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A NOTE ON GLOBAL INTEGRABILITY OF UPPER GRADIENTS
OF p-SUPERHARMONIC FUNCTIONS

BY

OUTI ELINA MAASALO (Helsinki) and ANNA ZATORSKA-GOLDSTEIN (Warszawa)

Abstract. We consider a complete metric space equipped with a doubling measure
and a weak Poincaré inequality. We prove that for all p-superharmonic functions there
exists an upper gradient that is integrable on H-chain sets with a positive exponent.

1. Introduction. Let (X, d) be a metric space equipped with a Borel
measure µ. In a metric measure space the concept of an upper gradient serves
as a substitute for the Sobolev gradient. Roughly speaking this allows us to
control the growth of a function along a curve. Suppose that 1 ≤ p < ∞
and let u be a real-valued function on X. A non-negative Borel measurable
function g on X is said to be a p-weak upper gradient of u if

(1.1) |u(γ(a))− u(γ(b))| ≤
�

γ

g ds

for sufficiently many rectifiable paths in X. We recall that a path γ is rectifi-
able if length(γ) <∞. A precise formulation is that (1.1) holds for all paths
except a family of zero p-modulus. The reader may consult, for example,
[5], [6] and [13] for a discussion of upper gradients, and [6] or [7] for the
definition of p-modulus and discussion of paths.

The Sobolev space on a metric measure space, called the Newtonian
space N1,p(X), can be defined as the collection of equivalence classes of
p-integrable functions with p-integrable upper gradients. If Ω is an open
subset of X, the Newtonian space with zero boundary values, N1,p

0 (Ω), can
be defined as the collection of functions in N1,p(X) that are zero outside Ω.
The precise definitions and further information can be found in various
references, e.g. [13].

Newtonian functions can be used to study the p-Dirichlet integral

(1.2)
�

Ω

gpu dµ,

where gu is the minimal upper gradient of u in the sense that for any other
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p-integrable p-weak upper gradient g of u we have gu ≤ g µ-almost every-
where in X. There is a nonlinear potential theory related to minimizers
of (1.2), which corresponds to the Euclidean theory for solutions of the
p-Laplace equation. The so-called p-superharmonic functions play an im-
portant role in the theory.

A lower semicontinuous function is called p-superharmonic in Ω if it
obeys the comparison principle with respect to p-harmonic functions, that
is, continuous minimizers of the p-Dirichlet integral. A priori, a p-super-
harmonic function u does not belong to a Newtonian space. However, Kin-
nunen and Martio have proved that if p > 1 then u has an upper gradient,
and that this upper gradient is locally integrable to a small exponent; see [9].

Maasalo [12] showed that p-superharmonic functions are globally inte-
grable to a small exponent in H-chain sets. The purpose of this note is to
extend the result of Kinnunen and Martio and show that an upper gradient
of a p-superharmonic function is globally integrable on H-chain sets with a
positive exponent.

For recent results on p-superharmonic functions and potential theory in
the metric space setting, see, for example, [1]–[3], [9]–[11].

2. Preliminaries. Our notation is standard. Throughout the paper we
assume that the measure of every nonempty open set is positive and that
the measure of every bounded set is finite. The measure µ is assumed to be
doubling, i.e. there exists a constant cd ≥ 1 such that

µ(B(x, 2r)) ≤ cdµ(B(x, r))

for every x in X and r > 0. Let 1 < p < ∞. We assume that the space
supports a weak (1, p)-Poincaré inequality, that is, there exist c > 0 and
τ ≥ 1 such that

−
�

B(x,r)

|u− uB(x,r)| dµ ≤ cr
(
−
�

B(x,τr)

gp dµ

)1/p

for all x in X, r > 0 and all pairs {u, g} where u is a locally integrable
function on X and g is a p-weak upper gradient of u. Here we use the
convention

uB = −
�

B

u dµ =
1

µ(B)

�

B

u dµ.

Finally, we assume that (X, d) is a complete metric space.

2.1. OLD-sets and H-chain sets. Suppose that Ω ( X is open and of
finite diameter R, and set

Ωr = {x ∈ Ω : 0 < dist(x,X \Ω) < r}.
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Given 0 < δ ≤ 1 ≤ κ <∞ we say that Ω is a (δ, κ)-OLD set if

µ(Ωr) ≤ (κr/R)δµ(Ω)

for all 0 < r < R. Here OLD stands for “outer layer decay”.
Assume that Ω is connected. Suppose that J, L ∈ R, J > 1, L ≥ 1 and

that B∗ = B(z∗, r∗) ⊂ Ω with r∗ ≤ diam(Ω). We say that a chain of balls
Bi = B(zi, ri) ⊂ Ω, 0 ≤ i ≤ k, is an H-chain of length k for B(x, r) ⊂ Ω
with respect to Ω and with parameters J, L, B∗ if

• (z0, r0) = (x, r) and (zk, rk) = (x∗, r∗),
• if 0 ≤ i < k, then 1/J ≤ ri/ri+1 ≤ J , and Bi ∩ Bi+1 contains a ball
B′ = B(z′i, r

′
i), with r′i = (ri + ri+1)/2J ,

• B(zi, Lri) ⊂ Ω, 0 < i < k.

Let K ≥ 1. Now Ω is an H-chain set with parameters J, K, L, B∗ if
every ball B(x, r) ⊂ Ω such that r ≤ diam(Ω) has an H-chain set of length
at most K log2(2r∗/r). By a result of [4] any H-chain set with parameters
J,K,L,B(x∗, r∗) has diameter at most (8K − 1)r∗. Thus Ω is bounded and
of finite measure. Furthermore, it is easy to see that the larger L the stronger
the condition. In the following we call J, K, L, B∗ the parameters of Ω for
short.

2.2. Superharmonic functions. Let Ω be an open subset of X. A function
v ∈ N1,p

loc (Ω) is called a p-minimizer in Ω if

(2.3)
�

Ω′

gpv dµ ≤
�

Ω′

gpw dµ

for every open set Ω′ ⊂⊂ Ω and all w such that w−v ∈ N1,p
0 (Ω′). A function

v ∈ N1,p
loc (Ω) is called a p-superminimizer in Ω if (2.3) holds for every open

set Ω′ ⊂⊂ Ω and all w such that w − v ∈ N1,p
0 (Ω′) and w ≥ v µ-almost

everywhere in Ω′. A function v : Ω → (−∞,∞) is called p-harmonic in Ω if
it is a continuous p-minimizer in Ω.

Consider an open set Ω′ ⊂⊂ Ω and a function v ∈ N1,p(Ω′). Denote by
hΩ′(v) = h(v) the unique p-harmonic function in Ω′ with v−h(v) ∈ N1,p

0 (Ω′)
(see Theorem 3.2 in [9] and [11]).

A function u : Ω → (−∞,∞] is called p-superharmonic Ω if

• u is lower semicontinuous in Ω, i.e.

lim inf
x→x0

u(x) ≥ u(x0) for every x0 ∈ Ω,

• u is not identically ∞ in any component of Ω,
• for every open Ω′ ⊂⊂ Ω the comparison principle holds: if v ∈ C(Ω′)∩
N1,p(Ω′) and v ≤ u on Ω′, then h(v) ≤ u in Ω′.
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For other equivalent ways of defining p-superharmonic functions in the
metric setting we refer to [1] and [10].

The difference between p-superminimizers and p-superharmonic func-
tions is subtle. Neither of the two classes is contained in the other. We
collect here some facts about them; see [9] for proofs.

• A p-superharmonic function in Ω does not a priori belong to a Newto-
nian space. However, if the function is also locally bounded above,
it is a p-superminimizer and belongs to N1,p

loc (Ω). In particular, if
u is p-superharmonic, then min{u, c} is a p-superminimizer and p-
superharmonic for all c ∈ R.
• If a function is p-superharmonic and, in addition, it belongs to N1,p

loc (Ω)
(without necessarily being bounded above), it is a p-superminimizer.
• If u is a p-superminimizer such that

u(x) = ess lim inf
y→x

u(y) for every x ∈ Ω

then u is p-superharmonic.
• Given a p-superharmonic function in Ω and a subset Ω′ ⊂⊂ Ω, there

always exists an increasing sequence of continuous p-superminimizers
that converge to the p-superharmonic function pointwise everywhere
in Ω′.

3. The main result. In this section we prove that each p-superharmonic
function has an upper gradient which is globally integrable to a small expo-
nent on H-chain sets. The argument is somewhat similar to the Euclidean
proof by Kilpeläinen and Koskela [8]. They proved that gradients of super-
solutions of degenerate elliptic PDEs are integrable to a small exponent on
balls.

The starting point for our result is the observation that a p-superhar-
monic function itself is globally integrable on Ω to some small but positive
exponent. This was proved by the first author in [12].

Theorem 3.1. Let u be a positive p-superharmonic function in Ω that
is an H-chain set with parameters J,K,L,B∗ such that L = 2. Then there
exists β0 > 0 such that u ∈ Lβ(Ω) for all 0 < β ≤ β0. The exponent
β0 depends only on p, the doubling constant , the constants in the Poincaré
inequality and the H-chain set parameters of Ω.

Using this fact we prove the following:

Theorem 3.2. Let u be a positive p-superharmonic function in Ω that is
an H-chain set with parameters J,K,L,B∗ such that L = 2 and 2B∗ ⊂ Ω.
Then u has an upper gradient Gu and there exists s > 0 such that Gu ∈



INTEGRABILITY OF UPPER GRADIENTS 285

Ls(Ω). In particular ,

(3.4)
( �

Ω

Gsu dµ
)1/s

≤ c
( �

Ω

uβ dµ
)1/β

where c depends on cd, p, Ω and β, where β is as in Theorem 3.1.

Theorem 3.1 was originally proved in [12] under the assumption that the
metric space is a length space, i.e. for all x and y in X,

d(x, y) = inf length(γ),

where the infimum is taken over all rectifiable paths joining x and y. How-
ever, a complete metric space that supports a Poincaré inequality and a
doubling measure is always quasiconvex and proper. Hence, it is possible to
define a new geodesic metric that is bi-Lipschitz equivalent to the original
one; see [6]. Therefore, the statement of Theorem 3.1 remains true under
our assumptions.

Notice also that balls are H-chain sets in length spaces. In particular,
Theorem 3.2 is valid for balls, and thus generalizes the Euclidean result by
Kilpeläinen and Koskela.

For the proof of Theorem 3.2 we need two auxiliary results. The first is
a Caccioppoli type inequality for p-superminimizers and it is independent
of the Poincaré inequality. See [10, Lemma 3.1] for the proof.

Lemma 3.3. Suppose that u is a positive p-superminimizer in Ω and let
ε > 0. Let η be a compactly supported Lipschitz continuous function in Ω
such that 0 ≤ η ≤ 1. Then

(3.5)
�

Ω

ηpgpuu
−1−ε dµ ≤ c

�

Ω

up−1−εgpη dµ,

where c = (p/ε)p.

The next lemma holds in any metric space. For the proof, see [4, Theorem
3.3].

Lemma 3.4. If Ω is an H-chain set with parameters J,K,L,B∗ such
that 2B∗ ⊂ Ω and L = 1, then Ω is a (δ, κ)-OLD set , and δ and κ depend
only on J , K, r∗/diamΩ and the doubling constant.

Proof of Theorem 3.2. We divide the proof into two steps. First, we
assume that u is a positive p-superminimizer in Ω.

We decompose Ω into layers in the following way. Define Ω0 = Ω and

Ωj = {x ∈ Ω : 0 < dist(x,X \Ω) < 2−j diamΩ}

for j = 1, 2, . . . . Set Aj = Ωj−1 \Ωj , j = 1, 2, . . . . Then Ω =
⋃∞
j=1Aj .
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Let 0 < δ ≤ 1 be as in Lemma 3.4 and β > 0 as in Theorem 3.1. We
choose an exponent s such that

0 < s < min
{

δβ

δ + β
, p,

βp

p+ β

}
.

Then p/s > 1, and we have
�

Aj

gsu dµ =
�

Aj

gsuu
−sus dµ(3.6)

≤
( �

Aj

gpuu
−p dµ

)s/p( �

Aj

ups/(p−s) dµ
)1−s/p

for all j = 1, 2, . . . by the Hölder inequality.
To handle the first integral on the right-hand side of (3.6), fix j and let

ηj be a Lipschitz function such that 0 ≤ ηj ≤ 1,

ηj =
{

1 on Aj ,

0 outside Aj−1 ∪Aj ∪Aj+1.

Furthermore, let gηj ≤ c/2−j and notice that the set where gηj is not zero
µ-almost everywhere is included in Ωj−2 (1).

Since u is a positive p-superminimizer it satisfies the conclusion of Lemma
3.3 with ε = p− 1 > 0, and for j ≥ 2 we get( �

Aj

gpuu
−p dµ

)s/p
≤
( �

Ω

gpuu
−pηpj dµ

)s/p
≤ c
( �

Ω

gpηj dµ
)s/p

≤ c
( �

Ωj−2

c

2−jp
dµ

)s/p
≤ c
( �

Ωj−2

2jp dµ
)s/p

≤ c2jsµ(Ωj−2)s/p.

For A1 it is easy to get( �

A1

gpuu
−p dµ

)s/p
≤ c2sµ(Ω)s/p

by the Caccioppoli inequality.

(1) It is enough to set

ηj(x) =

8><>:
1 on Aj ,

1− c2j−1 dist(x,Aj) on Aj−1,

1− c2j+1 dist(x,Aj) on Aj+1,

and zero elsewhere, where c = 1/diamΩ. An easy calculation shows that ηj is Lipschitz
with global Lipschitz constant c2j+1.
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Consider the second integral in (3.6). By the Hölder inequality we get,
for j ≥ 1,( �

Aj

ups/(p−s) dµ
)(p−s)/p

≤
( �

Aj

uβ dµ
) p−s

p
ps

β(p−s)
µ(Aj)

(1− ps
β(p−s) )

p−s
p

=
( �

Aj

uβ dµ
)s/β

µ(Aj)(p−s)/p−s/β.

By combining these estimates we get
�

Aj

gsu dµ ≤ c2jsµ(Ωj−2)s/p
( �

Aj

uβ dµ
)s/β

µ(Aj)(p−s)/p−s/β

≤ c2jsµ(Ωj−2)1−s/β
( �

Ω

uβ dµ
)s/β

,

since obviously Aj ⊂ Ωj−2 and (p − s)/p − s/β > 0. For j = 1 this holds
true with Ωj−2 replaced by Ω.

Now, by summing over j we have
�

Ω

gsu dµ ≤
∞∑
j=1

�

Aj

gsu dµ ≤ c
∞∑
j=2

2jsµ(Ωj−2)1−s/β
( �

Ω

uβ dµ
)s/β

.

By Lemma 3.4, Ω is an OLD-set and thus µ(Ωj−2) ≤ c(κ2−(j−2))δµ(Ω).
This implies

�

Ω

gsu dµ ≤ c
∞∑
j=2

2−j(−s+δ−δs/β)
( �

Ω

uβ dµ
)s/β

.

Since we have chosen s < δβ/(δ + β), the series converges and hence

(3.7)
�

Ω

gsu dµ ≤ c
( �

Ω

uβ dµ
)s/β

.

This completes the proof under the assumption that u is a superminimizer.
Assume now that u is a p-superharmonic function in Ω. Then uk =

min(u, k) is in N1,p(Ω) and is a p-superminimizer for every k = 1, 2, . . .
by Corollary 7.8 in [9]. Furthermore, if j > k, then guj = guk µ-almost
everywhere on the set {x ∈ Ω : u(x) ≤ k} (see [13]). It follows that the
sequence (guk) is increasing and

(3.8) Gu = lim
k→∞

guk

is well defined µ-almost everywhere on the set {u(x) ≤ ∞}. By Theorem 3.1,
u is integrable to a small exponent in Ω, and thus finite almost everywhere.
This implies that Gu is well defined µ-almost everywhere.
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By Theorem 5.5 in [10], Gu is a p-weak upper gradient of u. Now (3.4)
follows directly from the definition of Gu and (3.7) by the monotone con-
vergence theorem. By Theorem 3.1, Gu ∈ Ls(Ω).

We point out that in the proof of the quantitative estimate (3.4) we do
not use directly the property of Ω being an H-chain set. The important fact
is that Ω has the OLD-set property. However, the H-chain assumption is
necessary since it is required for global integrability of u itself.
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