT, ICpF qq by Proposition 4.6(b) and
pT, ICpF qq is of finite type by Theorem 4.19(d), the subcategory ICpF q is of
finite type.

By the above result, if ICpF q is of infinite type, then there is no F -tilting
Λ-module in C.

It can be shown that (by the dual of [10, Proposition 3.15]) if T is an
F -tilting Λ-module in modΛ and Γ � EndΛpT qop, then DT is a direct
summand of a cotilting Γ -module T0, where addT0 � pT, IpF qq. This is
not necessarily the case for an F -tilting Λ-module T in a functorially finite
subcategory C of modΛ with C-app.dimpmodΛq � n, where 0 ≤ n   8. We
illustrate this by the following example.

Example 4.22. Let Λ be given by the quiver

2
α

�������

1 4

γ^^=====

δ�������

3
β

^^=====

with relation αγ � 0. Let C � addtP1, P2, S2, P4, C1, C2, I1, I2, I4u, where
the radical filtrations of C1 and C2 look like

4
2 3 2

1

4
3
1

respectively. It can be (easily) shown that C-app.dimpmodΛq � 1. Since
modΛ is of finite type, every subcategory of modΛ is functorially finite ([5,
Proposition 1.2]). Let F � FX where X � PpCq Y addS4. Denote the direct
sum of all indecomposable F -projective Λ-modules in C by P . Then P is
the trivial F -tilting module in C. Let Γ � EndΛpP qop. By Theorem 4.19(d)
the module T 0

C � J1 `Q4 `Q2 `Q5 ` 2 3
1 2

is a cotilting Γ -module. The
module pT, I3q is a direct summand of DT , but it is not a direct summand
of T 0

C . So DT is not a direct summand of T 0
C .

Observe that in Example 4.22 the module DT is in {addT 0
C . This is true

in general, as shown by the following result.

Proposition 4.23. Let T be an F -tilting module in a functorially finite
subcategory C of modΛ with C-app.dimpmodΛq � n, where 0 ≤ n   8.
Then DT is in {pT, ICpF qq.

Proof. Consider the right C-approximation resolution 0 Ñ Cl Ñ � � � Ñ
C1 Ñ C0 Ñ DΛ of DΛ, where l ≤ n. Applying the functor pT, q to it, we
get the exact sequence

0 Ñ pT,Clq Ñ � � � Ñ pT,C1q Ñ pT,C0q Ñ pT,DΛq Ñ 0.
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Lemma 1.5 shows that Ci is in ICpF q for 0 ≤ i ≤ n. Hence pT,Ciq P addT 0
C

for 0 ≤ i ≤ n. Therefore DT P {pT, ICpF qq.
4.3. Relative tilting and global dimension. In this section we show some

relationship between the F -global dimension of C and the global dimension
of Γ , which generalizes [10]. Consider the subfunctor F � FX in C. Through-
out this section we assume that ICpF q is covariantly finite in C. We fix an
F -tilting module T in C with pdF T � r and denote EndΛpT qop by Γ .

If T is F -tilting in modΛ, then it can be shown that (using duality
[10, Section 4]) the relative (or F -) global dimension of Λ, gl.dimF Λ, and the
global dimension of Γ , gl.dimΓ , are related by the inequalities gl.dimF Λ�
pdF T ≤ gl.dimΓ ≤ νp0, pdF T q � gl.dimF Λ.

Denote by gl.dimF C the relative (or F -) global dimension of C. We show
that gl.dimF C and gl.dimΓ satisfy similar inequalities, namely gl.dimF C�
pdF T ≤ gl.dimΓ ≤ νpn, rq � gl.dimF C, where νpn, rq is the upper bound
of YCT -resdimpmodΓ q (see Proposition 4.18).

The main result in this section, given below, is a generalization of [10,
dual of Proposition 4.1].

Proposition 4.24. Let C be a functorially finite subcategory of modΛ
which is closed under extensions and assume C-app.dimpmodΛq � n   8.
Let T be an F -tilting module in C with pdF T � r and let Γ � EndΛpT qop.
Then

gl.dimF C � pdF T ≤ gl.dimΓ ≤ νpn, rq � gl.dimF C.
Proof. First we prove that gl.dimΓ ≤ νpn, rq � gl.dimF C. If gl.dimF C

is infinite, there is nothing to prove, so we assume that it is finite. For all
Y P YCT there is an F -exact sequence 0 Ñ Y Ñ I0 Ñ I1 Ñ � � � Ñ Is Ñ 0 with
Ii P ICpF q and s ≤ gl.dimF C. When we apply HomΛpT, q to it we get the
exact sequence 0 Ñ pT, Y q Ñ pT, I0q Ñ � � � Ñ pT, Isq Ñ 0. Theorem 4.19(b)
shows that idΓ pT, ICpF qq ≤ νpn, rq, hence idΓ pT,YCT q ≤ νpn, rq � gl.dimF C.
By Proposition 4.18 we have Ωνpn,rq

F pBq P pT,YCT q for all B P modΓ . Hence
idΓ B ≤ idΓ pT, Y q ≤ νpn, rq�gl.dimF C for all Y in YCT , since Γ is in pT,YCT q.
Thus we have shown that gl.dimΓ ≤ νpn, rq � gl.dimF C.

Now we show that gl.dimF C ≤ pdF T � gl.dimΓ . If gl.dimΓ is infinite,
there is nothing to prove, so we assume that it is finite. By the dual of [10,
Proposition 3.7] we have ExtiF pC,Aq � ExtiΓ ppT,Cq, pT,Aqq for all A and
C P YCF . So ExtiF pC,Aq � 0 for i ¡ gl.dimΓ .

We claim that if ExtiF pYCF , Bq � 0 for all i ¡ j then ExtiF p , Bq � 0
for all i ¡ j, equivalently Ω�j

F pBq P ICpF q. To prove the claim, let N P C.
By Proposition 4.2, YCT -coresdimF C � r is finite, so we have an F -exact
sequence 0 Ñ N Ñ Y0 Ñ � � � Ñ Yr Ñ 0 with Yi P YCT . Applying p , Bq and
using dimension shift, we get ExtiF pN,Bq � Exti�rF pYr, Bq � 0 for all i ¡ j.
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So ExtiF pN,Bq � 0 for all i ¡ j and N P C, which is equivalent to saying
that Ω�j

F pBq P ICpF q. Hence the claim follows.
Now since ExtiF pC,Aq � 0 for i ¡ gl.dimΓ for all C and A P YCT ,

the claim shows that Ω� gl.dimΓ
F pAq P ICpF q. By Proposition 4.2 we have

YCT -coresdimF C ≤ r. Since ICpF q � YCT , we have an F -exact sequence 0 Ñ
N Ñ I0 Ñ � � � Ñ Ir�1 Ñ Ω�r

F pNq Ñ 0 with Ω�r
F pNq P YCT for all N P C. So

idF N ≤ r�gl.dimΓ for all N P C. Therefore, gl.dimF C ≤ pdF T�gl.dimΛ,
and the result follows.

5. Relative theory and stratifying systems. Erdmann and Sáenz
[13] introduced the concept of a stratifying system. The concept was studied
further by Marcos et al. [17], who introduced the notion of an Ext-projective
stratifying system. Suppose Θ is a stratifying system and let FpΘq denote
the category of Λ-modules filtered by Θ. Let Q denote the direct sum of all
nonisomorphic indecomposable Ext-projective modules in FpΘq. One of the
main results of [17] states that the algebra B � EndΛpQqop is standardly
stratified and the functor HomΛpQ, q induces an equivalence between the
subcategories FΛpΘq and FBp∆q. Moreover, FΓ p∆q � �addBT , where BT is
the characteristic tilting B-module.

Throughout this section, C is a functorially finite subcategory of modΛ
which is closed under extensions, and X is a contravariantly finite subcat-
egory of C which is a generator for C. Consider the subfunctor F � FX
in C. Let T be an F -tilting F -cotilting module in C and denote EndCpT qop

by Γ . In 5.1 we prove the main result of this section, which shows that
the Γ -module HomΛpT, ICpF qq is tilting. Moreover, there is an equivalence
between the subcategories {addTC of C and �pT, ICpF qq of modΓ . The main
result of this section was inspired by the above-mentioned result from [17].
We look at the connection between relative theory and stratifying systems
in 5.2. In 5.3 we first show that if the C-approximation dimension of modΛ
is finite, then Γ is an artin Gorenstein algebra, which generalizes [11, Propo-
sition 3.1]. We then construct quasihereditary algebras using relative theory
in subcategories.

5.1. Relative tilting cotilting modules in subcategories. Let T be an F -
tilting F -cotilting module in C and denote EndΛpT qop by Γ . In the next
result we show that the Γ -module pT, ICpF qq is tilting and the tilting functor
induces an equivalence between {addTC and pT,{addTCq. This is the main
result of this section.

Theorem 5.1. Let C be a functorially finite subcategory of modΛ which
is closed under extensions. Let T be an F -tilting F -cotilting module in C and
let Γ � EndΛpT qop. Then:
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(a) The Γ -module pT, ICpF qq is tilting with projective dimension at most
idF T . Moreover , pT, ICpF qq is of finite type.

(b) The functor HomΛpT, q : modΛ Ñ modΓ induces an equivalence
between {addTC and pT,{addTCq.

Proof. (a) By Corollary 4.5, we have

ExtiΓ ppT, ICpF qq, pT, ICpF qqq � ExtiF pICpF q, ICpF qq � 0

since ICpF q � YCT . Since T is F -cotilting module in C, we have an F -exact
sequence. 0 Ñ Tm Ñ � � � Ñ T1 Ñ T0 Ñ ICpF q Ñ 0 with Ti P addT and
m ≤ idF T . Applying the functor pT, q to it we deduce that pdΓ pT, ICpF qq
is finite. In particular, pdΓ pT, ICpF qq ≤ idF T . Applying HomΛpT, q to the
F -injective resolution of T we see that Γ P �pT, ICpF qq. Therefore pT, ICpF qq
is a standard tilting Γ -module.

By the corollary to [19, Proposition 1.8] we infer that pT, Iq, for all
I P ICpF q, is a direct summand of

add
sà
i�0

pT, Iiq

with all Ii P ICpF q. Hence pT, ICpF qq is of finite type.
(b) This follows from Theorem 4.6, since {addTC � TKC .

The following result shows that in Theorem 5.1 it is sufficient to assume
that gl.dimF C   8 and T is F -tilting.

Corollary 5.2. Let T be an F -tilting module in C and assume that
gl.dimF C is finite. Then T is an F -cotilting module in C.

Proof. It follows that T is F -selforthogonal and has finite F -injective
dimension, since T is F -tilting and gl.dimF C is finite. Since gl.dimF C is
finite and T is an F -tilting module in C, we have TKC �{addT by Lemma
4.3. Therefore ICpF q has a finite F -addT -resolution.

The following is also a consequence of Theorem 5.1.

Corollary 5.3. Let T be an F -tilting F -cotilting module in C. Then
the subcategory ICpF q is of finite type.

Proof. Theorem 5.1(a) shows that pT, ICpF qq is of finite type. By The-
orem 5.1(b) there is an equivalence between ICpF q and pT, ICpF qq. Hence
the claim follows.

Now we show that the subcategories pT,{addTCq and �pT, ICpF qq coincide.
We need the following results.

Lemma 5.4. Let C be a functorially finite subcategory of modΛ which
is closed under extensions. Let T be an F -tilting module in C and let Γ �
EndΛpT qop. Assume pdΓ pT, ICpF qq is finite. Then DT P pT, ICpF qqK.
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Proof. Since C is functorially finite in modΛ, we have a right C-approxi-
mation resolution � � � Ñ C1

g1ÝÑ C0
g0ÝÑ DΛ of DΛ. Denote Ker gi by Yi�1 for

i ≥ 0. Applying pT, q to the above sequence we get an exact sequence

(4) � � � Ñ pT,C1q Ñ pT,C0q Ñ pT,DΛq Ñ 0.

since T P C. Consider the short exact sequence 0 Ñ pT, Yj�1q Ñ pT,Cjq Ñ
pT, Yjq Ñ 0. Applying ppT, ICpF qq, q we get the following commutative
diagram by Lemma 4.4:

(5)
0 // ppT, Iq, pT, Yj�1qq // ppT, Iq, pT,Cjqq // ppT, Iq, pT, Yjqq

0 // pI, Yj�1q //

o
OO

pI, Cjq //

o
OO

pI, Yjq //

o
OO

0

Since I P C, the bottom row of (5) is exact. Hence the top row of (5) is
exact. Thus the functor ppT, Iq, q, for I P ICpF q, is exact on (4). Therefore
Ext1Γ ppT, Iq, pT, Yjqq � 0 for all j ¡ 0. Let s be a nonnegative integer. Then
by dimension shift, ExtiΓ ppT, Iq, pT, Ysqq � 0 for all i ¡ 0 and s ≥ pdΓ pT, Iq.
But pdΓ pT, ICpF qq is finite by the assumption. Hence pT, Ysq P pT, ICpF qqK
for s ¡ pdΓ pT, Iq. Finally, by using the fact that pT, ICpF qqK is closed
under cokernels of monomorphisms and (4), it follows by induction that
DT P pT, ICpF qqK.

As an immediate consequence of the above result we have the following.

Corollary 5.5. The functor T bΓ � Dp , DT q : modΓ Ñ modΛ is
exact on �pT, ICpF qq.

Proof. Let Y P �pT, ICpF qq. Applying p , DT q to the pT, ICpF qq-coreso-
lution of Y , and then using dimension shift and Lemma 5.4, we get
ExtiΓ pY,DT q � Exti�qΓ ppT, Iqq, DT q � 0 for all i ¡ 0. Thus the claim fol-
lows.

We now show that the subcategory pT,{addTCq can be identified with the
subcategory �pT, ICpF qq.

Proposition 5.6. Let C be a functorially finite subcategory of modΛ
which is closed under extensions. Let T be an F -tilting F -cotilting module
in C and let Γ � EndΛpT qop. Then pT,{addTCq � �pT, ICpF qq.

Proof. By Theorem 5.1(b), Z P{addTC if and only if pT,Zq P pT,{addTCq.
Let Z P {addTC . Then we have an F -exact sequence 0 Ñ Z Ñ T0 Ñ T1 Ñ
� � � Ñ Tm Ñ 0 with Ti P addT . Since idF T is finite, so is idF Z by [19,
Lemma 2.1(1)]. Let 0 Ñ Z Ñ I0 Ñ � � � Ñ Is Ñ 0 be an F -injective
resolution of Z. Applying pT, q to it we get an exact sequence 0 Ñ pT,Zq Ñ

pT, I0q Ñ pT, I1q Ñ � � � Ñ pT, Isq Ñ 0, and thus pT,Zq P �pT, ICpF qq. Hence
pT,{addTCq � �pT, ICpF qq.
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Now let Y P �pT, ICpF qq. Then we have an exact sequence 0 Ñ Y Ñ
pT, I0q Ñ pT, I1q Ñ � � � Ñ pT, Isq Ñ 0 with Ii P ICpF q. By Theorem 5.1(a),
pdΓ pT, Ijq   8, hence pdΓ Y   8 (by [19, Lemma 2.1(4)]). Consider a
projective resolution 0 Ñ Pt Ñ � � � Ñ P1 Ñ P0 Ñ Y Ñ 0 of Y over Γ .
Denote Ωi

Γ pY q by Yi. Note that all Yi are in �pT, ICpF qq, since pT, ICpF qq is
tilting. Applying T bΓ � to the above sequence we get the exact sequence

(6) 0 Ñ T bΓ Pt Ñ � � � Ñ T bΓ P1 Ñ T bΓ P0 Ñ T bΓ Y Ñ 0

by Corollary 5.5. But since T bΓ Γ � T we see that (6) is isomorphic to

(7) 0 Ñ Tt Ñ � � � Ñ T1 Ñ T0 Ñ T bΓ Y Ñ 0.

We need to show that (7) is F -exact. By using the adjoint isomor-
phism and the fact that the Yj are in KpT, ICpF qq, we infer that the functor
HomΛp , Jq, for J in ICpF q, is exact on (6). Hence (7) is F ICpF q-exact. But
then Proposition 2.5 implies that (7) is in C. So (7) is F -exact by Corol-
lary 2.3. Therefore T bΓ Y is in {addTC . Then Theorem 5.1(b) shows that
pT, TbΓ Y q P pT,{addTCq. But by [19, Lemma 1.9], we have Y � pT, TbΓ Y q.
Therefore Y P pT,{addTCq. This completes the proof.

The following example illustrates the main result of this section. It also
shows that the Γ -module pT, ICpF qq is not cotilting.

Example 5.7. Let Λ be an algebra given by the quiver in Example 4.17
with relations α2 � 0, β1β2 � 0 and β1α � αβ2 � 0. Let θ1 � P1{P2 and
θ2 � P2. Then C � FpΘq � addtθ1, P1, P2u is closed under direct summands,
hence also under extensions. A right C-approximation resolution of S2 is
� � � Ñ P1{P2 Ñ P1{P2 Ñ P2 Ñ S2 Ñ 0. Then by Proposition 3.2 we have
C-app.dimpmodΛq � 8. Consider the subfunctor F � FC . There is only
one F -tilting module in C up to isomorphism, namely the trivial F -tilting
module T � P1 ` θ1 ` P2. Let Γ � EndΛpT qop. The module pT, ICpF qq is
Γ itself, so it is a tilting Γ -module. It can be easily seen that idΓ Q3 � 8.
Hence Γ is not a cotilting module over itself.

Question 1. Is pT, ICpF qq a tilting Γ -module when T is an arbitrary
F -tilting module in C?

If T is an F -tilting F -cotilting module in C, then the answer is given
in Theorem 5.1. But if T is F -tilting but not F -cotilting, then we have the
following example.

Example 5.8. Let Λ be an algebra given by the quiver

1
%% // 2 ee

with radical square-zero relations. Let C � addtS1, P2,M, I1, I2u, where M
is given by the radical filtration 1 2

1 2
. The subcategory C is closed under

extensions. The right C-approximation resolution of S2 is � � � Ñ I2 Ñ I2 Ñ
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S2 Ñ 0. Then Proposition 3.2 yields C-app.dimpmodΛq � 8. Since Λ is of
finite type, all subcategories of modΛ are functorially finite as in the pre-
vious example. Let F � FPpCq. Let T be the trivial F -tilting module in C.
It can be (easily) shown that idF T � 8. Hence T is not an F -cotilting
Γ -module. Let Γ � EndΛpT qop. Denote by U the direct sum of all indecom-
posable modules in ICpF q. It can be easily seen that pdΓ J1 � 8. Hence
pT,Uq is not a tilting Γ -module. It can also be seen that idΓ Q2{Q1 � 8,
hence pT,Uq is not a cotilting module.

5.2. Stratifying systems. In this subsection we look at the relationship
between relative theory and stratifying systems. We show how a relative
theory can be defined in a subcategory associated with a stratifying system.
Then we show that the main result of this section generalizes one of the
main results of [17].

But first we recall the definition of a stratifying system.

Definition ([13, Definition 1.1]). Let R be a finite-dimensional algebra.
A stratifying system Θ � pΘ,¨q of size t consists of a set Θ � tθpiquti�1 of
indecomposable R-modules and a total order ¨ on t1, . . . , tu satisfying the
following conditions:

(i) HomRpθpjq, θpiqq � 0 for j ¡ i,
(ii) Ext1Rpθpjq, θpiqq � 0 for j © i.

As before, FpΘq denotes the subcategory of modR consisting of all mod-
ules having filtration with quotients isomorphic to the θpiq’s. The subcate-
gory FpΘq is functorially finite in modR [21]. If FpΘq is closed under direct
summands, then it is closed under extensions [21].

Let Θ be a stratifying system and let C � FpΘq. Then PpCq � addQ,
where Q �

Àt
i�1Qpiq. The module Qpiq, for i � 1, . . . , t, is given by the ex-

act sequence 0Ñ KpiqÑQpiqÑ θpiqÑ 0 such that Kpiq PFptθpjq : j ¡ iuq.
Dually, IpCq � addY , where Y �

Àt
i�1 Y piq. The module Y piq, for i �

1, . . . , t, is given by the exact sequence 0 Ñ θpiq Ñ Y piq Ñ Lpiq Ñ 0 such
that Lpiq is in Fptθpjq : j   iuq [17], [18].

Now, since C is functorially finite in modΛ and closed under extensions,
it has enough Ext-projectives and Ext-injectives by Corollary 1.3. Then
gl.dim C is finite by [17, Corollary 2.11] and [13, Lemma 1.5]. It is easy to see
that PpCq and IpCq are contravariantly and covariantly finite subcategories
of C, respectively.

Consider the subfunctor F �FX , where X � PpCq. Then F is the trivial
subfunctor in C with gl.dimF C finite. We have PCpF q � addQ and ICpF q �
addY . Let T be the trivial F -tilting module Q in C and let Γ �EndΛpT qop.
Then the following result is a consequence of Theorem 5.1 and Proposition 5.6.
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Theorem 5.9 ([17, Theorems 3.1, 3.2]). Let Θ be a stratifying system
and consider the category FpΘq. Then:

(a) HomΛpT, Y q is a tilting Γ -module.
(b) The functor HomΛpT, q : modΛ Ñ modΓ induces an equivalence

between FpΘq and HomΛpT,FpΘqq.
(c) pT,FpΘqq ��pT, Y q.
Proof. (a) and (b) follow from Theorem 5.1, while (c) follows from

Proposition 5.6.

5.3. Construction of Gorenstein and quasihereditary algebras. In this
section we construct Gorenstein algebras as endomorphism algebras of rela-
tive tilting and relative cotilting modules. We then construct quasihereditary
algebras from stratifying systems.

Recall that an algebra Λ is said to be Gorenstein if idΛ Λ and idΛop Λop

are both finite. If Λ is also artin (or an algebra which admits duality), then
idΛop Λop is finite if and only if pdΛDpΛopq is finite [11]. The following result
is a generalization of [11, Proposition 3.1].

Proposition 5.10. Let C be a functorially finite subcategory of modΛ
which is closed under extensions and assume C-app.dimpmodΛq � n   8.
Let T be an F -tilting F -cotilting module in C and Γ � EndΛpT qop. Then
Γ is an artin Gorenstein algebra with both idΓ Γ and pdΓ DpΓ opq at most
idF T � νpn, rq.

Proof. By Theorem 5.1, pT, ICpF qq is a tilting Γ -module such that
pdΓ pT, ICpF qq ≤ idF T . So we have an exact sequence

0 Ñ Γ Ñ pT, I0q Ñ pT, I1q Ñ � � � Ñ pT, Isq Ñ 0

with the pT, Ijq in pT, ICpF qq and s ≤ idF T . Then Theorem 4.19 shows that
idΓ Γ ≤ idF T � νpn, rq.

On the other hand, we have, by Theorem 4.19, an exact sequence

0 Ñ pT, Itq Ñ � � � Ñ pT, I1q Ñ pT, I0q Ñ DpΓ opq Ñ 0

with the pT, Ijq in pT, ICpF qq and t ≤ νpn, rq, since pT, ICpF qq is a cotilt-
ing Γ -module. Hence pdΓ DpΓ opq ≤ idF T � νpn, rq. Therefore Γ is artin
Gorenstein.

The following result gives us an important subclass of Gorenstein alge-
bras, namely a class of algebras of finite global dimension.

Proposition 5.11. Let C be a functorially finite subcategory of modΛ
which is closed under extensions. Let T be an F -tilting module in C. Assume
C-app.dimpmodΛq and gl.dimF C are finite. Then Γ � EndΛpT qop has finite
global dimension.
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Proof. Follows easily from Proposition 4.24.

The following consequence of Proposition 5.11 gives a sufficient condition
for obtaining a quasihereditary algebra for a given stratifying system Θ. Let
Q denote the direct sum of non-isomorphism indecomposable Ext-projective
modules in FpΘq.

Corollary 5.12. Let Θ be a stratifying system and Q be as above. As-
sume FpΘq-app.dimpmodΛq is finite. Then EndΛpQqop is quasihereditary.

Proof. Define a subfunctor F � FX , where X � addQ. Then the di-
mension gl.dimF FpΘq is finite. By [17, Theorem 0.1], EndΛpQqop is a stan-
dardly stratified algebra. But then Proposition 5.11 shows that EndΛpQqop

has finite global dimension. Hence EndΛpQqop is quasihereditary by using
[1, Theorem 2.4].
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