VOL. 117

2009

NO. 2

ON AN INTEGRAL OF FRACTIONAL POWER OPERATORS

BY
NICK DUNGEY (Sydney)

Abstract. For a bounded and sectorial linear operator V in a Banach space, with spectrum in the open unit disc, we study the operator $\tilde{V} = \int_0^\infty d\alpha V^\alpha$. We show, for example, that \tilde{V} is sectorial, and asymptotically of type 0. If V has single-point spectrum $\{0\}$, then \tilde{V} is of type 0 with a single-point spectrum, and the operator $I - \tilde{V}$ satisfies the Ritt resolvent condition. These results generalize an example of Lyubich, who studied the case where V is a classical Volterra operator.

1. Introduction. Consider the classical Volterra operator J which acts in the Banach spaces $L^p([0,1])$, $1 \leq p \leq \infty$, by $(Jf)(x) = \int_0^x dy f(y)$. It is well known that J is a bounded operator in L^p with single-point spectrum $\{0\}$, and it can be proved that J is sectorial of type $\pi/2$. See, for example, the arguments of [4, Section 8.5]; more refined estimates for J are given in [8] and in [10, Theorem 1.2]. Here we use a standard definition of sectoriality: a closed linear operator V acting in the complex Banach space X is said to be *sectorial*, of type $\omega \in [0, \pi)$, if its spectrum $\sigma(V)$ is contained in the closed sector $\overline{A}_{\omega} := \{0\} \cup \{z \in \mathbb{C} : |\arg z| \leq \omega\}$ and if

$$\sup_{\lambda \in \Lambda_{\pi-\theta}} \|\lambda(\lambda+V)^{-1}\| < \infty$$

for any $\theta \in (\omega, \pi)$ (where Λ_{ω} denotes the open sector $\{z \in \mathbb{C} : z \neq 0, |\arg z| < \omega\}$).

Note that there is a well developed theory for the fractional powers V^{α} , $\alpha > 0$, of any sectorial operator V; see, for example, [9] or [4]. For example, a classical result states that if V is of type ω then V^{α} is of type $\alpha \omega$ for $\alpha \in (0, 1)$.

In [8] Lyubich considered the interesting example of the operator

(1)
$$\widetilde{J} := \int_{0}^{\infty} d\alpha \, J^{\alpha},$$

and showed that it is bounded and sectorial of type 0, with spectrum $\{0\}$.

²⁰⁰⁰ Mathematics Subject Classification: 47A60, 47A10.

Key words and phrases: fractional power, functional calculus, sectorial operator, Ritt resolvent condition, Volterra operator.

One can wonder if similar results are true if in (1) the Volterra operator J is replaced by a more general sectorial operator V in a Banach space. In this note we will show that this is indeed the case under some additional conditions on V, namely, V should be bounded with spectrum contained in the open unit disc $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$

For such operators V we will see that although the operator $\widetilde{V} := \int_0^\infty d\alpha V^\alpha$ is not necessarily of type 0, it is of *asymptotic* type 0. This statement uses the notion of asymptotic type introduced in [3]: a closed linear operator V is said to be of asymptotic type $\omega \in [0, \pi)$ if for every $\theta \in (\omega, \pi)$ there exists an $\varepsilon > 0$ such that $\sigma(V) \cap \overline{D}(0; \varepsilon) \subseteq \overline{A}_{\theta}$ and

$$\sup_{\lambda \in \Lambda_{\pi-\theta} \cap \bar{D}(0;\varepsilon)} \|\lambda(\lambda+V)^{-1}\| < \infty$$

(where $\overline{D}(a; r) := \{z \in \mathbb{C} : |z-a| \le r\}$ for $a \in \mathbb{C}, r \ge 0$). Clearly an operator of type ω is also of asymptotic type ω , but the converse is not true.

It was actually shown in [3] that the operator

$$\int_{0}^{1} d\alpha \, V^{\alpha}$$

is of asymptotic type 0, for a general sectorial operator V. (See also [5, p. 466] for a related example when V is a modified Volterra operator.) In the present paper our proof of the asymptotic type property for the operator $\int_0^\infty d\alpha V^\alpha$ is rather different from the approaches in [3] and in Lyubich's paper [8]. In fact, our proof depends essentially on the fact that the operator semigroup $\alpha \mapsto V^\alpha \in \mathcal{L}(X)$ extends to a holomorphic semigroup on the half plane $\Lambda_{\pi/2}$, which is exponentially bounded on proper subsectors of $\Lambda_{\pi/2}$. Here, $\mathcal{L}(X)$ denotes the space of all bounded linear operators $T: X \to X$.

It is interesting to point out the formal identity

(2)
$$\int_{0}^{\infty} d\alpha \, V^{\alpha} = -1/\log V$$

obtained by substituting $V^{\alpha} = e^{\alpha \log V}$. This identity is actually valid within the usual bounded Dunford functional calculus for the operator $V \in \mathcal{L}(X)$ if one assumes that $\sigma(V) \subseteq \mathbb{D} \setminus (-1,0]$; in that case $\log V$, $(\log V)^{-1}$ are elements of $\mathcal{L}(X)$. However, we wish to allow operators V with $0 \in \sigma(V)$ and which are possibly non-injective, whereas the operator $\log V$ can generally only be defined for injective sectorial operators (see [4, Section 3.5]). Nevertheless, it might be possible to make sense of (2) even for non-injective V by considering a *multi-valued* operator $\log V$ (compare [4, Remark 3.5.4]). We do not pursue this here.

In [8] Lyubich applied his results on the operator (1) to give a new example of an operator satisfying the well known Ritt condition. Recall

that $T \in \mathcal{L}(X)$ is said to be a *Ritt operator* if $\sigma(T)$ is contained in the closed disc $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$ and if

$$\|(\lambda - T)^{-1}\| \le c|\lambda - 1|^{-1}$$

for some constant c > 0 and all $\lambda \in \mathbb{C}\setminus\overline{\mathbb{D}}$. It is a standard theorem that $T \in \mathcal{L}(X)$ is a Ritt operator if and only if $\sigma(T) \subseteq \mathbb{D} \cup \{1\}$ and I - T is of type ω for some $\omega \in [0, \pi/2)$; or alternatively, if and only if

$$\sup_{n \in \mathbb{N}} (\|T^n\| + n\|T^n - T^{n+1}\|) < \infty$$

where $\mathbb{N} := \{1, 2, 3, ...\}$ (see [1, 2, 7, 11, 12]). In particular, the properties of \widetilde{J} mentioned above imply that the operator

$$T := I - \tilde{J},$$

acting in $L^p([0,1])$, is a Ritt operator with spectrum equal to $\{1\}$. Thus Lyubich answered affirmatively a question of J. Zemánek as to whether there exist Ritt operators T with single-point spectrum $\{1\}$.

We will obtain a similar conclusion for the operator $T := I - \int_0^\infty d\alpha V^\alpha$, for any bounded sectorial operator V such that $\sigma(V) = \{0\}$.

Finally, let us speculate on possible generalizations. For a positive measure μ on $(0, \infty)$ and a suitable sectorial operator V one could consider an integral

$$\widetilde{V}_{\mu} := \int_{0}^{\infty} d\mu(\alpha) \, V^{\alpha}.$$

It seems reasonable to conjecture that \widetilde{V}_{μ} is of asymptotic type 0 when the measure μ is non-vanishing near 0 in the sense that $\mu((0,\varepsilon)) > 0$ for all $\varepsilon > 0$. Note that measures of the form $\mu = \sum_{k=1}^{\infty} a_k \delta_{\alpha_k}$ with $a_k, \alpha_k > 0, \sum_k a_k < \infty$ and $\lim_{k\to\infty} \alpha_k = 0$ satisfy this hypothesis. We shall not, however, develop these ideas here.

In what follows we always use the principal branch of the logarithm $z \mapsto \log z$ and of the power function $z \mapsto z^{\alpha} = e^{\alpha \log z}$ ($\alpha \in \mathbb{C}$), so that these functions are holomorphic on the domain $\mathbb{C} \setminus (-\infty, 0]$.

2. Proof of the main result. Before stating and proving our main result, let us recall some essential facts about fractional powers of operators (see [4] or [9]).

For a sectorial operator V in the complex Banach space X, one can define the fractional power V^{α} for every $\alpha \in \Lambda_{\pi/2} \subseteq \mathbb{C}$. If V is also injective one can define V^{α} for all $\alpha \in \mathbb{C}$, but we will avoid any injectivity assumption in what follows. Here are a few standard properties, in which we assume that $V \in \mathcal{L}(X)$ is a *bounded* sectorial operator. (For further details and complete proofs see [9] or [4].)

- (i) $V^{\alpha} \in \mathcal{L}(X)$, and $V^{\alpha}V^{\beta} = V^{\alpha+\beta}$ for all $\alpha, \beta \in \Lambda_{\pi/2}$.
- (ii) For $0 < \operatorname{Re} \alpha < 1$ one has the Balakrishnan formula

(3)
$$V^{\alpha} = \frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} dt \, t^{\alpha - 1} (t + V)^{-1} V.$$

(iii) The mapping $\alpha \in \Lambda_{\pi/2} \mapsto V^{\alpha} \in \mathcal{L}(X)$ is holomorphic.

(It is not difficult to derive (iii) from (i) and (ii)).

Observe that V^{α} is uniquely determined for all $\alpha \in \Lambda_{\pi/2}$ by properties (i) and (ii). We mention that V^{α} is also given by a Dunford integral

$$(2\pi i)^{-1} \int\limits_{\gamma} dz \, z^{\alpha} (z-V)^{-1}$$

where γ is the positively oriented boundary of a truncated sector $\overline{A}_{\theta} \cap \overline{D}(0; R)$, for large enough $\theta \in (0, \pi)$ and R > ||V||.

Here is our main result.

THEOREM 2.1. Let $V \in \mathcal{L}(X)$ be a bounded sectorial operator such that $\sigma(V) \subseteq \mathbb{D}$. Define the operator

(4)
$$\widetilde{V} := \int_{0}^{\infty} d\alpha \, V^{\alpha}.$$

Then $\widetilde{V} \in \mathcal{L}(X)$, and

(5)
$$\sigma(\widetilde{V}) = \{-1/\log \lambda \colon \lambda \in \sigma(V)\}$$

with the convention that $1/\log 0 := 0$. Moreover, \tilde{V} is of asymptotic type 0: more precisely, if $M_0 > 0$, $M_1 \ge 1$ are such that

(6)
$$||V|| \le M_0, \quad \sup_{\lambda > 0} ||\lambda(\lambda + V)^{-1}|| \le M_1,$$

then for each $\theta \in (0,\pi)$ there exist $c, \delta > 0$ depending only on θ, M_0, M_1 such that

$$\|\lambda(\lambda + \widetilde{V})^{-1}\| \le c$$

for all $\lambda \in \Lambda_{\pi-\theta} \cap \overline{D}(0; \delta)$.

The operator \widetilde{V} is sectorial. More precisely, if $r_0 \in (0,1)$ and $\omega_0 \in [0,\pi)$ are chosen with

(7)
$$\sigma(V) \subseteq \overline{D}(0; r_0) \cap \overline{A}_{\omega_0},$$

then \widetilde{V} is of type $\widetilde{\omega}$, where

(8)
$$\widetilde{\omega} := \arg(-\log r_0 + i\omega_0) \in [0, \pi/2).$$

In particular, if $\sigma(V) \subseteq [0,1)$ then \widetilde{V} is of type 0.

In the special case where $\sigma(V) = \{0\}$, then (5) gives $\sigma(\tilde{V}) = \{0\}$, and \tilde{V} is of type 0. Thus one obtains the following corollary, which generalizes Lyubich's example of a single-point spectrum Ritt operator discussed in Section 1.

COROLLARY 2.2. Let $V \in \mathcal{L}(X)$ be a bounded sectorial operator with $\sigma(V) = \{0\}$, and define \widetilde{V} as in Theorem 2.1. Then the operator $T := I - \widetilde{V} = I - \int_0^\infty d\alpha V^\alpha$ is a Ritt operator with spectrum $\sigma(T) = \{1\}$, and the operator $I - T = \widetilde{V}$ is of type 0.

In the rest of this section we prove Theorem 2.1. Let V satisfy the hypotheses of the theorem.

LEMMA 2.3. Given any $\varphi \in (0, \pi/2)$, there exist $c, \rho > 0$ depending only on φ and on M_0, M_1 in (6) such that

(9)
$$||V^{\alpha}|| \le ce^{\rho|\alpha|}, \quad \alpha \in \Lambda_{\varphi}.$$

Moreover, there exist $C, \sigma > 0$ such that

(10)
$$||V^{\alpha}|| \le Ce^{-\sigma\alpha}, \quad \alpha > 0.$$

Proof. Given $\varphi \in (0, \pi/2)$, we first claim that there is a $c_0 \geq 1$ depending only on φ, M_0, M_1 such that

(11)
$$\sup\{\|V^{\alpha}\|: \alpha \in \Lambda_{\varphi} \cap \overline{D}(0; 1/2)\} \le c_0.$$

This can be seen from (3): apply the bounds

$$||t^{\alpha-1}(t+V)^{-1}V|| = t^{\operatorname{Re}(\alpha)-1}||I - t(t+V)^{-1}|| \le t^{\operatorname{Re}(\alpha)-1}(1+M_1)$$

for $t \in (0, 1]$ and

$$||t^{\alpha-1}(t+V)^{-1}V|| \le t^{\operatorname{Re}(\alpha)-2}M_1M_0$$

for $t \geq 1$, noting also that $|(\operatorname{Re} \alpha)^{-1} \sin(\alpha \pi)|$ is uniformly bounded for $\alpha \in \Lambda_{\varphi} \cap \overline{D}(0; 1/2)$. We leave the reader to check the details.

Next, for any $\alpha \in \Lambda_{\varphi}$, take an integer $n \in (|\alpha|, |\alpha| + 1]$ and use (11) to write $||V^{\alpha}|| \leq (||V^{\alpha/2n}||)^{2n} \leq c_0^n \leq c_0 c_0^{|\alpha|}$. Then (9) follows.

Finally, the hypothesis $\sigma(T) \subseteq \mathbb{D}$ means that $\lim_{n \in \mathbb{N}, n \to \infty} ||V^n||^{1/n} < 1$, hence there exists a $\sigma > 0$ with $\sup\{e^{\sigma n} ||V^n|| : n \in \mathbb{N}\} < \infty$. Because $\sup\{||V^{\alpha}|| : \alpha \in (0, 1]\} < \infty$, it is easy to deduce (10).

By (10), the integral (4) converges and defines an element $\widetilde{V} \in \mathcal{L}(X)$. To study the resolvent of \widetilde{V} we require the following lemma.

LEMMA 2.4. One has

(12)
$$(\lambda + \widetilde{V})^{-1} = \lambda^{-1} - \lambda^{-2} \int_{0}^{\infty} d\alpha \, e^{-\lambda^{-1}\alpha} V^{\alpha}$$

for all $\lambda \in \Lambda_{\pi/2}$.

Heuristically, one derives (12) by writing $\widetilde{V} = -(\log V)^{-1}$ (recall (2)) so that

$$(\lambda + \widetilde{V})^{-1} = \lambda^{-1} - \lambda^{-2} (\lambda^{-1} - \log V)^{-1},$$

which equals the right side of (12) by writing $V^{\alpha} = e^{\alpha \log V}$.

Proof of Lemma 2.4. Let $R(\lambda)$ denote the operator on the right hand side of (12). It is clear from (10) that $R(\lambda) \in \mathcal{L}(X)$ and that $R(\lambda)\tilde{V} = \tilde{V}R(\lambda)$, so the lemma will follow if we show that $(\lambda + \tilde{V})R(\lambda) = I$. Now

$$\begin{split} (\lambda + \widetilde{V})R(\lambda) &= \left(\lambda + \int_{0}^{\infty} d\beta \, V^{\beta}\right) \left(\lambda^{-1} - \lambda^{-2} \int_{0}^{\infty} d\alpha \, e^{-\lambda^{-1} \alpha} V^{\alpha}\right) \\ &= I + \lambda^{-1} \int_{0}^{\infty} d\beta \, V^{\beta} - \lambda^{-1} \int_{0}^{\infty} d\alpha \, e^{-\lambda^{-1} \alpha} V^{\alpha} \\ &- \lambda^{-2} \int_{0}^{\infty} d\beta \, \int_{0}^{\infty} d\alpha \, e^{-\lambda^{-1} \alpha} V^{\alpha+\beta}. \end{split}$$

In the last line, make a change of variable $u = \alpha + \beta$ to see that

$$\begin{split} \int_{0}^{\infty} d\beta \int_{0}^{\infty} d\alpha \, e^{-\lambda^{-1}\alpha} V^{\alpha+\beta} &= \int_{0}^{\infty} d\beta \int_{\beta}^{\infty} du \, e^{-\lambda^{-1}u} e^{\lambda^{-1}\beta} V^{u} \\ &= \int_{0}^{\infty} du \, e^{-\lambda^{-1}u} V^{u} \Big[\int_{0}^{u} d\beta \, e^{\lambda^{-1}\beta} \Big] \\ &= \lambda \int_{0}^{\infty} du \, V^{u} - \lambda \int_{0}^{\infty} du \, e^{-\lambda^{-1}u} V^{u} \end{split}$$

Thus after cancellation we obtain $(\lambda + \widetilde{V})R(\lambda) = I$.

We remark that (12) and the bound $||V^{\alpha}|| \leq C$ from (10) yield

$$\|(\lambda + \widetilde{V})^{-1}\| \le |\lambda|^{-1} + C|\lambda|^{-2} (\operatorname{Re}(\lambda^{-1}))^{-1}$$

for all $\lambda \in \Lambda_{\pi/2}$. It follows easily that \widetilde{V} is sectorial of type $\pi/2$; however, the value $\pi/2$ will later be improved.

We will establish (5) by an approximation argument. Because $\sigma(V) \subseteq \mathbb{D}$ we may choose an $\varepsilon_0 > 0$ such that $\sigma(\varepsilon + V) \subseteq \mathbb{D}$ for all $\varepsilon \in (0, \varepsilon_0)$. For such ε the operators $\log(\varepsilon + V) \in \mathcal{L}(X)$ and $\widetilde{V}_{\varepsilon} := -(\log(\varepsilon + V))^{-1} \in \mathcal{L}(X)$ are defined by the Dunford functional calculus for V, and the usual spectral mapping theorem for that calculus yields

(13)
$$\sigma(V_{\varepsilon}) = \{-1/\log(\varepsilon + \lambda) \colon \lambda \in \sigma(V)\}$$

Note that

$$\widetilde{V}_{\varepsilon} = \int_{0}^{\infty} d\alpha \, e^{\alpha \log(\varepsilon + V)} = \int_{0}^{\infty} d\alpha \, (\varepsilon + V)^{\alpha}.$$

It is a standard fact, derivable from the above properties (i) and (ii) of fractional powers, that $\lim_{\varepsilon \downarrow 0} ||(\varepsilon + V)^{\alpha} - V^{\alpha}|| = 0$ for each $\alpha > 0$. Using the Lebesgue dominated convergence theorem one finds that

$$\lim_{\varepsilon \downarrow 0} \|\widetilde{V}_{\varepsilon} - \widetilde{V}\| \le \lim_{\varepsilon \downarrow 0} \int_{0}^{\infty} d\alpha \, \|(\varepsilon + V)^{\alpha} - V^{\alpha}\| = 0.$$

By standard results in spectral theory it follows that $\sigma(\widetilde{V})$ is the limit of the sets $\sigma(\widetilde{V}_{\varepsilon})$ as $\varepsilon \downarrow 0$, in the Hausdorff metric for compact subsets of \mathbb{C} ; see for example [6, Theorem IV.3.6]. But (13) shows that the sets $\sigma(\widetilde{V}_{\varepsilon})$ converge to $\{-1/\log \lambda \colon \lambda \in \sigma(V)\}$. Thus (5) follows.

That V is of asymptotic type 0 is really a consequence of the resolvent identity (12) and the fact that the semigroup $\alpha \mapsto V^{\alpha}$ is exponentially bounded on any proper subsector of the half plane $\Lambda_{\pi/2}$. The details are as follows.

Given any $\varphi \in (0, \pi/2)$, choose c, ρ as in (9). In (12), we may shift the integration to a complex contour $\{re^{i\theta} : r \ge 0\}$, where $\theta \in (-\varphi, \varphi)$, and then analytically continue in the variable λ . In this way one sees that

(14)
$$(\lambda + \widetilde{V})^{-1} = \lambda^{-1} - \lambda^{-2} e^{i\theta} \int_{0}^{\infty} dr \, e^{-\lambda^{-1} r e^{i\theta}} V^{r e^{i\theta}}$$

whenever $\lambda \in \mathbb{C}$ with $\lambda = |\lambda|e^{i(\theta+\tau)}$ where $\theta, \tau \in (-\varphi, \varphi)$ and $0 < |\lambda| < \rho^{-1} \cos \varphi$. These conditions on λ ensure that

$$\operatorname{Re}(\lambda^{-1}re^{i\theta}) \ge |\lambda|^{-1}r\cos\varphi > \rho r$$

so that the integral in (14) converges, thanks to (9). Choosing $\tau = \theta$ we obtain

$$\begin{aligned} \|\lambda(\lambda+\widetilde{V})^{-1}\| &\leq 1+c|\lambda|^{-1}\int_{0}^{\infty} dr \, e^{-|\lambda|^{-1}r\cos\varphi+\rho r} \\ &\leq 1+c|\lambda|^{-1}(|\lambda|^{-1}\cos\varphi-\rho)^{-1} \\ &\leq 1+2c(\cos\varphi)^{-1} \end{aligned}$$

valid for all $\lambda \in \Lambda_{2\varphi}$ such that $|\lambda| < 2^{-1}\rho^{-1}\cos\varphi$. This proves that \widetilde{V} is of asymptotic type 0 with resolvent estimates of the required form.

Let us prove the final statement of the theorem. It follows straightforwardly from (7) and (5) that $\sigma(\widetilde{V}) \subseteq \overline{A}_{\widetilde{\omega}}$ where $\widetilde{\omega}$ is defined by (8). Then, since $\widetilde{V} \in \mathcal{L}(X)$, one must have

$$\sup\{\|\lambda(\lambda+\widetilde{V})^{-1}\|:\lambda\in\Lambda_{\pi-\theta},\,|\lambda|\geq\varepsilon\}<\infty$$

for every $\theta \in (\tilde{\omega}, \pi)$ and $\varepsilon > 0$. Because \tilde{V} is of asymptotic type 0 it follows that \tilde{V} is actually of type $\tilde{\omega}$. The proof of Theorem 2.1 is complete.

Acknowledgements. This work was carried out at Macquarie University and financially supported by the ARC (Australian Research Council).

REFERENCES

- [1] S. Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2001), 157–176.
- [2] —, Analyticity and discrete maximal regularity on L_p -spaces, J. Funct. Anal. 183 (2001), 211–230.
- [3] N. Dungey, Asymptotic type for sectorial operators and an integral of fractional powers, preprint, Macquarie Univ., 2008.
- [4] M. Haase, The Functional Calculus for Sectorial Operators, Birkhäuser, Basel, 2006.
- [5] N. Kalton, S. Montgomery-Smith, K. Oleszkiewicz and Y. Tomilov, *Power-bounded operators and related norm estimates*, J. London Math. Soc. 70 (2004), 463–478.
- [6] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss. 132, Springer, 1980.
- [7] Yu. Lyubich, Spectral localization, power boundedness and invariant subspaces under Ritt's type condition, Studia Math. 134 (1999), 153–167.
- [8] —, The single-point spectrum operators satisfying Ritt's resolvent condition, ibid. 145 (2001), 135–142.
- C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Math. Stud. 187, North-Holland, Amsterdam, 2001.
- [10] A. Montes-Rodríguez, J. Sánchez-Álvarez and J. Zemánek, Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator, Proc. London Math. Soc. 91 (2005), 761–788.
- B. Nagy and J. Zemánek, A resolvent condition implying power boundedness, Studia Math. 134 (1999), 143–151.
- [12] O. Nevanlinna, On the growth of the resolvent operators for power bounded operators, in: Linear Operators, Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 247–264.

Department of Mathematics Macquarie University Sydney, NSW 2109, Australia E-mail: ndungey@ics.mq.edu.au

Received 19 May 2008

(5051)