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A NOTE ON SIERPIŃSKI’S PROBLEM RELATED
TO TRIANGULAR NUMBERS

BY

MACIEJ ULAS (Kraków)

Abstract. We show that the system of equations

tx + ty = tp, ty + tz = tq, tx + tz = tr,

where tx = x(x + 1)/2 is a triangular number, has infinitely many solutions in integers.
Moreover, we show that this system has a rational three-parameter solution. Using this
result we show that the system

tx + ty = tp, ty + tz = tq, tx + tz = tr, tx + ty + tz = ts

has infinitely many rational two-parameter solutions.

1. Introduction. A triangular number is a number of the form

tn = 1 + 2 + · · ·+ (n− 1) + n =
n(n + 1)

2
,

where n is a natural number. There are a lot of papers related to various types
of diophantine equations containing triangular numbers and their various
generalizations [3–7]. One of the author’s favourites is the little book [6]
written by W. Sierpiński.

On page 33 of his book W. Sierpiński asked an interesting question:

Question 1.1. Is it possible to find three different triangular numbers
such that the sum of any pair of them is a triangular number? In other words:
is it possible to find solutions of the system of equations

(1) tx + ty = tp, ty + tz = tq, tz + tx = tr,

in positive integers x, y, z, p, q, r satisfying the condition x < y < z?

In the next section we give all integer solutions of the system (1) satisfying
the condition x < y < z < 1000 and next we construct two one-parameter
polynomial solutions of that system (Theorem 2.1).

2010 Mathematics Subject Classification: 11D41, 11D72, 11D25.
Key words and phrases: triangular numbers, Sierpiński’s problem, rational points, dio-
phantine equations.

DOI: 10.4064/cm117-2-2 [165] c© Instytut Matematyczny PAN, 2009



166 M. ULAS

In Section 3 we change the perspective a bit and ask for rational para-
metric solutions of the problem. Using a very simple reasoning we are able
to construct a rational parametric solution with three rational parameters
(Theorem 3.2).

Finally, in the last section we consider the system of equations
(1′) tx + ty = tp, ty + tz = tq, tz + tx = tr, tx + ty + tz = ts.

We give some integer solutions of this system. Next, we use the parametriza-
tion obtained in Theorem 3.2 to obtain infinitely many rational solutions
depending on two parameters. In order to get this we show that on a certain
elliptic curve defined over the field Q(u, v) there is a point of infinite order.

2. Integer solutions of (1). In order to find integer solutions of the
system (1) we have used the computer. We have looked for solutions satis-
fying the condition x < y < z < 1000. We have found 44 solutions in this
range (see Table 1).

Table 1

x y z p q r

9 13 44 16 46 45
14 51 104 53 116 105
20 50 209 54 215 210
23 30 90 38 95 93
27 124 377 127 397 378
35 65 86 74 108 93
35 123 629 128 641 630
41 119 285 126 309 288
44 245 989 249 1019 990
51 69 104 86 125 116
54 143 244 153 283 250
62 99 322 117 337 328
65 135 209 150 249 219
66 195 365 206 414 371
74 459 923 465 1031 926
76 90 144 118 170 163
77 125 132 147 182 153
77 125 207 147 242 221
83 284 494 296 570 501
105 170 363 200 401 378
105 363 390 378 533 404
105 551 924 561 1076 930

x y z p q r

114 429 650 444 779 660
131 174 714 218 735 726
131 245 714 278 755 726
135 154 531 205 553 548
161 260 924 306 960 938
170 469 755 499 889 774
189 305 406 359 508 448
216 390 854 446 939 881
230 741 870 776 1143 900
237 527 650 578 837 692
245 714 989 755 1220 1019
252 272 702 371 753 746
278 370 594 463 700 656
286 405 494 496 639 571
293 390 854 488 939 903
299 441 560 533 713 635
350 629 781 720 1003 856
476 634 665 793 919 818
581 774 935 968 1214 1101
588 645 689 873 944 906
609 779 923 989 1208 1106
714 798 989 1071 1271 1220
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The solutions above show that the answer to Sierpiński’s question is easy.
However, due to the abundance of solutions it is natural to ask whether we
can find infinitely many integer solutions of (1).

Theorem 2.1. The system (1) has infinitely many solutions in integers.

Proof. Examining Table 1, we find that for any u ∈ N the values of the
polynomials given by

x = (u + 1)(2u + 5),

y = (u + 2)(2u2 + 8u + 7),

z = (2u2 + 7u + 4)(2u2 + 7u + 7)/2,

p = 2u3 + 12u2 + 24u + 15,

q = (4u4 + 28u3 + 73u2 + 87u + 40)/2,

r = (4u4 + 28u3 + 71u2 + 77u + 30)/2,

or

x = (u + 3)(2u + 3),

y = (u + 1)(2u2 + 10u + 13),

z = (2u2 + 9u + 8)(2u2 + 9u + 11)/2,

p = 2u3 + 12u2 + 24u + 16,

q = (4u4 + 36u3 + 121u2 + 177u + 92)/2,

r = (u + 2)(u + 3)(2u + 3)(2u + 5)/2,

are integers and are solutions of the system (1).

Using the parametric solutions we have obtained above we get

Corollary 2.2. Let f(X) = X(X + a), where a ∈ Z \ {0}. Then there
are infinitely many positive integer solutions of the system

(?) f(x) + f(y) = f(p), f(y) + f(z) = f(q), f(z) + f(x) = f(r).

Proof. It is clear that we can assume a > 0. Now, note that if x, y, z, p, q, r
is a solution of (1), then the sextuple ax, ay, az, ap, aq, ar is a solution
of (?).

The above corollary leads to the following question:

Question 2.3. Let f ∈ Z[x] be a polynomial of degree two with two
distinct roots in C. Is the system of equations

f(x) + f(y) = f(p), f(y) + f(z) = f(q), f(z) + f(x) = f(r),

solvable in different positive integers?



168 M. ULAS

3. Rational solutions of (1). In view of Theorem 2.1 it is natural to
state the following

Question 3.1. Is the set of one-parameter polynomial solutions of the
system (1) infinite?

We suppose that the answer to this question is YES. Unfortunately, we
are unable to prove this. So, it is natural to ask if instead of polynomials we
can find rational parametric solutions.

Theorem 3.2. There is a three-parameter rational solution of the sys-
tem (1).

Proof. Let u, v, w be parameters. Note that (1) is equivalent to the sys-
tem

(2)


y = u(p− x), u(y + 1) = p + x + 1,

z = v(q − y), v(z + 1) = q + y + 1,

x = w(r − z), w(x + 1) = r + z + 1.

Because we are interested in rational solutions, we can look at (2) as a system
of linear equations with unknowns x, y, z, p, q, r. This system has a solution
given by

x(u, v, w) =
(u− 1)w(1 + u− 2v + 2uv + v2 + uv2 + (−1−u+v2+uv2)w)

(1− u2)(v2 − 1)(w2 − 1) + 8uvw
,

y(u, v, w) =
u(v − 1)(1− u + v − uv + (−2 + 2v)w + (1 + u + v + uv)w2)

(1− u2)(v2 − 1)(w2 − 1) + 8uvw
,

z(u, v, w) =
v(w − 1)(1− 2u + u2 − v + u2v + (1 + 2u + u2 − v + u2v)w)

(1− u2)(v2 − 1)(w2 − 1) + 8uvw
,

and the quantities p, q, r can by calculated from the identities

p(u, v, w) =
ux(u, v, w) + y(u, v, w)

u
,

q(u, v, w) =
vy(u, v, w) + z(u, v, w)

v
,

r(u, v, w) =
wz(u, v, w) + x(u, v, w)

w
.

Remark 3.3. It is clear that the same reasoning can be used to prove
that the system

f(x) + f(y) = f(p), f(y) + f(z) = f(q), f(z) + f(x) = f(r),

where f ∈ Z[x] is a polynomial of degree two with two different rational
roots, has a rational parametric solution depending on three parameters.
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4. Rational solutions of (1′). We start this section with a quite nat-
ural

Question 4.1. Is the system of equations

(1′) tx + ty = tp, ty + tz = tq, tz + tx = tr, tx + ty + tz = ts

solvable in integers?

This question is mentioned in the very interesting book [1, p. 292] and it
is attributed to K. R. S. Sastry. In this book we can find the triple x = 11,
y = z = 14 (found by Ch. Ashbacher) which satisfies (1′) with p = r = 18,
q = 20, s = 23. It is clear that the solutions with x, y, z, p, q, r, s different are
more interesting. Using a computer search we have found some 7-tuples of
different integers satisfying (1′) (see Table 2).

Table 2

x y z p q r s

230 741 870 776 1143 900 1166
609 779 923 989 1208 1106 1353
714 798 989 1071 1271 1220 1458
1224 1716 3219 2108 3648 3444 3848

It is quite possible that there is a polynomial solution of (1′). However,
we have been unable to find one.

Now we use the parametric solutions obtained in Theorem 3.2 to deduce
the following

Theorem 4.2. The system of diophantine equations (1′) has infinitely
many rational solutions depending on two parameters.

Proof. We know that the functions x, y, z, p, q, r ∈ Q(u, v, w) we have
obtained in the proof of Theorem 3.2 satisfy (1). Thus, in order to find
solutions of (1′) it is enough to consider the last equation tx + ty + tz = ts.
If we put the calculated quantities x, y, z into the equation tx + ty + tz = ts,
then use the identity 8ts + 1 = (2s + 1)2 and clear the denominators, we
obtain the equation of a quartic curve C defined over the field Q(u, v):

C : h2 = a4(u, v)w4 + a3(u, v)w3

+ a2(u, v)w2 + a1(u, v)w + a0(u, v) =: h(w),

where

a0(u, v) = a4(−u, v) = (u− 1)2(−1 + u + 2v + 2uv − v2 + uv2)2,
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a1(u, v) = a3(−u, v)

= 4(u− 1)(v2 − 1)
(

u4 − 1
u− 1

(v2 + 1) + 2(u− 1)(u2 + 4u + 1)v
)

,

a2(u, v) = 4(1− 10u2 + u4)v2 + 8(u4 − 1)v(1 + v2)

+ 2(3 + 2u2 + 3u4)(1 + v4).

Because the polynomial h ∈ Q(u, v)[w] has no multiple roots, the curve
C is smooth. Moreover, we have a Q(u, v)-rational point on C given by

Q = (0, (u− 1)(−1 + u + 2v + 2uv − v2 + uv2)).

If we treat Q as a point at infinity of C and use the method of [2, p. 77], we
conclude that C is birationally equivalent over Q(u, v) to the elliptic curve
with the Weierstrass equation

E : Y 2 = X3 − 27f(u, v)X − 27g(u, v),

where

f(u, v) = u4(v8 + 1) + 4u2(u4 − 1)v(v6 + 1)

+ (1 + 8u2 − 22u4 + 8u6 + u8)v2(1 + v4)

+ 4(u4 − 1)(u4 − 3u2 − 1)v3(1 + v2)

+ 2(3− 16u2 + 29u4 − 16u6 + 3u8)v4,

g(u, v) = (u2(v4 + 1) + 2(u4 − 1)v(v2 + 1) + 2(2− 5u2 + 2u4)v2)

× (−2f(u, v) + 3(u2 − 1)2v2(1 + u2 − 2v + 2u2v + v2 + u2v2)2).

The mapping ϕ : C 3 (w, h) 7→ (X, Y ) ∈ E is given by

w = a4(u, v)−1

((
16a4(u, v)3/2Y − 27d(u, v)
24a4(u, v)X − 54c(u, v)

)
− a3(u, v)

4

)
,

h = a4(u, v)−3/2

(
−
(

16a4(u, v)3/2Y − 27d(u, v)
24a4(u, v)X − 54c(u, v)

)2

+
8a4(u, v)X

9
+ c(u, v)

)
.

Note that the quantity a4(u, v)3/2 = ((u+1)(1+u+ · · · ))3 is a polynomial in
Z[u, v], whence our mapping is clearly rational. The quantities c, d ∈ Z[u, v]
are given below:

c(u, v) = − 4(u + 1)2
(
−u2(u + 1)2(v8 + 1)

+ (u2 − 1)(1− 10u− 2u2 − 10u3 + u4)v(v6 + 1)

+ 2(u− 1)2(3− 4u− 6u2 − 4u3 + 3u4)v2(v4 + 1)

+ (u− 1)2(15 + 10u + 2u2 + 10u3 + 15u4)v3(v2 + 1)

+ 2(10 + 20u− 5u2 − 46u3 − 5u4 + 20u5 + 10u6)v4
)
/3,
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d(u, v) = 16(u− 1)u(u + 1)4v(v2 − 1)

×(−1 + u + 2v + 2uv − v2 + uv2)(1 + u2 − 2v + 2u2v + v2 + u2v2)

×(−1 + u2 − 4v − 4u2v + 10v2 − 10u2v2 − 4v3 − 4u2v3 − v4 + u2v4).

To finish the proof we must show that the set of Q(u, v)-rational points
on the elliptic curve E is infinite. This will be proved if we find a point of
infinite order in the group E(Q(u, v)) of all Q(u, v)-rational points on E. In
general this is not an easy task. First of all note that there is a torsion point
T of order 2 on E given by

T = (3u2(v4 + 1) + 6(u4 − 1)v(v2 + 1) + 6(u2 − 2)(2u2 − 1)v2, 0).

It is clear that this point is not suitable for our purposes. Fortunately in our
case we can find another point

P =
(

3
4

((3− 2u2 + 3u4)(v4 + 1)

+ 8(u4 − 1)v(v2 + 1) + 2(5− 14u2 + 5u4)v2),
27
8

(u2 − 1)2(v2 − 1)((u2 + 1)(v4 + 1)

+ 4(u2 − 1)v(v2 + 1) + 6(u2 + 1)v2

)
.

Now, if we specialize the curve E for u = 2, v = 3, we obtain the elliptic
curve

E2,3 : Y 2 = X3 − 28802736X + 40355763840

with the point P2,3 = (5736, 252720), which is the specialization of P . As
points of finite order on the elliptic curve y2 = x3 + ax + b, a, b ∈ Z, have
integer coordinates [8, p. 177], while

2P2,3 = (765489/100, −518102487/1000),

we see that P2,3 is not a point of finite order on E2,3, which means that P
cannot be a point of finite order on E. Therefore, E is a curve of positive
rank. Hence, its set of Q(u, v)-rational points is infinite and our theorem is
proved.

Let us note the obvious

Corollary 4.3. Let f ∈ Z[x] be a polynomial of degree two with two
distinct rational roots. Then the system of equations

f(x) + f(y) = f(p),
f(z) + f(x) = f(r),
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f(y) + f(z) = f(q),
f(x) + f(y) + f(z) = f(s),

has infinitely many rational parametric solutions depending on two parame-
ters.

Example 4.4. Using the method of the above proof we now produce
an example of rational functions x, y, z ∈ Q(u) that satisfy (1′) for some
p, q, r, s ∈ Q(u) which can be easily found (by computer of course). Because
the quantities considered are rather large we put here v = 2. Then

P2 + T2 = (1404u4 + 219u2 + 4, 8(9u2 + 1)2(81u2 + 1)),

where P2, T2 are the specializations of P, T respectively at v = 2. Now,

(w, h) = ϕ−1(P2 + T2) =
(

(9u− 1)2(9u + 1)(63u2 + 17)
3(u + 1)(6561u4 + 1134u3 + 306u− 1)

,

8(9u− 1)(9u + 1)F (u)
9(u + 1)2(6561u4 + 1134u3 + 306u− 1)2

)
where

F (u) = 43046721u8 + 11573604u7 + 6388956u5

+ 1285956u6 + 680886u4 + 919836u3 + 93636u2 + 10404u + 1.

Using the calculated values and the definition of x, y, z given in the proof
of Theorem 3.2 we find that the functions

x(u) =
2(u− 1)(9u− 1)2(9u + 1)2(63u2 + 17)(81u2 + 1)

G(u)
,

y(u) =
3u(11 + 42u2 + 2187u4)(1 + 2754u2 + 3645u4)

G(u)
,

z(u) =
2(27u2−18u−5)(81u2−48u−1)(135u2+18u+7)(243u3−99u2+57u−1)

3G(u)
,

where

G(u) = − 23914845u9 + 110008287u8 − 18528264u7 + 15956352u6

− 473850u5 − 940410u4 − 91008u3 − 96264u2 − 33u + 35,

satisfy (1′).
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