VOL. 117

2009

NO. 2

SEMIVARIATIONS OF AN ADDITIVE FUNCTION ON A BOOLEAN RING

BҮ

ZBIGNIEW LIPECKI (Wrocław)

Abstract. With an additive function φ from a Boolean ring A into a normed space two positive functions on A, called semivariations of φ , are associated. We characterize those functions as submeasures with some additional properties in the general case as well as in the cases where φ is bounded or exhaustive.

1. Introduction. Let A be a Boolean ring and let φ be an additive function from A into a normed space. Associated with φ are two positive functions $\tilde{\varphi}$ and $\bar{\varphi}$ on A, both called semivariations of φ in the literature (see the beginning of Section 4). Each of them is increasing, subadditive and has zero value at the minimal element of A, i.e., it is a *submeasure*, in our terminology.

Theorem 3, which is one of the main results of this paper (¹), exhibits necessary and sufficient conditions for a submeasure on A to be representable as $\tilde{\varphi}$ or $\bar{\varphi}$. Those conditions are multiple subadditivity of Lorentz [15] and property (G) introduced in [12]. We also deal with an analogous, but much simpler, problem of characterizing $\tilde{\varphi}$ and $\bar{\varphi}$ in the case where φ is additionally bounded or exhaustive (Theorem 4). The case where φ is σ -additive and Ais σ -complete will be discussed in a subsequent paper [14].

A basic tool used in the proofs is a representation of multiply subadditive submeasures as upper envelopes of sets of positive additive functions due, in the finite case, to Lorentz [15] (see also Theorem 1 below). Motivated by this representation and some results of Dellacherie and Iwanik [2], we introduce what we call the degree of a multiply subadditive submeasure and present some relevant examples and observations. In particular, we give a precise estimate of the degree of a finite submodular submeasure on a finite Boolean algebra (Theorem 2).

²⁰¹⁰ Mathematics Subject Classification: 28B05, 28A12, 28A60.

Key words and phrases: Boolean ring, nonatomic, submeasure, submodular, mulitiply subadditive, exhaustive, quasi-measure, normed space, additive function, semivariation.

^{(&}lt;sup>1</sup>) Some results of the paper were presented at the 36th Winter School in Abstract Analysis (Lhota nad Rohanovem, Czech Republic, 2008).

The paper is divided into five sections. Sections 2 and 3 are concerned with submeasures while Section 4 presents some auxiliary results on semivariations of a vector-valued additive function. The main results, Theorems 3 and 4, are contained in Section 5.

We note that the variation of an additive function from a Boolean algebra into an Abelian normed group is characterized, in the general and bounded cases, in [12] and, in the exhaustive case, in [13]. Some ideas used in [12] also play an essential role in the present paper.

2. Preliminaries on submeasures. Throughout the paper A stands for a Boolean ring with the operations of join, meet, difference and symmetric difference denoted by \lor , \land , \lor and \bigtriangleup , respectively. The natural ordering of A is denoted by \leq and its minimal element by 0, respectively. For every $a \in A$ we denote by C_a the ideal in A generated by a, i.e.,

$$C_a = \{ b \in A : b \le a \}.$$

We say that A is *nonatomic* or *atomless* if for every nonzero $a \in A$ there are nonzero disjoint $a_1, a_2 \in A$ with $a_1 \vee a_2 = a$.

We call a function $\eta: A \to [0, \infty]$ a submeasure if it is increasing, subadditive and satisfies the condition $\eta(0) = 0$. We say that η is exhaustive if $\eta(a_n) \to 0$ whenever (a_n) is a sequence of pairwise disjoint elements in A. (This is an adaptation of Drewnowski's terminology [4, p. 277]; cf. also [22, Definition 2.1].) As is easily seen, a finite exhaustive submeasure on A is bounded, i.e.,

$$\sup\{\eta(a): a \in A\} < \infty.$$

This accounts for the term *strongly bounded* used in the literature interchangeably with exhaustive.

Let η be a submeasure on A. We set

$$I_{\eta} = \{ a \in A : \eta(a) < \infty \}.$$

Clearly, I_{η} is an ideal in A. We say that η is *semifinite* provided for every $a \in A$ we have

$$\eta(a) = \sup\{\eta(b) : b \in I_{\eta} \text{ and } b \le a\}.$$

The following property the submeasure η may have is basic for our purposes:

(G) Given $a \in A \setminus I_{\eta}$ and t > 0, there are disjoint $a_1, a_2 \in A$ with $\eta(a_1)$, $\eta(a_2) > t$ and $a_1 \lor a_2 = a$.

For a discussion of property (G) in a less general setting see [12], especially pp. 446–447. We denote by dens η the density character of A equipped with the topology generated by the semimetric

$$d_n(a,b) = \min(1, \eta(a \bigtriangleup b)) \quad \text{for all } a, b \in A.$$

We call a function $\eta: A \to [0, \infty]$ a (positive) quasi-measure or a content if it is additive and satisfies the condition $\eta(0) = 0$. Clearly, η is then a submeasure. We note that for a finite quasi-measure exhaustivity is equivalent to boundedness (see [22, Theorem 2.10]). We set

$$c(A) = \{\eta \in [0, \infty]^A : \eta \text{ is a quasi-measure}\}.$$

A function $\eta: A \to [0, \infty]$ is said to be *submodular* or *strongly subadditive* provided that

$$\eta(a_1 \lor a_2) + \eta(a_1 \land a_2) \le \eta(a_1) + \eta(a_2)$$
 for all $a_1, a_2 \in A$.

This condition holds and, in fact, turns into equality if η is additive.

We say that $a_1, \ldots, a_n \in A$ cover $a \in A$ exactly k times if the following three conditions hold:

$$1^{\circ} a_{i} \leq a \text{ for each } i,$$

$$2^{\circ} a = \bigvee_{1 \leq i_{1} < \dots < i_{k} \leq n} \bigwedge_{j=1}^{k} a_{i_{j}};$$

$$3^{\circ} \bigwedge_{j=1}^{k+1} a_{i_{j}} = 0 \text{ whenever } 1 \leq i_{1} < \dots < i_{k} < i_{k+1} \leq n.$$

(This definition appears in [15, p. 456], in a somewhat different wording.) We note that, in the case where A is a ring of sets, conditions $1^{\circ}-3^{\circ}$ are jointly equivalent to the following one:

$$k1_a = \sum_{i=1}^n 1_{a_i}.$$

Following [15, p. 455], we call a function $\eta: A \to [0, \infty]$ multiply subadditive (m.s., for short) if

$$k\eta(a) \le \sum_{i=1}^n \eta(a_i)$$

whenever $a_1, \ldots, a_n \in A$ cover $a \in A$ exactly k times. (In fact, in [15] only finite functions are considered.) Every quasi-measure on A is m.s., with equality holding in the definition above; cf. [15, p. 457]. We shall also need the following more general result:

LEMMA 1. Every submodular function $\eta: A \to [0, \infty]$ is m.s.

This lemma is essentially due to Eisenstatt and Lorentz [5, Theorem $2(\beta)$]; see also [1, Remark 1], or [9, Lemma 3]. The converse fails to hold even for a finite submeasure η (see, e.g., [10, Example 3.2]).

The next result will be applied in the proofs of Theorem 1 in Section 3 and Theorem 3 in Section 5. For A a Boolean algebra and η a quasi-measure it is covered by [12, Proposition 1]. A part of the latter result is contained in [11, Propositions 3.1.8 and 3.1.9]. The proof below follows [11] and [12].

PROPOSITION 1. Let η be a [m.s.] submeasure on A. Then there exist submeasures η_1 and η_2 on A such that

- (a) η_1 is semifinite [and m.s.];
- (b) $\eta_2(A) \subset \{0, \infty\};$
- (c) $\eta = \max(\eta_1, \eta_2)$ (²).

If, moreover, η has property (G), then η_2 can be chosen with this property. Proof. Set

$$\eta_1(a) = \sup\{\eta(b) : b \in I_\eta \text{ and } b \le a\}$$

for all $a \in A$. It is easily seen that η_1 is a semifinite submeasure on A. As for multiple subadditivity, it is enough to observe that, if a_1, \ldots, a_n cover aexactly k times and $b \in C_a$, then $a_1 \wedge b, \ldots, a_n \wedge b$ cover b exactly k times.

Set

$$J = \{a \in A : \eta(b) = \eta_1(b) \text{ for every } b \in C_a\}.$$

Clearly, J is a hereditary subset of A with $I_{\eta} \subset J$. Moreover, if $a_1, a_2 \in J$, then $a_1 \lor a_2 \in J$. Indeed, for $b \in C_{a_1 \lor a_2}$ with $\eta(b) = \infty$ we have

$$\eta(b \wedge a_1) = \infty$$
 or $\eta(b \wedge a_2) = \infty$,

and so $\eta_1(b) = \infty$. Thus $a_1 \lor a_2 \in J$, which shows that J is an ideal in A. Set

$$\eta_2(a) = \begin{cases} 0 & \text{if } a \in J, \\ \infty & \text{if } a \in A \smallsetminus J \end{cases}$$

Then η_2 is a submeasure on A, and (b) and (c) hold.

The second part of the assertion can be established in exactly the same way as the corresponding part of [12, Proposition 1]. \blacksquare

3. Lorentz' theorem and the degree of an m.s. submeasure. The following result is due, for η finite, to Lorentz [15, Theorem 4]. In the general case the equivalence of (i) and (iii) is due to Plappert [17, Satz 3.5].

THEOREM 1. For a positive function η on A the following three conditions are equivalent:

- (i) η is an m.s. submeasure;
- (ii) there exists a set Γ of finite quasi-measures on A such that $\sup \Gamma = \eta$;
- (iii) there exists a set Γ of quasi-measures on A such that $\sup \Gamma = \eta$.

 $^(^{2})$ Here and in what follows, the symbols max and sup applied to a set of positive functions on A mean the pointwise maximum and supremum of that set, respectively.

Proof. Obviously, (ii) implies (iii). The implication (iii) \Rightarrow (i) is clear, since every quasi-measure on A is m.s., as noted in the passage introducing Lemma 1 above. The implication (i) \Rightarrow (ii) can be reduced to the finite case as follows. Let η satisfy (i), and choose η_1 and η_2 according to Proposition 1. For all $a \in A$ and $b \in I_{\eta_1}$ set

$$(\eta_1)_b(a) = \eta_1(a \wedge b).$$

Then $(\eta_1)_b$ is a finite m.s. submeasure on A and

$$\eta_1 = \sup\{(\eta_1)_b : b \in I_{\eta_1}\}.$$

In view of Lorentz' theorem, there exists a set Γ_1 of finite quasi-measures on A such that $\sup \Gamma_1 = \eta_1$. On the other hand, η_2 is a quasi-measure on A, and so there exists a set Γ_2 of finite quasi-measures on A such that $\sup \Gamma_2 = \eta_2$ (see [11, Proposition 3.1.6]). Setting $\Gamma = \Gamma_1 \cup \Gamma_2$, we get (ii).

We note that the implication $(iii) \Rightarrow (ii)$ of Theorem 1 also follows from [11, Corollary 3.1.17].

Theorem 1 shows that an m.s. submeasure is "nowhere" pathological. Recall that a submeasure η on A is called *pathological* if for every $\gamma \in c(A)$ with $\gamma \leq \eta$ we have $\gamma = 0$ (see [8, p. 203]; cf. also [18]). We also note that in [6, p. 21] this last term is given a weaker meaning, so that non-pathological submeasures of [6] coincide with m.s. ones, in view of Theorem 1.

Motivated by Theorem 1 and some results of Dellacherie and Iwanik [2], we say that an m.s. submeasure η on A has degree \mathfrak{m} and write

$$\deg \eta = \mathfrak{m}$$

where \mathfrak{m} is a cardinal number ≥ 1 , provided \mathfrak{m} is the smallest among the cardinalities of sets $\Gamma \subset c(A)$ for which (iii) above holds.

Clearly, deg $\eta = 1$ if and only if $\eta \in c(A)$. According to [2, théorème 2], for A being the algebra of all subsets of $\{1, \ldots, n\}$, where n is a natural number ≥ 3 , we have

 $\deg \eta \le 2^n - n - 1 \quad \text{for each finite m.s. submeasure } \eta \text{ on } A, \\ \deg \eta_0 = 2^{n-1} \qquad \text{for some finite m.s. submeasure } \eta_0 \text{ on } A.$

We shall establish a more precise result for submodular submeasures.

THEOREM 2. Let A be the algebra of all subsets of $\{1, \ldots, n\}$ where $n \geq 1$. For every finite submodular submeasure η on A we have

$$\deg \eta \le \binom{n}{[n/2]},$$

and this estimate is best possible.

Proof. Given a chain D of elements of A and a finite submodular submeasure η on A, there exists $\gamma \in c(A)$ with

$$\gamma \leq \eta$$
 and $\gamma | D = \eta | D$

(see [9, Example 3]). On the other hand, by a combination of classical results due to Dilworth and Sperner (see, e.g., [21, Theorems 2.1 and 4.1]), A can be covered by $\binom{n}{\lfloor n/2 \rfloor}$ chains in A. Therefore, the first part of the assertion follows. To prove the remaining part, we fix $n \ge 2$ and define, for natural $1 \le k \le n$ and $a \in A$,

$$\eta_k(a) = \begin{cases} \frac{1}{k} \operatorname{card} a & \text{if } \operatorname{card} a < k, \\ 1 & \text{if } \operatorname{card} a \ge k. \end{cases}$$

Clearly, $\eta_k(0) = 0$ and η_k is increasing. We shall check the inequality

 $\eta_k(a_1 \lor a_2) + \eta_k(a_1 \land a_2) \le \eta_k(a_1) + \eta_k(a_2)$

for $a_1, a_2 \in A$. It is enough to consider the case where card $a_i < k$ for i = 1, 2. If card $(a_1 \lor a_2) < k$, the inequality in question turns into equality. Otherwise, we have

$$\eta_k(a_1 \vee a_2) + \eta_k(a_1 \wedge a_2) = \frac{1}{k} (k + \operatorname{card}(a_1 \wedge a_2))$$

$$\leq \frac{1}{k} (\operatorname{card}(a_1 \vee a_2) + \operatorname{card}(a_1 \wedge a_2))$$

$$= \frac{1}{k} (\operatorname{card} a_1 + \operatorname{card} a_2) = \eta_k(a_1) + \eta_k(a_2).$$

We claim that deg $\eta_k \geq \binom{n}{k}$. Indeed, take $\Gamma \subset c(A)$ with sup $\Gamma = \eta$. We may assume that Γ is finite. Denote by E_k the family of all k-element subsets of $\{1, \ldots, n\}$, and choose, for each $c \in E_k$, an element γ_c of Γ with $\gamma_c(c) = 1$. Since for different $c_1, c_2 \in E_k$ we have card $(c_1 \wedge c_2) < k$, the map $c \mapsto \gamma_c$ is injective. Thus, the claim is established, which completes the proof.

It is worth noting that the submeasure η_k defined in the proof of Theorem 2 is symmetric in the sense of [2, p. 2], i.e., $\eta_k(a)$ depends only on the cardinality of *a*. Moreover, for n = 4, η_2 coincides with the submeasure c_1 of [10, Example 3.2].

The following simple example shows that $\deg \eta$, where η is a finite m.s. submeasure, can be an arbitrary cardinal number ≥ 1 . This is still so if η is defined on a Boolean σ -algebra and is order continuous (see [14, Example 1]).

EXAMPLE 1. Let S be a set of cardinality $\mathfrak{m} \geq 1$ and let A stand for the ring of finite subsets of S. Set

$$\eta(0) = 0$$
 and $\eta(a) = 1$ for $a \in A \setminus \{0\}$.

Clearly, η is a submodular submeasure on A and $\eta = \sup\{\delta_s : s \in S\}$, where δ_s stands for the Dirac quasi-measure on A concentrated at s. Hence deg $\eta \leq \mathfrak{m}$. To establish the other inequality, take $\Gamma \subset c(A)$ with $\sup \Gamma = \eta$. For each $s \in S$ there exists $\gamma_s \in \Gamma$ with $\gamma_s(\{s\}) > 1/2$. It follows that the map $s \mapsto \gamma_s$ is injective. This completes the argument.

In our next example we only give some estimates for deg η . To determine its precise value might be impossible in ZFC.

EXAMPLE 2. Let A stand for the algebra of all subsets of [0, 1] and let η be the Lebesgue outer measure on A. It is well known that η is submodular, and so m.s. (see Lemma 1). Clearly, deg $\eta \leq 2^{2^{\aleph_0}}$. Let $C \subset A$ be such that $\eta(c) = 1$ for each $c \in C$ and $\eta(c_1 \wedge c_2) = 0$ whenever $c_1, c_2 \in C$ and $c_1 \neq c_2$. The argument used in Example 1 shows that deg $\eta \geq \text{card } C$. Now, according to classical results, we can find sets C with these properties whose cardinality is 2^{\aleph_0} (in ZFC; see [16]) or $2^{2^{\aleph_0}}$ (under CH; see [20]). In particular, we have

$$2^{\aleph_0} \le \deg \eta \le 2^{2^{\aleph_0}},$$

and it is consistent with ZFC that $\deg \eta = 2^{2^{\aleph_0}}$.

REMARK 1. For every m.s. submeasure η on A we have deg $\eta \leq$ dens η . Indeed, if η_0 is a submeasure on A such that $\eta_0 \leq \eta$ and the set

$$\{a \in A : \eta_0(a) = \eta(a)\}\$$

is dense in (A, d_{η}) , then $\eta_0 = \eta$.

4. Preliminaries on vector-valued additive functions. Throughout this section X stands for a normed vector space over the scalar field \mathbb{R} or \mathbb{C} . We set

$$a(A, X) = \{\varphi \in X^A : \varphi \text{ is additive}\},\$$

$$ba(A, X) = \{\varphi \in a(A, X) : \varphi \text{ is bounded}\},\$$

$$ea(A, X) = \{\varphi \in a(A, X) : \varphi \text{ is exhaustive}\}\$$

Recall that $\varphi \in a(A, X)$ is called *exhaustive* or *strongly bounded* or *strongly additive* provided $\varphi(a_n) \to 0$ whenever (a_n) is a sequence of pairwise disjoint elements in A (see [3, pp. 7 and 32]), [4, p. 277] and [22, Definition 2.1]). As is well known, $ea(A, X) \subset ba(A, X)$ (see, e.g., [22, Corollary 2.7]).

With each $\varphi \in a(A, X)$ we associate three positive functions on A defined by the formulas:

$$\begin{split} |\varphi|(a) &= \sup \Big\{ \sum_{i=1}^n \|\varphi(a_i)\| : a_i \in A \text{ are pairwise disjoint and } \bigvee_{i=1}^n a_i = a \Big\},\\ \tilde{\varphi}(a) &= \sup \Big\{ \Big\| \sum_{i=1}^n t_i \varphi(a_i) \Big\| : a_i \in A \text{ are pairwise disjoint and } \bigvee_{i=1}^n a_i = a,\\ \text{ and } t_i \text{ are scalars with } |t_i| \leq 1 \Big\} \ ,\\ \bar{\varphi}(a) &= \sup \{ \|\varphi(b)\| : b \in C_a \} \end{split}$$

for $a \in A$. The first one is a quasi-measure and is called the *variation* of φ . The others are submeasures. The notation $\|\varphi\|$ is often used for $\tilde{\varphi}$. Both $\tilde{\varphi}$ and $\bar{\varphi}$ are called *semivariations* of φ in the literature (see [3, p. 2 and Proposition I.1.11] and [22, Example 1.2]). In [4, p. 273], the term *submeasure* majorant for φ is used for $\bar{\varphi}$.

The next proposition collects some properties of $|\varphi|$, $\tilde{\varphi}$ and $\bar{\varphi}$ which will be needed later.

PROPOSITION 2. If $\varphi \in a(A, X)$, then

- (a) $\bar{\varphi} \leq \tilde{\varphi} \leq |\varphi|;$
- (b) $\tilde{\varphi} \leq 4\bar{\varphi};$
- (c) $\tilde{\varphi} = \sup\{|x^*\varphi| : x^* \in M \text{ and } \|x^*\| \leq 1\}$, where M is an arbitrary 1-norming subset of X^* ;
- (d) φ is bounded [resp., exhaustive] if and only if $\overline{\varphi}$ is bounded [resp., exhaustive] if and only if $\widetilde{\varphi}$ is bounded [resp., exhaustive].

Part (a) is straightforward. Part (b) and a special case of (c) with $M = X^*$ are presented in [3, Proposition I.1.11]. The proof given there works in the general case. Finally, the first equivalence of (d) is straightforward in both cases and the rest follows from (a) and (b).

Given $\varphi \in a(A, \mathbb{R})$, we set

$$\varphi_+(a) = \sup\{\varphi(b) : b \in C_a\}$$
 and $\varphi_-(a) = \sup\{-\varphi(b) : b \in C_a\}$

for $a \in A$. Both φ_+ and φ_- are quasi-measures on A. The following simple proposition shows how φ_+ and φ_- are related to the previously defined functions $|\varphi|, \tilde{\varphi}$ and $\bar{\varphi}$.

PROPOSITION 3. If $\varphi \in a(A, \mathbb{R})$, then

- (a) $|\varphi| = \varphi_+ + \varphi_-$ and $\bar{\varphi} = \max(\varphi_+, \varphi_-);$
- (b) $|\varphi| \leq 2\bar{\varphi};$
- (c) $|\varphi| = \tilde{\varphi}$.

The next two lemmas will be used in the proofs of Theorems 3 and 4 in Section 5.

LEMMA 2. If $\varphi \in a(A, X)$, then both $\tilde{\varphi}$ and $\bar{\varphi}$ are m.s. and have property (G).

Proof. To establish the first part of the assertion, we apply Theorem 1, (iii) \Rightarrow (i). In the case of $\tilde{\varphi}$ we use additionally Proposition 2(c). In the case of $\bar{\varphi}$ and X over \mathbb{R} we also make use of the formula

$$\bar{\varphi} = \sup\{(x^*\varphi)_+, \ (x^*\varphi)_- : x^* \in X^* \text{ and } \|x^*\| \le 1\},\$$

which follows from Proposition 3(a) via the Hahn–Banach theorem. If the scalar field of X is \mathbb{C} , we consider X to be a normed space over \mathbb{R} (with the same norm) and note that this does not affect $\bar{\varphi}$.

To establish the second part of the assertion, fix $a \in A$ with $\overline{\varphi}(a) = \infty$ and t > 0. We can then find $b \in C_a$ with

$$\|\varphi(b)\| > \|\varphi(a)\| + t.$$

This implies $\bar{\varphi}(b)$, $\bar{\varphi}(a \smallsetminus b) > t$. Thus, $\bar{\varphi}$ has property (G). Since $\bar{\varphi} \le \tilde{\varphi} \le 4\bar{\varphi}$, by Proposition 2(a),(b), it follows that $\tilde{\varphi}$ also has property (G).

In view of Lemma 2, one might ask whether deg $\tilde{\varphi}$ and deg $\bar{\varphi}$ are related, for arbitrary $\varphi \in a(A, X)$, in some way. The author only knows the following negative answer to this question. For $\varphi \in a(A, \mathbb{R})$ we have deg $\tilde{\varphi} = 1$ while deg $\bar{\varphi} = 2$ unless $\bar{\varphi} = |\varphi|$, by Proposition 3(c) and Propositions 2(a) and 3(a), respectively. On the other hand, the inequality deg $\bar{\varphi} < \deg \tilde{\varphi}$ is also possible, as the next simple example shows.

EXAMPLE 3. Let A be the algebra of all subsets of the set $\{1, 2, 3\}$. Consider $\varphi \in a(A, l_{\infty}^{(4)})$, which is uniquely determined by the equalities

 $\varphi(\{1\}) = (2,0,0,1), \quad \varphi(\{2\}) = (0,2,0,-1) \quad \text{and} \quad \varphi(\{3\}) = (0,0,2,1).$ We then have

 $\tilde{\varphi}(a) = \bar{\varphi}(a) = 2$ if card $a \leq 2$, $\tilde{\varphi}(\{1, 2, 3\}) = 3$ and $\bar{\varphi}(\{1, 2, 3\}) = 2$. Hence

$$\tilde{\varphi} = \max\{2\delta_1, 2\delta_2, 2\delta_3, \delta_1 + \delta_2 + \delta_3\} \quad \text{and} \quad \bar{\varphi} = \max\{2\delta_1, 2\delta_2, 2\delta_3\},$$

where δ_i stands for the Dirac quasi-measure on A concentrated at *i*. As is easily seen, deg $\tilde{\varphi} = 4$ (cf. [2, p. 3]), while deg $\bar{\varphi} = 3$, according to Example 1.

LEMMA 3. If η is a semifinite m.s. submeasure on A, then there exist $\Gamma \subset c(I_{\eta})$ and $\varphi \in a(A, l_{\infty}(\Gamma))$ such that $\tilde{\varphi} = \bar{\varphi} = \eta$.

Proof. By Theorem 1, (i) \Rightarrow (ii), applied to $\eta | I_{\eta}$, there exists $\Gamma \subset c(I_{\eta})$ such that

$$\eta(a) = \sup\{\gamma(a) : \gamma \in \Gamma\} \quad \text{ for all } a \in I_{\eta}.$$

Define $\varphi_0: I_\eta \to l_\infty(\Gamma)$ by $\varphi_0(a)(\gamma) = \gamma(a)$ for $a \in I_\eta$ and $\gamma \in \Gamma$. Clearly, $\varphi_0 \in a(I_\eta, l_\infty(\Gamma))$ and, by Proposition 2(c), we have

$$\tilde{\varphi}_0 = \bar{\varphi}_0 = \eta |I_\eta|$$

Choose $\varphi \in a(A, l_{\infty}(\Gamma))$ to be an arbitrary extension of φ_0 (cf. Lemma 1 of [12] and its proof). Since I_{η} is an ideal in A, we have

$$\tilde{\varphi}|I_{\eta} = \tilde{\varphi}_0 \quad \text{and} \quad \bar{\varphi}|I_{\eta} = \bar{\varphi}_0,$$

and so $\tilde{\varphi}$, $\bar{\varphi}$ and η coincide on I_{η} . Since η is semifinite, by assumption, and both $\tilde{\varphi}$ and $\bar{\varphi}$ are increasing, we conclude that φ is as desired.

As an example, we note that, in view of Lemma 1, Lemma 3 applies to the Lebesgue outer measure on \mathbb{R} .

The following lemma will be used in the proof of Theorem 3 below.

LEMMA 4. If A is nonatomic, then there exists $\varphi \in a(A, \mathbb{R})$ with $\varphi(A) \subset \mathbb{Q}$ and $\tilde{\varphi}(a) = \bar{\varphi}(a) = \infty$ for every nonzero $a \in A$.

In the case where A is a Boolean algebra, this is a reformulation of [12, Lemma 3] (see Proposition 3(b),(c) above). The general case follows, since every [nonatomic] Boolean ring can be embedded as an ideal into a [non-atomic] Boolean algebra. We note that, by using the natural embedding of \mathbb{R} into \mathbb{C} , we can deduce from Lemma 4 its complex version where we have $\varphi \in a(A, \mathbb{C})$.

REMARK 2. For A additionally assumed to be countable, Lemma 4 can be improved to the effect that φ is integer-valued and $\varphi(a) \neq 0$ for every nonzero $a \in A$ (cf. [7, Proposition 13(b)]). In this connection, we also note that [12, Remark 5] is related to [7, Proposition 6].

REMARK 3. In the special case where A is, in addition, complete and admits a strictly positive finite measure μ , Lemma 4 can also be proved as follows. Let $f: \mathbb{R} \to \mathbb{Q}$ be a nonzero additive function, and set $\varphi = f \circ \mu$. The additional assumptions imply that

$$\mu(C_a) = [0, \mu(a)],$$

and so $\varphi(C_a)$ is unbounded for every nonzero $a \in A$. The idea of this proof is due to Sierpiński [19, pp. 245–246].

5. Main results. Recall that, as before, A stands for an arbitrary Boolean ring.

THEOREM 3. For $\eta: A \to [0, \infty]$ the following four conditions are equivalent:

- (i) η is an m.s. submeasure and has property (G);
- (ii) there exist a normed space X and $\varphi \in a(A, X)$ with $\tilde{\varphi} = \eta$;
- (iii) there exist a normed space X and $\varphi \in a(A, X)$ with $\bar{\varphi} = \eta$;
- (iv) there exist a normed space X and $\varphi \in a(A, X)$ with $\tilde{\varphi} = \bar{\varphi} = \eta$.

Proof. Clearly, (iv) implies (iii) and (ii). In view of Lemma 2, each of the conditions (iii) and (ii) implies (i).

Suppose (i) holds. To establish (iv) with X over \mathbb{R} , let η_1 and η_2 be given by Proposition 1. In view of Lemma 3, there exist a set Γ and $\varphi_1 \in a(A, l_{\infty}(\Gamma))$ with $\tilde{\varphi}_1 = \bar{\varphi}_1 = \eta_1$. Since η_2 has property (G), the quotient Boolean ring A/I_{η_2} is nonatomic. Denote by h the canonical homomorphism of A onto A/I_{η_2} . By Lemma 4, there exists

 $\psi \in a(A/I_{\eta_2}, \mathbb{R})$ with $\tilde{\psi}(h(a)) = \bar{\psi}(h(a)) = \infty$ for every $a \in A \smallsetminus I_{\eta_2}$.

Setting $\varphi_2 = \psi \circ h$, we get $\varphi_2 \in a(A, \mathbb{R})$ with $\tilde{\varphi}_2 = \bar{\varphi}_2 = \eta_2$. Let X stand for the l_{∞} -sum of the Banach spaces $l_{\infty}(\Gamma)$ and \mathbb{R} , and set $\varphi = (\varphi_1, \varphi_2)$. We have $\varphi \in a(A, X)$ and

$$\tilde{\varphi} = \max(\tilde{\varphi}_1, \tilde{\varphi}_2) = \max(\bar{\varphi}_1, \bar{\varphi}_2) = \bar{\varphi} = \eta.$$

Thus, (iv) holds in the real case. In the complex case, we only have to replace " \mathbb{R} " by " \mathbb{C} " throughout the argument.

REMARK 4 (cf. [12, Remark 6]). The space X constructed in the proof of Theorem 3, (i) \Rightarrow (iv), is, in fact, linearly isometric to an l_{∞} -space. There is, however, no point in including this in the formulation of condition (iv), since every normed space is linearly isometric to a subspace of $l_{\infty}(\Gamma)$ for some set Γ , as a consequence of the Hahn–Banach theorem.

REMARK 5. In Theorem 3 we cannot restrict the size of X, keeping A arbitrary. (This is in contrast with both [12, Theorem 1] and [13, Theorems 1 and 2].) Indeed, for every $\varphi \in a(A, X)$ and every 1-norming subset M of X^* we have

$$\deg \tilde{\varphi} \leq \operatorname{card} M \quad \text{and} \quad \deg \bar{\varphi} \leq 2 \operatorname{card} M,$$

by Propositions 2(c) and 3(a), respectively. On the other hand, deg η , where η is a finite m.s. submeasure, can be an arbitrary cardinal number ≥ 1 (see Example 1).

From Theorem 3 we immediately get the following corollary.

COROLLARY. Let X be a normed space and let $\varphi \in a(A, X)$.

- (a) There exist a normed space Y and $\chi \in a(A, Y)$ with $\tilde{\chi} = \bar{\chi} = \tilde{\varphi}$.
- (b) There exist a normed space Z and $\psi \in a(A, Z)$ with $\tilde{\psi} = \bar{\psi} = \bar{\varphi}$.

THEOREM 4. For $\eta: A \to [0, \infty)$ the following four conditions are equivalent:

- (i) η is a bounded [resp., exhaustive] m.s. submeasure;
- (ii) there exist a normed space X and $\varphi \in ba(A, X)$ [resp., $\varphi \in ea(A, X)$] with $\tilde{\varphi} = \eta$;
- (iii) there exist a normed space X and $\varphi \in ba(A, X)$ [resp., $\varphi \in ea(A, X)$] with $\overline{\varphi} = \eta$;
- (iv) there exist a normed space X and $\varphi \in ba(A, X)$ [resp., $\varphi \in ea(A, X)$] with $\tilde{\varphi} = \bar{\varphi} = \eta$.

Proof. Clearly, (iv) implies (iii) and (ii). In view of Lemma 2 and Proposition 2(d), each of the conditions (iii) and (ii) implies (i). That (i) implies (iv) follows from Lemma 3. \blacksquare

In closing, we note that Theorem 4 implies an analogue of the Corollary above for $\varphi \in ba(A, X)$ [resp., $\varphi \in ea(A, X)$].

REFERENCES

- B. Anger and J. Lembcke, Infinitely subadditive capacities as upper envelopes of measures, Z. Wahrsch. Verw. Gebiete 68 (1985), 403–414.
- [2] C. Dellacherie et A. Iwanik, Sous-mesures symétriques sur un ensemble fini, in: Séminaire de probabilités XXXII, Lecture Notes in Math. 1686, Springer, Berlin, 1998, 1–5.
- [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1977.
- [4] L. Drewnowski, Topological rings of sets, continuous set functions, integration. I, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 269–276, 277–286.
- B. J. Eisenstatt and G. G. Lorentz, Boolean rings and Banach lattices, Illinois J. Math. 3 (1959), 524–531.
- [6] I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702.
- [7] R. Göbel and K. P. S. Bhaskara Rao, Strictly nonzero charges, Rocky Mountain J. Math. 32 (2002), 1397–1407.
- [8] W. Herer and J. P. R. Christensen, On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann. 213 (1975), 203–210.
- J. Kindler, A Mazur-Orlicz type theorem for submodular set functions, J. Math. Anal. Appl. 120 (1986), 533–546.
- J. Lembcke, The necessity of strongly subadditive capacities for Neyman-Pearson minimax tests, Monatsh. Math. 105 (1988), 113–126.
- J. Lembcke and H. Weber, Decomposition of group-valued and [0,∞]-valued measures on Boolean rings, in: Measure Theory (Oberwolfach, 1990), Rend. Circ. Mat. Palermo (2) Suppl. No. 28 (1992), 87–116.
- Z. Lipecki, The variation of an additive function on a Boolean algebra, Publ. Math. Debrecen 63 (2003), 445–459.
- [13] —, Characteristic properties of the variation of a group-valued quasi-measure, Acta Sci. Math. (Szeged) 74 (2008), 107–120.
- [14] —, Semivariations of a vector measure, submitted.
- [15] G. G. Lorentz, Multiply subadditive functions, Canad. J. Math. 4 (1952), 455–462.
- [16] N. Lusin et W. Sierpiński, Sur une décomposition d'un intervalle en une infinité non dénombrable d'ensembles non mesurables, C. R. Acad. Sci. Paris 165 (1917), 422–424; reprinted in: W. Sierpiński, Oeuvres choisies. Tome II, PWN–Editions Scientifiques de Pologne, Warszawa, 1975, 177–179.
- [17] P. Plappert, Sandwichsätze für Funktionen auf abelschen Monoiden und für Mengenfunktionen, Dissertation, Technische Hochschule Darmstadt, 1994.
- V. A. Popov, Additive and subadditive functions on Boolean algebras, Sibirsk. Mat. Zh. 17 (1976), 331–339, 479 (in Russian); English transl.: Siberian Math. J. 17 (1976), 258–264.
- [19] W. Sierpiński, Sur les fonctions d'ensemble additives et continues, Fund. Math. 3 (1922), 240–246; reprinted in: W. Sierpiński, Oeuvres choisies. Tome II, PWN– Editions Scientifiques de Pologne, Warszawa, 1975, 457–463.
- [20] —, Sur une décomposition du segment, Fund. Math. 13 (1929), 195–200.
- [21] W. T. Trotter, Partially ordered sets, Chapter 8 in: Handbook of Combinatorics, Vol. I, R. L. Graham et al. (eds.), North-Holland, Amsterdam, 1995, 433–481.

[22]H. Weber, FN-topologies and group-valued measures, Chapter 16 in: Handbook of Measure Theory, Vol. I, E. Pap (ed.), North-Holland, Amsterdam, 2002, 703-743.

Institute of Mathematics Polish Academy of Sciences Wrocław Branch Kopernika 18 51-617 Wrocław, Poland E-mail: lipecki@impan.pan.wroc.pl

> Received 3 November 2008; revised 31 March 2009 (5119)