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RECENT DEVELOPMENTS IN THE THEORY OF
SEPARATELY HOLOMORPHIC MAPPINGS

BY

VIÊT-ANH NGUYÊN (Hanoi and Seoul)

Abstract. We describe a part of the recent developments in the theory of separately
holomorphic mappings between complex analytic spaces. Our description focuses on works
using the technique of holomorphic discs.

1. Introduction. In this exposition all complex manifolds are assumed
to be of finite dimension and countable at infinity, and all complex analytic
spaces are assumed to be reduced, irreducible and countable at infinity. For a
subset S of a topological spaceM, S denotes the closure of S inM. For two
complex analytic spaces (resp. topological spaces) D and Z, O(D,Z) (resp.
C(D,Z)) denotes the set of all holomorphic (resp. continuous) mappings
from D to Z.

The main purpose of this work is to describe the recent developments
around the following two problems.

Problem 1. Let X, Y be two complex manifolds, let D (resp. G) be an
open subset of X (resp. Y ), let A (resp. B) be a subset of D (resp. G) and
let Z be a complex analytic space. Define the cross

W := ((D ∪A)×B) ∪ (A× (G ∪B)).

We want to determine the envelope of holomorphy of the cross W, that is,

an “optimal” open subset of X × Y, denoted by ̂̃W, which is characterized
by the following properties:

For every mapping f : W → Z that satisfies, in essence, the following
condition:

f(a, ·) ∈ C(G ∪B,Z) ∩ O(G,Z), a ∈ A,
f(·, b) ∈ C(D ∪A,Z) ∩ O(D,Z), b ∈ B,

there exists an f̂ ∈ O(̂̃W,Z) such that for every (ζ, η) ∈ W, f̂(z, w) tends

to f(ζ, η) as (z, w) ∈ ̂̃W tends, in some sense, to (ζ, η).
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The second problem generalizes the first one to the case where we add
a set M of singularities to the cross. In order to understand this problem
we need to introduce some more notation and terminology. Let X, Y, D,
G, A, B and Z and W be as in Problem 1 and let M ⊂ W. Then the set
Ma := {w ∈ G : (a,w) ∈ M}, a ∈ A, is called the vertical fiber of M over
a (resp. the set M b := {z ∈ D : (z, b) ∈ M}, b ∈ B, is called the horizontal
fiber of M over b). We say that M has a certain property in fibers over A
(resp. B) if all vertical fibers Ma, a ∈ A, (resp. all horizontal fibers M b,
b ∈ B) have this property.

Problem 2. Under the above hypotheses and notation, let ̂̃W be the
envelope of holomorphy of W given by Problem 1. For every subset M ⊂W
which is relatively closed and locally pluripolar (resp. thin) (1) in fibers over
A and B (M = ∅ is allowed) we want to know if there exists an “opti-

mal” set of singularities M̂ ⊂ ̂̃W, which is relatively closed locally pluripolar
(resp. relatively closed analytic) and which is characterized by the following
property :

For every mapping f : W \M → Z that satisfies, in essence, the following
condition:

f(a, ·) ∈ C((G ∪B) \Ma, Z) ∩ O(G \Ma, Z), a ∈ A,
f(·, b) ∈ C((D ∪A) \M b, Z) ∩ O(D \M b, Z), b ∈ B,

there exists an f̂ ∈ O(̂̃W \ M̂, Z) such that for all (ζ, η) ∈ W \M , f̂(z, w)

tends to f(ζ, η) as (z, w) ∈ ̂̃W \ M̂ tends, in some sense, to (ζ, η).

The motivation for Problem 2 will be explained in Sections 2 and 8 be-
low. These problems play a fundamental role in the theory of separately
holomorphic (resp. meromorphic) mappings, and they have been intensively
studied during the last decades. There are two recent surveys by Nguyên
Thanh Vân (see [34]) and by Peter Pflug (see [47]) which summarize the his-
torical developments up to 2001 on Problems 1 and 2 under the hypotheses
that A ⊂ D and B ⊂ G and X, Y are Stein manifolds and Z is a complex
analytic space which has the Hartogs extension property (2).

Both survey articles give interesting insights and suggest new research
trends in this subject. Our exposition may be considered as a continua-
tion of the above works. Namely, we describe a part of the recent de-
velopments using the technique of holomorphic discs. This will permit us
to obtain partial (but reasonable) solutions to Problems 1 and 2 in the

(1) The notion of local pluripolarity (resp. thinness) will be defined in Subsection 3.1
(resp. Section 8) below.

(2) This notion will be defined in Subsection 3.4 below.
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case where Z is a complex analytic space with the Hartogs extension prop-
erty.

We close the introduction with a brief outline of the paper.
In Section 2 we describe briefly the historical developments on Problem 1

and 2.
In Section 3 we provide the framework for an exact formulation of both

problems and for their solution.
The technique of holomorphic discs and related results are described in

Section 4.
In Section 5 we present some ideas of our new approach to the theory

of separate holomorphy. More precisely, we apply the results of Section 4 in
order to completely solve Problem 1 in a special case.

Section 6 is devoted to various partial results on Problem 1.
Some approaches to Problems 1 and 2 are presented in Section 7 and

8 respectively. In fact, Sections 6 and 8 are obtained in collaboration with
Pflug (see [48, 49, 50, 51, 43, 44]).

Various applications of our solutions are given in Section 9.
Section 10 concludes the article with some remarks and open questions.

2. History. Now we briefly recall the main developments around Prob-
lems 1 and 2. All the results obtained so far may be divided into two direc-
tions. The first direction investigates the results in the “interior” context:
A ⊂ D and B ⊂ G, while the second one explores the “boundary” context:
A ⊂ ∂D and B ⊂ ∂G.

The first fundamental result in the field of separate holomorphy is the
well-known Hartogs extension theorem for separately holomorphic functions
(see [15]). In the language of Problem 1 the case: X = Cn, Y = Cm, A = D,

B = G, Z = C is solved, and the result is ̂̃W = D × G. In particular, this
theorem may be considered as the first main result in the first direction.
In 1912 Bernstein obtained, in his famous article [8], a positive solution to
Problem 1 for certain cases where A ⊂ D, B ⊂ G, X = Y = C and Z = C.

The next important development came about very much later. In 1969–
1970 Siciak established some significant generalizations of the Hartogs ex-
tension theorem (see [59, 60]). In fact, Siciak’s formulation of these gener-
alizations gives rise to Problem 1: to determine the envelope of holomorphy
for separately holomorphic functions defined on some cross sets W. The
theorems obtained under this formulation are often called cross theorems.
Using the so-called relative extremal function (see Section 3 below), Siciak
completely solved Problem 1 for the case where A ⊂ D, B ⊂ G, X = Y = C
and Z = C.
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The next deep steps were initiated by Zahariuta in 1976 (see [62]) when
he started to use the method of common bases of Hilbert spaces. This orig-
inal approach permitted him to obtain new cross theorems for some cases
where A ⊂ D, B ⊂ G and D = X, G = Y are Stein manifolds. As a conse-
quence, he was able to generalize the result of Siciak to higher dimensions.

Later, Nguyên Thanh Vân and Zeriahi (see [36, 37, 38]) developed the
method of doubly orthogonal bases of Bergman type in order to generalize
the result of Zahariuta. This is a significantly simpler and more constructive
version of Zahariuta’s original method. Nguyên Thanh Vân and Zeriahi have
recently achieved an elegant improvement of their method (see [35], [63]).

Using Siciak’s method, Shiffman [56] was the first to generalize some
results of Siciak to separately holomorphic mappings with values in a com-
plex analytic space Z. Shiffman’s result of [57] shows that the natural “target
spaces” for obtaining satisfactory generalizations of cross theorems are the
ones which have the Hartogs extension property (see Subsection 3.4 below
for more explanations).

In 2001 Alehyane and Zeriahi solved Problem 1 for the case where A ⊂ D,
B ⊂ G and X, Y are Stein manifolds and Z is a complex analytic space

with the Hartogs extension property. The envelope of holomorphy ̂̃W is then
given by ̂̃

W := {(z, w) ∈ D ×G : ω̃(z,A,D) + ω̃(w,B,G) < 1} ,
where ω̃(·, A,D) and ω̃(·, B,G) are the plurisubharmonic measures, which
are generalizations of Siciak’s relative extremal function (see Section 3 below
for this notion). This is the most general result on Problem 1 under the
hypothesis A ⊂ D, B ⊂ G. More precisely,

Theorem 1 (Alehyane–Zeriahi [5]). Let X, Y be Stein manifolds, let
D ⊂ X, G ⊂ Y be domains, and let A ⊂ D, B ⊂ G be nonpluripolar subsets.
Let Z be a complex analytic space with the Hartogs extension property. Then
for every mapping f as in the hypotheses of Problem 1, there is a unique

mapping f̂ ∈ O(̂̃W,Z) such that f̂ = f on W ∩ ̂̃W.

In fact, Theorem 1 is still valid for N -fold crosses W (N ≥ 2). For the
notion of an N -fold cross see, for example, [47] or [39].

Problem 2 originated with a paper by Öktem in 1998 (see [45, 46]) in-
vestigating the range problem in mathematical tomography. The reader will
find in Section 8 below a concise description of the range problem and its
relations to the theory of separate holomorphy. On the other hand, Henkin
and Shananin gave, in an earlier work [16], some applications of Bernstein’s
result [8] to mathematical tomography. Here is the most general result in
this direction. In fact, we state it in a somewhat simplified from.
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Theorem 2 (Jarnicki–Pflug [25, 28]). Let X and Y be Riemann–Stein
domains, let D ⊂ X, G ⊂ Y be two subdomains, and let A ⊂ D and B ⊂ G
be nonpluripolar subsets. Suppose in addition that O(D,C) (resp. O(G,C))
separates points in D (resp. in G) (3). Let M ⊂ W be a relatively closed
subset which is pluripolar (resp. thin) in fibers over A and B.

Then there exists a relatively closed pluripolar set (resp. relatively closed

analytic set) M̂ ⊂ ̂̃W such that :

• M̂ ∩W ∩ W̃ ⊂M (4);
• for every function f as in the hypothesis of Problem 2 with Z = C,

there exists a unique function f̂ ∈ O(̂̃W \ M̂,C) such that f̂ = f on
(W ∩ W̃ ) \M.

We refer the reader to [25, 28] for complete versions of this theorem.

The first result in the second direction (i.e. “boundary context”) is con-
tained in the work of Malgrange–Zerner [64] in the 1960s. Further results in
this direction were obtained by Komatsu [32] and Drużkowski [11], but only
for some special cases. Recently, Gonchar [13, 14] has proved a more general
result where the following case of Problem 1 has been solved: D and G are
Jordan domains in C, A (resp. B) is an open boundary subset of ∂D (resp.
∂G), and Z = C. Namely, we have

Theorem 3 (Gonchar [13, 14]). Let X = Y = C, let D ⊂ X, G ⊂ Y be
Jordan domains and A (resp. B) a nonempty open subset of the boundary
∂D (resp. ∂G). Then, for every function f ∈ C(W,C) which satisfies the
hypotheses of Problem 1 with Z = C, there exists a unique function f̂ ∈
C(Ŵ ∪W,C) ∩ O(Ŵ ,C) such that f̂ = f on W. Here

Ŵ := {(z, w) ∈ D ×G : ω(z,A,D) + ω(w,B,G) < 1} ,
where ω(·, A,D) and ω(·, B,G) are the harmonic measures (see Subsection
3.1 below for this notion).

Theorem 3 may be rephrased as follows: ̂̃W = Ŵ (see also [51]). It should
be observed that before Gonchar’s works, Airapetyan and Henkin published
a version of the edge-of-the-wedge theorem for CR manifolds (see [2] for
a brief version and [3] for a complete proof). Gonchar’s theorem could be
deduced from the latter result.

3. New formulations. Our purpose is to develop a theory which unifies
all results obtained so far. First we develop some new notions such as a

(3) We say that O(D,C) separates points in D if for all points z1, z2 with z1 6= z2,
there exists f ∈ O(D,C) such that f(z1) 6= f(z2).

(4) The set fW is defined in Subsection 3.3 below.
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system of approach regions for an open set in a complex manifold, and the
corresponding plurisubharmonic measure. These will provide the framework
for an exact formulation of Problems 1 and 2, and for our solution.

3.1. Approach regions, local pluripolarity and plurisubharmonic measure

Definition 3.1. Let X be a complex manifold and let D ⊂ X be
an open subset. A system of approach regions for D is a collection A =
(Aα(ζ))ζ∈D,α∈Iζ (Iζ 6= ∅ for all ζ ∈ ∂D) (5) of open subsets of D with the
following properties:

(i) For all ζ ∈ D, the system (Aα(ζ))α∈Iζ forms a basis of open neigh-
borhoods of ζ (i.e., for any open neighborhood U of a point ζ ∈ D,
there is α ∈ Iζ such that ζ ∈ Aα(ζ) ⊂ U).

(ii) For all ζ ∈ ∂D and α ∈ Iζ , ζ ∈ Aα(ζ).

Aα(ζ) is often called an approach region at ζ.
Moreover, A is said to be canonical if it satisfies (i) and the following

property (which is stronger than (ii)):

(ii′) For every point ζ ∈ ∂D, there is a basis (Uα)α∈Iζ of open neighbor-
hoods of ζ in X such that Aα(ζ) = Uα ∩D for all α ∈ Iζ .

Various systems of approach regions which one often encounters in com-
plex analysis will be described in the next subsection. Systems of approach
regions for D are used to deal with the limit at points in D of mappings
defined on some open subsets of D. Consequently, we deduce from Defini-
tion 3.1 that the subfamily (Aα(ζ))ζ∈D,α∈Iζ is, in a certain sense, indepen-
dent of the choice of a system A of approach regions. In addition, any two
canonical systems of approach regions are, in some sense, equivalent. These
observations lead us to use, throughout the paper, the following conven-
tion:

We fix , for every open set D ⊂ X, a canonical system of approach
regions. When we want to define a system A of approach regions for an
open set D ⊂ X, we only need to specify the subfamily (Aα(ζ))ζ∈∂D,α∈Iζ .

In what follows we fix an open subset D ⊂ X and a system of approach
regions A = (Aα(ζ))ζ∈D,α∈Iζ for D.

For every function u : D → [−∞,∞), let

(A-lim supu)(z) := sup
α∈Iz

lim sup
w∈Aα(z), w→z

u(w), z ∈ D.

By Definition 3.1(i), (A-lim supu)|D coincides with the usual upper semi-
continuous regularization of u.

(5) Note that this definition is slightly different from Definition 2.1 in [41].
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For a set A ⊂ D put

hA,D := sup {u : u ∈ PSH(D), u ≤ 1 on D, A-lim supu ≤ 0 on A} ,
where PSH(D) denotes the cone of all functions plurisubharmonic on D.

A set A ⊂ D is said to be thin in D if for every point a ∈ D there is
a connected neighborhood U = Ua ⊂ D and a holomorphic function f on
U, not identically zero, such that U ∩ A ⊂ f−1(0). The set A is said to be
pluripolar in D if there is u ∈ PSH(D) such that u is not identically −∞
on every connected component of D and A ⊂ {z ∈ D : u(z) = −∞} . The
set A is said to be locally pluripolar in D if for any z ∈ A, there is an open
neighborhood V ⊂ D of z such that A ∩ V is pluripolar in V. Finally, A is
said to be nonpluripolar (resp. non-locally pluripolar) if it is not pluripolar
(resp. not locally pluripolar). According to a classical result of Josefson and
Bedford (see [30], [6]), if D is a Riemann–Stein domain then A ⊂ D is locally
pluripolar if and only if it is pluripolar.

Definition 3.2. For A ⊂ D, the relative extremal function of A relative
to D is the function ω(·, A,D) defined by

ω(z,A,D) = ωA(z,A,D) := (A-lim suphA,D)(z), z ∈ D (6).

Note that when A ⊂ D, Definition 3.2 coincides with the classical defini-
tion of Siciak’s relative extremal function. When D is a complex manifold of
dimension 1 and A is the canonical system, the function ω(·, A,D) is often
called the harmonic measure of A relative to D (see Theorem 3 above).

Next, we say that a set A ⊂ D is locally pluriregular at a point a ∈ A if
ω(a,A ∩ U,D ∩ U) = 0 for all open neighborhoods U of a. Moreover, A is
said to be locally pluriregular if it is locally pluriregular at all points a ∈ A.
It should be noted from Definition 3.1 that if a ∈ A ∩D then the property
of local pluriregularity of A at a does not depend on any particular choices
of a system A of approach regions, while the situation is different when
a ∈ A ∩ ∂D: the property does depend on A.

We denote by A∗ the set

(A ∩ ∂D) ∪ {a ∈ A ∩D : A is locally pluriregular at a}.
If A ⊂ D is not locally pluripolar, then a classical result of Bedford and
Taylor (see [6, 7]) says that A∗ is locally pluriregular and A \ A∗ is locally
pluripolar. Moreover, A∗ is locally of type Gδ, that is, for every a ∈ A∗

there is an open neighborhood U ⊂ D of a such that A∗ ∩ U is a countable
intersection of open sets.

Now we are in a position to formulate the following version of the
plurisubharmonic measure.

(6) Observe that this function depends on the system of approach regions.
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Definition 3.3. For a set A ⊂ D, let Ã = Ã(A) :=
⋃
P∈E(A) P, where

E(A) = E(A,A) := {P ⊂ D : P is locally pluriregular, P ⊂ A∗},
The plurisubharmonic measure of A relative to D is the function ω̃(·, A,D)
defined by

ω̃(z,A,D) := ω(z, Ã,D), z ∈ D.
It is worth remarking that ω̃(·, A,D) ∈ PSH(D) and 0 ≤ ω̃(z,A,D) ≤ 1

for z ∈ D. Moreover,

(3.1) (A-lim sup ω̃(·, A,D))(z) = 0, z ∈ Ã.
An example in [4] shows that, in general, ω(·, A,D) 6= ω̃(·, A,D) on D. Sec-
tions 6 and 9 below are devoted to the study of ω̃(·, A,D) in some important
cases. As we will see later, in most applications one can obtain good and sim-
ple characterizations of ω̃(·, A,D) (see Theorems 5, 6, 7, 9 and Corollaries
2, 3 below).

Now we compare the plurisubharmonic measure ω̃(·, A,D) with Siciak’s
relative extremal function ω(·, A,D).We only consider two important special
cases: A ⊂ D and A ⊂ ∂D. For the moment, we only focus on the former;
the latter will be discussed in Sections 6 and 9.

If A is an open subset of an arbitrary complex manifold D, then it can
be shown that

ω̃(z,A,D) = ω(z,A,D), z ∈ D.
If A is a (not necessarily open) subset of an arbitrary complex manifold D,
then we have, by Proposition 7.1 in [41],

ω̃(z,A,D) = ω(z,A∗, D), z ∈ D.
On the other hand, if, morever, D is a bounded open subset of Cn then
(see, for example, Lemma 3.5.3 in [23]) ω(z,A,D) = ω(z,A∗, D) for z ∈ D.
Consequently, under the last assumption,

ω̃(z,A,D) = ω(z,A,D), z ∈ D.
Our discussion shows that at least in the case where A ⊂ D, the notion of
the plurisubharmonic measure is a good candidate for generalizing Siciak’s
relative extremal function to the manifold context in the theory of separate
holomorphy.

For a good background of pluripotential theory, see the books [23] or
[31].

3.2. Examples of systems of approach regions. There are many systems
of approach regions which are useful in complex analysis. In this subsection
we present some of them.

1. Canonical system of approach regions. It has been given by Definition
3.1(i)–(ii′). It is the most natural one.
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2. System of angular (or Stolz ) approach regions for the open unit disc.
Let E be the open unit disc of C. Put

Aα(ζ) :=
{
t ∈ E :

∣∣∣∣ arg
(
ζ − t
ζ

)∣∣∣∣ < α

}
, ζ ∈ ∂E, 0 < α < π/2,

where arg : C → (−π, π] is as usual the argument function. The system
A = (Aα(ζ))ζ∈∂E, 0<α<π/2 is referred to as the system of angular (or Stolz )
approach regions for E. In this context A-lim is also called angular limit.

3. System of angular approach regions for certain “good” open subsets
of Riemann surfaces. Now we generalize the previous construction (for the
open unit disc) to a global situation. More precisely, we will use as the local
model the system of angular approach regions for E. Let X be a complex
manifold of dimension 1 (in other words, X is a Riemann surface), and let
D ⊂ X be an open set. Then D is said to be good at a point ζ ∈ ∂D (7) if
there is a Jordan domain U ⊂ X such that ζ ∈ U and U ∩∂D is the interior
of a Jordan curve.

Suppose that D is good at ζ. This point is said to be of type 1 if there is
a neighborhood V of ζ such that V0 = V ∩D is a Jordan domain. Otherwise,
ζ is said to be of type 2. We see easily that if ζ is of type 2, then there are
an open neighborhood V of ζ and two disjoint Jordan domains V1, V2 such
that V ∩D = V1 ∪ V2. Moreover, D is said to be good on a subset A of ∂D
if D is good at all points of A.

Here is a simple example which may clarify the above definitions. Let G
be the open square in C with vertices 1 + i, −1 + i, −1− i, and 1− i. Define
D := G \ [−1/2, 1/2]. Then D is good on ∂G∪ (−1/2, 1/2). All points of ∂G
are of type 1 and all points of (−1/2, 1/2) are of type 2.

Suppose now that D is good on a nonempty subset A of ∂D. We define
the system of angular approach regions supported on A,A=(Aα(ζ))ζ∈D,α∈Iζ ,
as follows:

• If ζ ∈ D \ A, then (Aα(ζ))α∈Iζ coincide with the canonical approach
regions.
• If ζ ∈ A, then by using a conformal mapping Φ from V0 (resp. V1

and V2) onto E when ζ is of type 1 (resp. 2), we can “transfer” the
angular approach regions at the point Φ(ζ) ∈ ∂E, (Aα(Φ(ζ)))0<α<π/2,
to those at the point ζ ∈ ∂D (see [49] for more detailed explanations).

Making use of conformal mappings in a local way, we can transfer, in
the same way, many notions which exist on E (resp. ∂E) to those on D
(resp. ∂D).

(7) In [49] we use the more appealing word Jordan-curve-like for this notion.
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4. System of conical approach regions. Let D ⊂ Cn be a domain and
A ⊂ ∂D. Suppose in addition that for every point ζ ∈ A the (real) tangent
space Tζ to ∂D at ζ exists. We define the system of conical approach regions
supported on A, A = (Aα(ζ))ζ∈D,α∈Iζ as follows:

• If ζ ∈ D \ A, then (Aα(ζ))α∈Iζ coincide with the canonical approach
regions.
• If ζ ∈ A, then

Aα(ζ) := {z ∈ D : |z − ζ| < α · dist(z, Tζ)},
where Iζ := (1,∞) and dist(z, Tζ) denotes the Euclidean distance from
the point z to Tζ .

We can also generalize the previous construction to a global situation:
X is an arbitrary complex manifold , D ⊂ X is an open set and A ⊂ ∂D

is a subset with the property that at every point ζ ∈ A the (real) tangent
space Tζ to ∂D exists.

We can also formulate the notion of points of type 1 or 2 in this general
context in the same way as in item 3 above.

3.3. Cross and separate holomorphy and A-limit. Let X, Y be two com-
plex manifolds, let D ⊂ X, G ⊂ Y be two nonempty open sets, and let
A ⊂ D and B ⊂ G. Moreover, suppose D (resp. G) is equipped with
a system of approach regions A(D) = (Aα(ζ))ζ∈D,α∈Iζ (resp. A(G) =
(Aα(η))η∈G,α∈Iη) (8). We define a 2-fold cross W, its interior W o and its

regular part W̃ (with respect to A(D) and A(G)) as

W = X(A,B;D,G) := ((D ∪A)×B) ∪ (A× (B ∪G)),
W o = Xo(A,B;D,G) := (A×G) ∪ (D ×B),

W̃ = X̃(A,B;D,G) := ((D ∪ Ã)× B̃) ∪ (Ã× (G ∪ B̃)),

where Ã and B̃ are as in Definition 3.3. Moreover, put

ω(z, w) := ω(z,A,D) + ω(w,B,G), (z, w) ∈ D ×G,
ω̃(z, w) := ω̃(z,A,D) + ω̃(w,B,G), (z, w) ∈ D ×G.

For a 2-fold cross W := X(A,B;D,G) let

Ŵ := X̂(A,B;D,G) = {(z, w) ∈ D ×G : ω(z, w) < 1},̂̃
W := X̂(Ã, B̃;D,G) = {(z, w) ∈ D ×G : ω̃(z, w) < 1}.

Let Z be a complex analytic space and M ⊂ W a subset which is rela-
tively closed in fibers over A and B. We say that a mapping f : W o\M → Z

(8) In fact, we should have written Iζ(D), resp. Iη(G); but we skip D and G here to
make the notions as simple as possible.
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is separately holomorphic and write f ∈ Os(W o \M,Z) if, for any a ∈ A
(resp. b ∈ B) the mapping f(a, ·)|G\Ma

(resp. f(·, b)|D\Mb) is holomorphic.
We say that a mapping f : W \M → Z is separately continuous and write

f ∈ Cs(W \M,Z) if, for any a ∈ A (resp. b ∈ B) the mapping f(a, ·)|(G∪B)\Ma

(resp. f(·, b)|(D∪A)\Mb) is continuous.
Let Ω be an open subset of D×G. A point (ζ, η) ∈ D×G is said to be an

end-point of Ω with respect to A = A(D)×A(G) if for any (α, β) ∈ Iζ × Iη
there exist open neighborhoods U of ζ in X and V of η in Y such that

(U ∩ Aα(ζ))× (V ∩ Aβ(η)) ⊂ Ω.
The set of all end-points of Ω is denoted by End(Ω).

It follows from (3.1) that if Ã, B̃ 6= ∅, then W̃ ⊂ End(̂̃W ).

Let S be a relatively closed subset of ̂̃W and let (ζ, η) ∈ End(̂̃W \ S).

Then a mapping f : ̂̃W \S → Z is said to admit the A-limit λ at (ζ, η), and
one writes

(A-lim f)(ζ, η) = λ (9),

if, for all α ∈ Iζ and β ∈ Iη,
limcfW\S3(z,w)→(ζ,η), z∈Aα(ζ), w∈Aβ(η)

f(z, w) = λ.

We conclude this introduction with a notion we need later. Let M be
a topological space. A mapping f : M → Z is said to be bounded if there
exists an open neighborhood U of f(M) in Z and a holomorphic embedding
φ of U into the unit polydisc of Ck such that φ(U) is an analytic set in this
polydisc. f is said to be locally bounded along N ⊂ M if for every point
z ∈ N , there is an open neighborhood U of z (inM) such that f |U : U → Z
is bounded. Finally, f is said to be locally bounded if it is so for N =M. It
is clear that if Z = C, then the above notions of boundedness coincide with
the usual ones.

3.4. Hartogs extension property. The following example (see Shiffman
[57]) shows that an additional hypothesis on the “target space” Z is nec-
essary in order that Problems 1 and 2 make sense. Consider the mapping
f : C2 → P1 given by

f(z, w) :=
{

[(z + w)2 : (z − w)2], (z, w) 6= (0, 0),
[1 : 1], (z, w) = (0, 0).

Then f ∈ Os(Xo(C,C; C,C),P1), but f is not continuous at (0, 0).
We recall here the following notion (see, for example, Shiffman [56]). Let

p ≥ 2 be an integer. For 0 < r < 1, the Hartogs figure in dimension p,

(9) Note that here A = A(D)×A(G).
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denoted by Hp(r), is given by

Hp(r) := {(z′, zp) ∈ Ep : ‖z′‖ < r or |zp| > 1− r},

where E is the open unit disc of C and z′=(z1, . . . , zp−1), ‖z′‖ := max
1≤j≤p−1

|zj |.

Definition 3.4. A complex analytic space Z is said to have the Har-
togs extension property in dimension p if every mapping f ∈ O(Hp(r), Z)
extends to a mapping f̂ ∈ O(Ep, Z). Moreover, Z is said to have the Hartogs
extension property if it has this property in all dimensions p ≥ 2.

It is a classical result of Ivashkovich (see [19]) that if Z has the Hartogs
extension property in dimension 2, then it has this property in all dimensions
p ≥ 2. Some typical examples of complex analytic spaces with the Hartogs
extension property are the complex Lie groups (see [1]), the taut spaces (see
[61]), the Hermitian manifolds with negative holomorphic sectional curva-
ture (see [56]), and the holomorphically convex Kähler manifolds without
rational curves (see [19]).

Here we mention an important characterization.

Theorem 4 (Shiffman [56]). A complex analytic space Z has the Har-
togs extension property if and only if for every domain D of any Stein man-
ifold M, every mapping f ∈ O(D,Z) extends to a mapping f̂ ∈ O(D̂, Z),
where D̂ is the envelope of holomorphy (10) of D.

In the light of Definition 3.4 and Shiffman’s theorem, the natural “target
spaces” Z for obtaining satisfactory answers to Problem 1 are the complex
analytic spaces with the Hartogs extension property.

4. A new approach: Poletsky’s theory of discs and Rosay the-
orem. Poletsky’s theory of discs was invented by Poletsky (see [52, 53]) in
the late 1980s. A new approach to the theory of separate holomorphy based
on Poletsky’s theory of discs was developed in our work [39]. Let us recall
some elements of this theory.

Let E denote as usual the open unit disc in C. For a complex manifold
M, let O(E,M) denote the set of all holomorphic mappings φ : E → M
which extend holomorphically to a neighborhood of E. Such a mapping φ is
called a holomorphic disc on M. Moreover, for a subset A of M, let

1A,M(z) :=
{

1, z ∈ A,
0, z ∈M \A.

In 2003 Rosay proved the following remarkable result.

(10) For the notion of the envelope of holomorphy, see, for example, [23].
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Rosay Theorem ([54]). Let u be an upper semicontinuous function on
a complex manifold M. Then the Poisson functional of u defined by

P[u](z) := inf
{

1
2π

2π�

0

u(φ(eiθ)) dθ : φ ∈ O(E,M), φ(0) = z

}
is plurisubharmonic on M.

The Rosay theorem may be viewed as an important development in
Poletsky’s theory of discs. Observe that special cases of this theorem have
been considered by Poletsky (see [52, 53]), Lárusson–Sigurdsson (see [33])
and Edigarian (see [12]).

The next result describes the situation in dimension 1.

Lemma 1 ([39, Lemma 3.3]). Let T be an open subset of E. Then

ω(0, T ∩ E,E) ≤ 1
2π

2π�

0

1∂E\T,T (eiθ) dθ.

The last result, which is an important consequence of the Rosay theo-
rem, gives the connection between the Poisson functional and the plurisub-
harmonic measure.

Lemma 2 ([39, Proposition 3.4]). LetM be a complex manifold and A a
nonempty open subset of M. Then ω(z,A,M) = P[1M\A,M](z) for z ∈M.

5. Problem 1 for A ⊂ D, B ⊂ G. We will give the first application of
the previous section. Observe that under the hypothesis A ⊂ D, B ⊂ G and

the notation of Subsection 3.3, we have W = W o and W ∩ W̃ ⊂ W ∩ ̂̃W.
Since W̃ ⊂ D × G, the notion of A-lim at a point of W̃ coincides with the
ordinary notion of a limit, that is, A can be taken as the canonical system.
Moreover, it can be shown that W \ W̃ is a locally pluripolar subset of
D × G. Therefore, from the viewpoint of pluripotential theory, W ∩ W̃ is
“almost” equal to W. Now we are able to state the following generalization
of Theorem 1.

Theorem 5 ([39, Theorem A]). Let X, Y be arbitrary complex mani-
folds, let D ⊂ X and G ⊂ Y be open sets and A ⊂ D, B ⊂ G non-locally
pluripolar subsets. Let Z be a complex analytic space with the Hartogs ex-
tension property. Then for every mapping f ∈ Os(W o, Z), there is a unique

mapping f̂ ∈ O(̂̃W,Z) such that f̂ = f on W ∩ ̂̃W.

A remark is in order. Theorem 5 removes all the assumptions of pseudo-
convexity of the “source spaces” X, Y stated in Theorem 1. Namely, now X
and Y can be arbitrary complex manifolds. The sketchy proof given below
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explains our approach: how Poletsky’s theory of discs and the Rosay theo-
rem may apply to the theory of separate holomorphy. The proof is divided
into four steps. In Steps 3 and 4 below we use some ideas of our previous
joint work with Pflug [48].

Step 1: The case where D is an arbitrary complex manifold , A is an
open subset of D, and G is a bounded open subset of Cn.

Sketchy proof of Step 1. We define f̂ as follows: Let W be the set of all
pairs (z, w) ∈ D×G with the property that there are a holomorphic disc φ ∈
O(E,D) and t ∈ E such that φ(t) = z and (t, w) ∈ ̂̃X(φ−1(A)∩E,B;E,G).
In virtue of Theorem 1 and the observation made at the beginning of the

section, let f̂φ be the unique mapping in O( ̂̃X(φ−1(A)∩E,B;E,G), Z) such
that

(5.1)
f̂φ(t, w) = f(φ(t), w),

(t, w) ∈ X(φ−1(A) ∩ E,B;E,G) ∩ X̃(φ−1(A) ∩ E,B;E,G).

Then we may define the desired extension mapping f̂ as follows:

(5.2) f̂(z, w) := f̂φ(t, w).

Using the uniqueness of Theorem 1, we can prove that f̂ is well-defined
on W. Using Lemmas 1 and 2, one can show that

W = ̂̃
W.

Moreover, it follows from the above construction that for every fixed z ∈ D,
the restricted mapping f̂(z, ·) is holomorphic on the open set {w ∈ G :

(z, w) ∈ ̂̃W}. However, it is quite difficult to see that f̂ is holomorphic in
both variables (z, w). A complete proof of this fact is given in Theorem 4.1
of [39]. Now we only explain briefly why f̂ is holomorphic in a neighborhood

of an arbitrary point (z0, w0) ∈ ̂̃W. For this purpose we “add” one complex
dimension more to a suitable neighborhood of (z0, w0), and this makes our
initial 2-fold cross W a 3-fold one. Finally, we apply the version of Theorem
1 for 3-fold cross to finish the proof.

Step 2: The case where D, G are arbitrary complex manifolds, but
A ⊂ D, B ⊂ G are open subsets.

Sketchy proof of Step 2. It follows from the discussion at the end of

Subsection 3.1 that under the hypothesis of Step 2, ̂̃W = Ŵ and W =
W ∩ W̃ ⊂ Ŵ .
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We will determine the value of f̂ at an arbitrary fixed point (z0, w0) ∈ Ŵ .
To this end fix any ε > 0 such that

(5.3) 2ε < 1− ω(z0, A,D)− ω(w0, B,G).

By the Rosay theorem and Lemma 2, there is a holomorphic disc φ ∈
O(E,D) (resp. ψ ∈ O(E,G)) such that φ(0) = z0 (resp. ψ(0) = w0) and

1
2π

2π�

0

1D\A(φ(eiθ)) dθ < ω(z0, A,D) + ε,

1
2π

2π�

0

1G\B(ψ(eiθ)) dθ < ω(w0, B,G) + ε.

Using this with estimate (5.3) and Lemma 1, we see that

(0, 0) ∈ X̂(φ−1(A) ∩ E,ψ−1(B) ∩ E;E,E).

Moreover, since f ∈ Os(W o, Z), the mapping h given by

h(t, τ) := f(φ(t), ψ(τ)), (t, τ) ∈ X(φ−1(A) ∩ E,ψ−1(B) ∩ E;E,E),

belongs to Os(X(φ−1(A)∩E,ψ−1(B)∩E;E,E), Z). By Theorem 1, let ĥ ∈
O(X̂(φ−1(A) ∩ E,ψ−1(B) ∩ E;E,E), Z) be the unique mapping such that

ĥ(t, τ) = h(t, τ) = f(φ(t), ψ(τ)),

(t, τ) ∈ X(φ−1(A) ∩ E,ψ−1(B) ∩ E;E,E).

Then we can define

f̂(z0, w0) = ĥ(0, 0), (z0, w0) ∈ Ŵ .

We leave to the interested reader the verification that f̂ is well-defined on Ŵ .
Now we explain why f̂ ∈ O(Ŵ , Z).

If we fix φ and let ψ be free (or conversely, fix ψ and let φ be free) in the
above construction, then this procedure is very similar to the one carried
out in (5.1)–(5.2). Consequently, we may apply the result of Step 1 twice
to conclude that for all (z0, w0) ∈ Ŵ , f̂(z0, ·) is holomorphic in {w ∈ G :
(z0, w) ∈ Ŵ} (resp. f̂(·, w0) is holomorphic in {z ∈ D : (z, w0) ∈ Ŵ}). The
classical Hartogs extension theorem yields f̂ ∈ O(Ŵ , Z).

To continue the proof we need to introduce some more notation.
Suppose without loss of generality that D and G are domains and let

m (resp. n) be the dimension of D (resp. of G). For every a ∈ A∗ (resp.
b ∈ B∗), fix an open neighborhood Ua of a (resp. Vb of b) such that Ua (resp.
Vb) is biholomorphic to a bounded domain in Cm (resp. in Cn). For any
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0 < δ ≤ 1/2, define

(5.4)

Ua,δ := {z ∈ Ua : ω̃(z,A ∩ Ua, Ua) < δ}, a ∈ A ∩A∗,
Vb,δ := {w ∈ Vb : ω̃(w,B ∩ Vb, Vb) < δ}, b ∈ B ∩B∗,

Aδ :=
⋃

a∈A∩A∗
Ua,δ,

Bδ :=
⋃

b∈B∩B∗
Vb,δ,

Dδ := {z ∈ D : ω̃(z,A,D) < 1− δ},
Gδ := {w ∈ G : ω̃(w,B,G) < 1− δ}.

Observe that Ua,δ (resp. Vb,δ) is an open neighborhood of a (resp. b). More-
over, one has the following inclusion (which will be implicitly used below):

X(A ∩A∗, B ∩B∗;D,G) ⊂W ∩ ̂̃W.

Step 3: The case where G is a bounded open subset in Cn.

Sketchy proof of Step 3. We only describe the construction of f̂ . For each
a ∈ A∩A∗, let fa := f |X(A∩Ua,B;Ua,G). Since f ∈ Os(W o, Z), we deduce that
fa ∈ Os(X(A ∩ Ua, B;Ua, G), Z). Recall that Ua (resp. G) is biholomorphic
to a bounded open set in Cm (resp. in Cn). Therefore, applying Theorem 1

to fa shows that there is a unique mapping f̂a ∈ O(̂̃X(A ∩ Ua, B;Ua, G), Z)
such that

(5.5) f̂a(z, w) = fa(z, w) = f(z, w),
(z, w) ∈ X(A ∩A∗ ∩ Ua, B ∩B∗;Ua, G).

Let 0 < δ ≤ 1/2. In virtue of (5.4)–(5.5), we are able to “glue” the family
(f̂a|Ua,δ×Gδ)a∈A∩A∗ . Let

(5.6) ˜̃
fδ ∈ O(Aδ ×Gδ, Z)

denote the resulting mapping after the gluing process. By (5.5)–(5.6), we
can define a new mapping f̃δ on X(Aδ, B ∩B∗;D,Gδ) as follows:

f̃δ :=

{
˜̃
fδ on Aδ ×Gδ,
f on D × (B ∩B∗).

Using (5.5)–(5.6) again, we see that f̃δ ∈ Os(X(Aδ, B ∩B∗;D,Gδ), Z), and

f̃δ = f on X(A ∩A∗, B ∩B∗;D,Gδ).

Since Aδ is an open subset of the complex manifold D, and Gδ is biholo-
morphic to a bounded open set in Cn, we can apply Step 1 to f̃δ in order to
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obtain a mapping f̂δ ∈ O(̂̃X(Aδ, B ∩B∗;D,Gδ), Z) such that

f̂δ = f̃δ on X(Aδ, B ∩B∗;D,Gδ).

We are now in a position to define the desired extension mapping f̂ .
Indeed, one glues (f̂δ)0<δ≤1/2 together to obtain f̂ in the following way:

f̂ := lim
δ→0

f̂δ on ̂̃W.

In fact, the equality ̂̃W =
⋃

0<δ<1/2
̂̃X(Aδ, B ∩B∗;D,Gδ) follows essentially

from (5.4).

Step 4: Completion of the proof of Theorem 5.

Sketchy proof of Step 4. For each a ∈ A∩A∗, let fa := f |X(A∩Ua,B;Ua,G).
Since f ∈ Os(W o, Z), we deduce that fa ∈ Os(X(A ∩ Ua, B;Ua, G), Z).
Since Ua is biholomorphic to a bounded domain in Cm, we can apply Step 3

to fa. Consequently, there is a mapping f̂a ∈ O(̂̃X(A∩Ua, B;Ua, G), Z) such
that

(5.7) f̂a(z, w) = f(z, w), (z, w) ∈ X(A ∩A∗ ∩ Ua, B ∩B∗;Ua, G).

Let 0<δ≤1/2. In virtue of (5.7), we can “glue” the family (f̂a|Ua,δ×Gδ)a∈A∩A∗
to obtain a mapping f̃ ′δ ∈ O(Aδ ×Gδ, Z).

Similarly, for each b ∈ B ∩B∗, one obtains a mapping f̂b ∈ O(̂̃X(A,B ∩
Vb;D,Vb), Z) such that

(5.8) f̂b(z, w) = f(z, w), (z, w) ∈ X(A ∩A∗, B ∩B∗ ∩ Vb;D,Vb).

Moreover, one can “glue” the family (f̂b|Dδ×Vb,δ)b∈B∩B∗ to obtain a mapping
f̃
′′
δ ∈ O(Dδ ×Bδ, Z).

Next, using (5.7)–(5.8) and (5.4) we can prove that

f̃ ′δ = f̃
′′
δ on Aδ ×Bδ.

Using this we define f̃δ : X(Aδ, Bδ;Dδ, Gδ)→ Z by

f̃δ :=

{
f̃ ′δ on Aδ ×Gδ,
f̃
′′
δ on Dδ ×Bδ.

It can be readily checked that f̃δ ∈ Os(X(Aδ, Bδ;Dδ, Gδ), Z). Since we know
from (5.4) that Aδ (resp. Bδ) is an open subset of Dδ (resp. Gδ), we can
apply Step 2 to f̃δ for every 0 < δ ≤ 1/2. Consequently, one obtains a
mapping f̂δ ∈ O(X̂(Aδ, Bδ;Dδ, Gδ), Z) such that

f̂δ = f̃δ on X(Aδ, Bδ;Dδ, Gδ).
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We are now in a position to define the desired extension mapping f̂ :

f̂ := lim
δ→0

f̂δ on ̂̃W.

In fact, the equality ̂̃
W =

⋃
0<δ<1/2 X̂(Aδ, Bδ;Dδ, Gδ) follows essentially

from (5.4).

6. Problem 1 for A ⊂ ∂D, B ⊂ ∂G. In this section we present two
particular cases of Problem 1 using two different systems of approach regions
defined in Subsection 3.2. These results are obtained in collaboration with
Pflug (see [48, 49, 50]). Firstly, we start with the case of dimension 1.

6.1. System of angular approach regions. Our main purpose is to estab-
lish a boundary cross theorem which is an optimal version of Theorem 3.
This constitutes the first step of our strategy to extend the theory of sepa-
rately holomorphic mappings. We will use the terminology and notation of
item 3 of Subsection 3.2. More precisely, if D is an open set of a Riemann
surface such that D is good on a nonempty part of ∂D, we equip D with
the system of angular approach regions supported on this part. Moreover,
the notions such as set of positive length, set of zero length, locally plurireg-
ular point, which exist on ∂E, can be transferred to ∂D using conformal
mappings in a local way (see [49] for more details).

Theorem 6 ([49]). Let X, Y be Riemann surfaces and D ⊂ X, G ⊂ Y
open subsets, and let A (resp. B) be a subset of ∂D (resp. ∂G) such that D
(resp. G) is good on A (resp. B) and both A and B are of positive length.
Define

W : = X(A,B;D,G), W ′ := X(A′, B′;D,G),

Ŵ : = {(z, w) ∈ D ×G : ω(z,A,D) + ω(w,B,G) < 1},
Ŵ ′: = {(z, w) ∈ D ×G : ω(z,A′, D) + ω(w,B′, G) < 1},

where A′ (resp. B′) is the set of points at which A (resp. B) is locally plurireg-
ular with respect to the system of angular approach regions supported on A
(resp. B), and ω(·, A,D), ω(·, A′, D) (resp. ω(·, B,G), ω(·, B′, G)) are cal-
culated using the canonical system of approach regions.

Then for every function f : W → C which satisfies the following condi-
tions:

(i) for every a ∈ A the function f(a, ·)|G is holomorphic and has the
angular limit f(a, b) at all points b ∈ B, and for every b ∈ B the
function f(·, b)|D is holomorphic and has the angular limit f(a, b)
at all points a ∈ A;

(ii) f is locally bounded ;
(iii) f |A×B is continuous,
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there exists a unique function f̂ ∈ O(Ŵ ′,C) which admits the angular limit
f at all points of W ∩W ′.

If A and B are Borel sets or if X = Y = C then Ŵ = Ŵ ′.

Theorem 6 is the “measurable” version of Theorem 3. Indeed, the hy-
potheses of the latter such as open boundary sets A and B etc. are now
replaced by measurable boundary sets A and B etc. The question of opti-
mality of Theorem 6 has been settled in [51].

Our method consists of two steps. In the first step we suppose that D
and G are Jordan domains in C. In the second step we treat the general
case. Now we give a brief outline of the proof.

For every 0 < δ < 1 the set Dδ := {z ∈ D : ω(z,A,D) < 1 − δ}
(resp. Gδ := {w ∈ G : ω(w,B,G) < 1 − δ}) is called a level set (of the
harmonic measure ω(·, A,D) (resp. ω(·, B,G)). In the first step, we improve
Gonchar’s method [13, 14] by making intensive use of Carleman’s formula
(see [5]) and of geometric properties of level sets of harmonic measures. More
precisely, when adapting Gonchar’s method to our “measurable” situation,
we meet some difficulties as the geometry of Dδ and Gδ is complicated.
To overcome this, we construct Jordan domains with rectifiable boundary
which are contained in Dδ and Gδ and which touch the boundary of these
level sets along a set of positive length. Consequently, the analysis on the
complicated open sets Dδ and Gδ can be reduced to that on certain Jordan
domains.

The main ingredient for the second step is a mixed cross type theorem.
The idea is to adapt Theorem 1 to the following “mixed” situation:

D (resp. G) is an open set of a Riemann surface, A is an open subset
of D, but B is a subset of ∂G such that G is good on B. This explains the
terminology “mixed cross”.

Our key observation is that the classical method of doubly orthogonal
bases of Bergman type, discussed in Section 2, still applies in the present
mixed context. We also use a recent work of Zeriahi (see [63]).

In the second step we apply this mixed cross type theorem to prove The-
orem 6 with D (resp. G) replaced by Dδ (resp. Gδ). Then we construct the
solution for the original open sets D and G by means of a gluing proce-
dure. The method for the second step (called “the method of level sets”)
has appeared for the first time in [48]. We will discuss it in the next subsec-
tion.

6.2. Canonical system of approach regions. For every open subset U ⊂
R2n−1 and every continuous function h : U → R, the graph

{z = (z′, zn) = (z′, xn + iyn) ∈ Cn : (z′, xn) ∈ U and yn = h(z′, xn)}
is called a topological hypersurface in Cn.
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Let X be a complex manifold of dimension n. A subset A ⊂ X is said
to be a topological hypersurface if, for every point a ∈ A, there is a local
chart φ : U → Cn around a such that φ(A∩U) is a topological hypersurface
in Cn.

Now let D ⊂ X be an open subset and let A ⊂ ∂D be an open subset (in
the topology induced on ∂D). Suppose in addition that A is a topological
hypersurface. A point a ∈ A is said to be of type 1 (with respect to D) if
for every neighborhood U of a there is an open neighborhood V of a such
that V ⊂ U and V ∩D is a domain. Otherwise, a is said to be of type 2. We
see easily that if a is of type 2, then for every neighborhood U of a, there
are an open neighborhood V of a and two domains V1, V2 such that V ⊂ U,
V ∩ D = V1 ∪ V2 and all points in A ∩ V are of type 1 with respect to V1

and V2.
In virtue of Proposition 3.7 in [50] we have the following

Proposition 6.1. Let X be a complex manifold and D an open subset
of X, equipped with the canonical system of approach regions. Suppose that
A ⊂ ∂D is an open boundary subset which is also a topological hypersurface.
Then A is locally pluriregular and Ã = A.

The main result of this subsection is

Theorem 7 ([50]). Let X, Y be two complex manifolds, and D ⊂ X,
G ⊂ Y two nonempty open sets. Suppose that D (resp. G) is equipped with
the canonical system of approach regions. Let A (resp. B) be a nonempty
open subset of ∂D (resp. ∂G) which is also a topological hypersurface. Define

W : = X(A,B;D,G),

Ŵ : = {(z, w) ∈ D ×G : ω(z,A,D) + ω(w,B,G) < 1}.
Let f : W → C be such that :

(i) f ∈ Cs(W,C) ∩ Os(W o,C);
(ii) f is locally bounded on W ;

(iii) f |A×B is continuous.

Then there exists a unique function f̂ ∈ O(Ŵ ,C) such that

limcW3(z,w)→(ζ,η)
f̂(z, w) = f(ζ, η), (ζ, η) ∈W.

A weaker version of Theorem 7 where D (resp. G) is a pseudoconvex open
subset of Cm (resp. Cn) was previously proved in [48]. In order to tackle
“arbitrary” complex manifolds we follow our new approach introduced in
Sections 4 and 5. The next key technique is to apply a mixed cross type
theorem in the following context.

D is an open subset of Cm and G is the open unit disc in C, A is an
open subset of D but B is an open connected subset (an arc) of ∂G.
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The last key technique is to use level sets of the plurisubharmonic mea-
sure (see [48, 49]). More precisely, we exhaust D (resp. G) by the level sets
of the plurisubharmonic measure ω(·, A,D) (resp. ω(·, B,G)), that is, by
Dδ := {z ∈ D : ω(z,A,D) < 1 − δ} (resp. Gδ := {w ∈ G : ω(w,B,G) <
1− δ}) for 0 < δ < 1.

Our method consists of three steps. In the first step we suppose that G
is a domain in Cm and A is an open subset of D. In the second step we
treat the case where the pairs (D,A) and (G,B) are “good” enough in the
sense of the slicing method. In the last one we consider the general case. For
the first step we combine the above mentioned mixed cross theorem with
the technique of holomorphic discs. For the second step we apply the slicing
method and Theorem 3 (11). The general philosophy is to prove Theorem 7
with D (resp. G) replaced by Dδ (resp. Gδ). Then we construct the solution
for the original open sets D and G by means of a gluing procedure (that is,
the method of level sets). In the last step we transfer the holomorphy from
local situations to the global context using Poletsky’s theory of discs and
the Rosay theorem.

7. Problem 1 in the general case. In Sections 5 and 6 we have
solved Problem 1 in some particular but important cases. These results
make us hope that a reasonable solution to Problem 1 in the general case
may exist. The main purpose of this section is to confirm this speculation.
In our work [41] we have introduced the formulations given in Section 3
above and developed a unified approach which improves the one given in
Section 4. We keep the notation introduced in Section 3, and state the main
results.

Theorem 8 ([41]). Let X, Y be two complex manifolds, let D ⊂ X, G ⊂
Y be two open sets, let A (resp. B) be a subset of D (resp. G). Suppose that
D (resp. G) is equipped with a system of approach regions (Aα(ζ))ζ∈D,α∈Iζ
(resp. (Aβ(η))η∈G, β∈Iη). Suppose in addition that ω̃(·, A,D) < 1 on D and
ω̃(·, B,G) < 1 on G. Let Z be a complex analytic space with the Hartogs
extension property. Then, for every mapping f : W → Z which satisfies the
following conditions:

• f ∈ Cs(W,Z) ∩ Os(W o, Z);

(11) It is worth remarking here that a weaker version of Theorem 3 will suffice for
this argument. Namely, we only need Theorem 3 for the case where A and B are arcs.
This weaker version of Theorem 3 is also known under the name of Drużkowski’s theorem
(see [11]). In fact, we also obtain, in this way, a new proof of Theorem 3 starting from
Drużkowski’s theorem.
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• f is locally bounded along X(A ∩ ∂D,B ∩ ∂G;D,G) (12);
• f |A×B is continuous at all points of (A ∩ ∂D)× (B ∩ ∂G),

there exists a unique mapping f̂ ∈ O(̂̃W,Z) which admits the A-limit f(ζ, η)
at every point (ζ, η) ∈W ∩ W̃ .

Theorem 8 has an important corollary. Before stating it, we need to
introduce some terminology. A complex manifoldM is said to be a Liouville
manifold if PSH(M) does not contain any nonconstant functions bounded
above. We see clearly that the class of Liouville manifolds contains the class
of connected compact manifolds.

Corollary 1. We keep the hypotheses and notation in Theorem 8. Sup-
pose in addition that G is a Liouville manifold. Then, for every mapping
f : W → Z which satisfies the following conditions:

• f ∈ Cs(W,Z) ∩ Os(W o, Z);
• f is locally bounded along X(A ∩ ∂D,B ∩ ∂G;D,G);
• f |A×B is continuous at all points of (A ∩ ∂D)× (B ∩ ∂G),

there is a unique mapping f̂ ∈ O(D×G,Z) which admits the A-limit f(ζ, η)
at every point (ζ, η) ∈W ∩ W̃ .

Corollary 1 follows immediately from Theorem 8 since ω̃(·, B,G) ≡ 0.
This theorem generalizes, in some sense, all results obtained in Sections 5
and 6. On the other hand, we will see many other applications of Theorem 8
in Section 9. We will explain our unified approach and techniques for the
proof of Theorem 8 in the following special “local” case.

Proposition 7.1. Let D ⊂ Cn, G ⊂ Cm be bounded connected open
sets. Suppose D (resp. G) is equipped with a system of approach regions
(Aα(ζ))ζ∈D,α∈Iζ (resp. (Aα(η))η∈G,α∈Iη). Let A (resp. B) be a nonempty

subset of D (resp. G) such that A and B are locally pluriregular. Put

W := X(A,B;D,G), W := X(A,B;D,G),

W
o := Xo(A,B;D,G), Ŵ := X̂(A,B;D,G).

Then, for every bounded function f : W → C such that f ∈ Cs(W,C) ∩
Os(W

o
,C) and f |A×B is continuous at all points of (A ∩ ∂D) × (B ∩ ∂G),

there exists a unique bounded function f̂ ∈ O(Ŵ ,C) which admits the A-
limit f(ζ, η) at all points (ζ, η) ∈W.

This result constitutes the core of the proof of Theorem 8. Indeed, the
latter is, in some sense, the “global ” version of Proposition 7.1. By using

(12) It follows from Subsection 3.3 that

X(A ∩ ∂D,B ∩ ∂G;D,G) = ((D ∪A)× (B ∩ ∂G)) ∪ ((A ∩ ∂D)× (G ∪B)).
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the approach developed in Section 4. we can go from local extensions to
global ones. In addition, the formulation of Proposition 7.1 gives rise to
Definition 3.3 of the plurisubharmonic measure ω̃(·, A,D). The core of our
unified approach will be presented below. Our idea is to use an adapted
version of Poletsky’s theory of discs in order to reduce Proposition 7.1 to
the case where D and G are simply the unit discs and A ⊂ ∂D, B ⊂ ∂G are
measurable sets (that is, a special case of Theorem 6).

Let us comment on the needed version of Poletsky’s theory of discs. Let
mes denote the Lebesgue measure on the unit circle ∂E. For a bounded
mapping φ ∈ O(E,Cn) and ζ ∈ ∂E, f(ζ) denotes the angular limit value
of f at ζ if it exists. A classical theorem of Fatou says that mes({ζ ∈ ∂E :
f(ζ exists)}) = 2π.

Proposition 7.2. Let D be a bounded open set in Cn, ∅ 6= A ⊂ D,
z0 ∈ D and ε > 0. Let A be a system of approach regions for D. Suppose in
addition that A is locally pluriregular (relative to A) and that ω(·, A,D) < 1
on D. Then there exist a bounded mapping φ ∈ O(E,Cn) and a measurable
subset Γ0 ⊂ ∂E with the following properties:

(1) Every point of Γ0 is a density point of Γ0, φ(0) = z0, φ(E) ⊂ D,
Γ0 ⊂ {ζ ∈ ∂E : φ(ζ) ∈ A}, and

1− 1
2π

mes(Γ0) < ω(z0, A,D) + ε.

(2) Let f ∈ C(D∪A,C)∩O(D,C) with f(D) bounded. Then there exists a
bounded function g ∈ O(E,C) such that g = f ◦ φ in a neighborhood
of 0 ∈ E and (13) g(ζ) = (f ◦ φ)(ζ) for all ζ ∈ Γ0. Moreover ,
g|Γ0 ∈ C(Γ0,C).

This result is proved by adapting the original disc construction of Pole-
tsky in [52, 53]. Recall here that Poletsky considered the case where A ⊂ D
and A is the canonical system of approach regions. But his method still
works in our context by using the Montel theorem on normal families. It is
worth remarking that φ(E) ⊂ D, but in general φ(E) 6⊂ D.

Proposition 7.2 motivates the following

Definition 7.3. We keep the hypotheses and notation of Proposition 7.2.
Then every pair (φ, Γ0) satisfying the conclusions (1)–(2) of this proposition
is said to be an ε-candidate for the triplet (z0, A,D).

Proposition 7.2 says that there always exist ε-candidates for all triplets
(z,A,D). Now we arrive at

Sketchy proof of Proposition 7.1. Firstly, we give the construction of f̂ .
Fix a point (z, w) ∈ Ŵ ; we want to determine the value f̂(z, w). To do this

(13) Note here that by part (1), (f ◦ φ)(ζ) exists for all ζ ∈ Γ0.
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let ε > 0 be such that

(7.1) ω(z,A,D) + ω(w,B,G) + 2ε < 1.

By Proposition 7.2 and Definition 7.3, there is an ε-candidate (φ, Γ ) (resp.
(ψ,∆)) for (z,A,D) (resp. (w,B,G)). Moreover, using the hypotheses, we
see that the function fφ,ψ defined by

fφ,ψ(t, τ) := f(φ(t), ψ(τ)), (t, τ) ∈ X(Γ,∆;E,E),

satisfies the hypotheses of Theorem 6. By this theorem, let f̂φ,ψ be the unique
function in X̂(Γ,∆;E,E) such that

(A-lim f̂φ,ψ)(t, τ) = fφ,ψ(t, τ), (t, τ) ∈ Xo(Γ,∆;E,E),

where A-lim is the angular limit. In virtue of (7.1) and Proposition 7.2,
(0, 0) ∈ X̂(Γ,∆;E,E). Then we can define the value of the desired extension
function f̂ at (z, w) as follows:

f̂(z, w) := f̂φ,ψ(0, 0).

It remains to prove that the f̂ so defined has the required properties of
Proposition 7.1: namely, f̂ is holomorphic and admits the A-limit f at all
points of W.

In fact, using the technique of level sets, the holomorphy of f̂ is reduced
to proving the following mixed cross version of Proposition 7.1.

Assertion. A is a measurable subset of ∂E with mes(A) > 0,

D := {w ∈ E : ω(w,A,E) < 1− δ} for some δ with 0 ≤ δ < 1,

and B is an open subset of an arbitrary complex manifold G.

Using the Rosay theorem, the case δ = 0 of the assertion can be reduced
to the special case of Theorem 6 where D and G are merely the unit discs
and A ⊂ ∂D, B ⊂ ∂G are measurable sets.

The case where 0 < δ < 1 can be reduced to the previous case by using
conformal mappings from every connected component of D onto E. In fact,
all connected components of D are simply connected. This idea has been
developed in [41], and it is called the technique of conformal mappings. The
interesting point of this proof of the assertion is that we avoid completely
the classical method of doubly orthogonal bases of Bergman type.

In order to show that f̂ admits the A-limit f at all points of W, we make
use of an argument based on the Two-Constant Theorem (see [41] for more
details).

In conclusion, our new approach illustrates the unified character: “from
local information to global extensions”. In fact, “global” results (i.e. for
general crosses) can be deduced from “local” ones (i.e. for boundary crosses
defined over the bidisk).
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8. Problem 2. In the case of crosses in the interior context (that is,
A ⊂ D and B ⊂ G), one was led to investigate cross theorems with analytic
or pluripolar singularities (see, for example, [24, 25, 26, 28] and the references
therein). The starting point for this kind of questions was the so-called range
problem in mathematical tomography (for more details see [45]). To be more
precise one had to describe the range of the exponential Radon transform
Rµ, µ 6= 0,

C∞c (R2,R) 3 h Rµ7→
�

x·ω=p

h(x) exp(µx · ω⊥) dΛ1(x),

where ω = (sinα, cosα) ∈ S1, p ∈ R, ω⊥ = (− sinα, cosα), and where
“·” means the standard scalar product in R2 and dΛ1 denotes the one-
dimensional Lebesgue measure.

Then the natural question arises whether there also exists a general cross
theorem with singularities. Namely, does there exist a general version of
Theorem 2 in the spirit of Theorem 8? In other words, we want to solve
Problem 2 when Z is a complex analytic space with the Hartogs extension
property.

We have recently obtained, in collaboration with P. Pflug (see [43, 44]),
a reasonable solution to the problem. Our idea is to follow the strategy as in
the case without singularities. Namely, we investigate first the “local” case
where the boundary crosses are defined over the bidisk, and then we pass
from this case to the global one.

By using an idea of Jarnicki and Pflug [25, 27], applying the technique
of conformal mappings (see the end of Section 7), using the technique of
level sets and using the results of Chirka [9], Imomkulov–Khujamov [18]
and Imomkulov [17], we obtain the following “measurable” version with
singularities of Theorem 3.

Theorem 9 ([43]). Let D = G = E and let A ⊂ ∂D, B ⊂ ∂G be
measurable subsets such that mes(A) > 0, mes(B) > 0. Suppose that D and
G are equipped with the system of angular approach regions. Consider the
cross W := X(A,B;D,G). Let M be a relatively closed subset of W such
that

• Ma is polar (resp. discrete) in G for all a ∈ A and M b is polar (resp.
discrete) in D for all b ∈ B (14);
• M ∩ (A×B) = ∅.

Then there exists a relatively closed pluripolar subset (resp. an analytic sub-
set) M̂ of Ŵ with the following two properties:

(14) In other words, M is polar (resp. discrete) in fibers over A and B.
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(i) The set of end-points of Ŵ \ M̂ contains ((A′×G)∪ (D×B′)) \M,
where A′ (resp. B′) denotes the set of density points of A (resp.
of B).

(ii) Let f : W \M → C be a locally bounded function such that

• for all a ∈ A, f(a, ·)|G\Ma
is holomorphic and admits the angular

limit f(a, b) at all points b ∈ B;
• for all b ∈ B, f(·, b)|D\Mb is holomorphic and admits the angular

limit f(a, b) at all points a ∈ A;
• f |A×B is measurable.

Then there is a unique function f̂ ∈ O(Ŵ \M̂,C) such that f̂ admits
the angular limit f at all points of ((A′ ×G) ∪ (D ×B′)) \M.

Moreover , if M = ∅, then M̂ = ∅.
The path from Theorem 9 to its global version is much harder than in the

case without singularities. The difficulty arises when we want to show that f̂
admits the desired A-limit. In the case without singularities this procedure
works well because we can use an argument based on the Two-Constant
Theorem. But this is not available any more in the case with singularities.
In [44] we have found a way to overcome this difficulty by using some special
mixed cross theorems with singularities.

Recall that a subset S of a complex manifold M is said to be thin if for
every point x ∈ M there are a connected neighborhood U = U(x) ⊂ M
and a holomorphic function f on U, not identically zero, such that U ∩ S ⊂
f−1(0). We are now ready to state our main result.

Theorem 10 ([44]). Let X, Y be two complex manifolds, let D ⊂ X,
G ⊂ Y be two open sets, and let A (resp. B) be a subset of D (resp. G).
Suppose that D (resp. G) is equipped with a system of approach regions
(Aα(ζ))ζ∈D,α∈Iζ (resp. (Aβ(η))η∈G, β∈Iη). Suppose in addition that A = A∗

and B = B∗ (15) and that ω̃(·, A,D) < 1 on D and ω̃(·, B,G) < 1 on G. Let
Z be a complex analytic space with the Hartogs extension property. Let M
be a relatively closed subset of W with the following properties:

• M is thin in fibers (resp. locally pluripolar in fibers) over A and over B;
• M ∩ ((A ∩ ∂D)×B) = M ∩ (A× (B ∩ ∂G)) = ∅.

Then there exists a relatively closed analytic (resp. a relatively closed locally

pluripolar) subset M̂ of ̂̃W such that M̂∩W̃ ⊂M (16), W̃ \M ⊂ End(̂̃W \M̂)

(15) It is worth noting that this assumption is not so restrictive since we know from
Subsection 3.1 that A \ A∗ and B \ B∗ are locally pluripolar for arbitrary sets A ⊂ D,
B ⊂ G.

(16) Note that if eA ∩D = ∅ and eB ∩G = ∅, then this intersection is empty.
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and for every mapping f : W \ M → Z satisfying the following condi-
tions:

(i) f ∈ Cs(W \M,Z) ∩ Os(W o \M,Z);
(ii) f is locally bounded along X(A ∩ ∂D,B ∩ ∂G;D,G) \M ;

(iii) f |(A×B)\M is continuous at all points of (A ∩ ∂D)× (B ∩ ∂G),

there exists a unique mapping f̂ ∈ O(̂̃W \ M̂, Z) which admits the A-limit
f(ζ, η) at every point (ζ, η) ∈ W̃ \M.

9. Some applications. In [41] the author gives various applications of
Theorem 8 using three systems of approach regions. These are the canonical
system, the system of angular approach regions and the system of conical
approach regions. We only give here some applications of Theorem 10 for
the system of conical approach regions. We leave it to the reader to treat the
first two cases, that is, to translate Theorems 6 and 7 into the new context
of Theorem 10.

Let X be an arbitrary complex manifold and D ⊂ X an open subset. We
say that a set A ⊂ ∂D is locally contained in a generic manifold if there exist
an (at most countable) index set J 6= ∅, a family of open subsets (Uj)j∈J of
X and a family of generic manifolds (17) (Mj)j∈J such that A ∩ Uj ⊂ Mj

for all j ∈ J and A ⊂
⋃
j∈J Uj . The dimensions of Mj may vary.

Suppose A ⊂ ∂D is locally contained in a generic manifold. Then we say
that A is of positive size if under the above notation

∑
j∈J mesMj (A ∩ Uj)

> 0, where mesMj denotes the Lebesgue measure on Mj . A point a ∈ A
is said to be a density point relative to A if it is a density point relative to
A ∩ Uj on Mj for some j ∈ J. Denote by A′ the set of all density points
relative to A.

Suppose now that A ⊂ ∂D is of positive size. We equipD with the system
of conical approach regions supported on A. Using the works of B. Coupet
and B. Jöricke (see [10, 29]), one can show that (18) A is locally pluriregular
at all density points relative to A and A′ ⊂ Ã. Consequently, it follows from
Definition 3.3 that

ω̃(z,A,D) ≤ ω(z,A′, D), z ∈ D.

This estimate, combined with Theorem 10, implies the following result.

(17) A C2-smooth submanifold M of a complex manifold X is said to be a generic
manifold if for all ζ ∈M, every complex vector subspace of TζX containing TζM coincides
with TζX.

(18) A complete proof is available in [42].
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Corollary 2. Let X, Y be two complex manifolds, let D ⊂ X, G ⊂ Y
be two connected open sets, and let A (resp. B) be a subset of ∂D (resp. ∂G).
Suppose that D (resp. G) is equipped with a system of conical approach
regions (Aα(ζ))ζ∈D, α∈Iζ (resp. (Aβ(η))η∈G, β∈Iη) supported on A (resp. B).
Suppose in addition that A and B are of positive size. Define

W ′: = X(A′, B′;D,G),

Ŵ ′: = {(z, w) ∈ D ×G : ω(z,A′, D) + ω(w,B′, G) < 1},
where A′ (resp. B′) is the set of density points relative to A (resp. B). Let
M be a relatively closed subset of W with the following properties:

• M is thin in fibers (resp. locally pluripolar in fibers) over A and over B;
• M ∩ (A×B) = ∅.

Then there exists a relatively closed analytic (resp. a relatively closed locally
pluripolar) subset M̂ of Ŵ ′ such that for every mapping f : W \M → Z
satisfying the following conditions:

(i) f ∈ Cs(W \M,Z) ∩ Os(W o \M,Z);
(ii) f is locally bounded along X(A,B;D,G) \M ;
(iii) f |A×B is continuous,

there exists a unique mapping f̂ ∈ O(Ŵ ′ \ M̂, Z) which admits the A-limit
f(ζ, η) at every point (ζ, η) ∈ (W ∩W ′) \M.

The second application is a very general mixed cross theorem.

Corollary 3. Let X, Y be two complex manifolds, let D ⊂ X, G ⊂ Y
be connected open sets, let A be a subset of ∂D, and let B be a subset
of G. Suppose that D is equipped with the system of conical approach re-
gions (Aα(ζ))ζ∈D,α∈Iζ supported on A and G is equipped with the canonical
system of approach regions (Aβ(η))η∈G, β∈Iη . Suppose in addition that A is
of positive size and that B = B∗ 6= ∅. Define

W ′: = X(A′, B;D,G),

Ŵ ′: = {(z, w) ∈ D ×G : ω(z,A′, D) + ω(w,B,G) < 1},
where A′ is the set of density points relative to A. Let M be a relatively
closed subset of W with the following properties:

• M is thin in fibers (resp. locally pluripolar in fibers) over A and over B;
• M ∩ (A×B) = ∅.

Then there exists a relatively closed analytic (resp. a relatively closed locally
pluripolar) subset M̂ of Ŵ ′ such that W ′ \M ⊂ End(Ŵ ′ \ M̂) and for every
mapping f : W \M → Z satisfying the following conditions:

(i) f ∈ Cs(W \M,Z) ∩ Os(W o \M,Z);
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(ii) f is locally bounded along (A×G) \M,

there exists a unique mapping f̂ ∈ O(Ŵ ′ \ M̂, Z) which admits the A-limit
f(ζ, η) at every point (ζ, η) ∈W ′ \M.

Recently, Sadullaev and Imomkulov (see [55]) have obtained some sim-
ilar, but less general results. In fact, they introduced the inner plurisub-
harmonic measure for boundary sets and formulated their results using this
function.

10. Concluding remarks and open questions. We collect here some
open questions which seem to be of interest for the future developments of
the theory of separately holomorphic mappings.

Question 1. Study the optimality of Theorems 8 and 10.

Question 2. Investigate Problem 1 and 2 when the “target space” Z
does not have the Hartogs extension property.

Question 3. Study Problem 1 when D and G are not necessarily open
subsets of X and Y. Here O(D,Z) denotes the set of all holomorphic map-
pings f : U → Z, where U = Uf is an open neighborhood of D in X that
depends on f.

Some results concerning Question 2 could be found in [20, 21, 22]. Ques-
tion 3 has some connections with Sibony’s work in [58].

We think that new tools and new ideas need to be introduced in order
to solve these questions.
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Bergman: Une approche élémentaire, Vietnam J. Math. 30 (2002), 177–188.
[64] M. Zerner, Quelques résultats sur le prolongement analytique des fonctions de vari-
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