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Abstract. We apply the Feynman–Kac formula to compute the λ-Poisson kernels and
λ-Green functions for half-spaces or balls in hyperbolic spaces. We present known results
in a unified way and also provide new formulas for the λ-Poisson kernels and λ-Green
functions of half-spaces in Hn and for balls in real and complex hyperbolic spaces.

1. Introduction. In a series of papers ([BGS], [BM], [JG], [Ma], [Z])
the Poisson kernels and the Green functions in hyperbolic spaces were in-
vestigated. The authors of all those papers use the Feynman–Kac formula
as the main tool in describing the distribution of a stopped multiplicative
functional. In this paper we summarize these investigations and exhibit the
main idea of the method. We also give several new results, namely formulas
for the λ-Poisson kernels and the λ-Green functions of half-spaces or balls
for hyperbolic Brownian motions. This complements the results obtained by
Matsumoto [M].

In [BDH] the global Poisson kernel (for the whole space) and generators
of the form of a Laplace–Beltrami operator plus some additional term of the
first order were investigated for NA groups. The main example of NA group
is complex hyperbolic space, realized as Siegel upper half-space. We believe
that our method can be applied also in this context.

2. Preliminaries

A. Hypergeometric function and Bessel functions. The equation

(2.1) z(1− z)y′′(z) + (γ + (α+ β + 1)z)y′(z)− αβy(z) = 0,
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where α, β and γ are constants independent of z, is called the hypergeo-
metric equation. A solution of (2.1) which is regular at z = 0 is given by
the hypergeometric function 2F1(α, β; γ; z) defined by the hypergeometric
series

2F1(α, β; γ; z) =
∞∑
n=0

(α)n(β)n
(γ)nn!

zn, |z| < 1,

whenever γ 6= 0,−1,−2, . . . . Here (α)n = Γ (α+ n)/Γ (α) denotes the Poch-
hammer symbol. For analytic continuations of the hypergeometric series see
[E, Chapter II]. Another solution of (2.1) is given by some modifications of
2F1 and will be described later.

The modified Bessel function Iϑ of the first kind is defined by (see, e.g.,
[E, 7.2.2 (12)])

(2.2) Iϑ(z) =
zϑ

2ϑ

∞∑
k=0

(
z

2

)2k 1
k!Γ (k + ϑ+ 1)

, z ∈ C \ (−R+),

where ϑ ∈ R is not a negative integer. The modified Bessel function of the
second kind is defined by (see [E, 7.2.2 (13) and 7.2.5 (36)])

Kϑ(z) =
π

2 sin(ϑπ)
[I−ϑ(z)− Iϑ(z)], ϑ /∈ Z,(2.3)

Kn(z) = lim
ϑ→n

Kϑ(z) = (−1)n
1
2

[
∂I−ϑ
∂ϑ
− ∂Iϑ
∂ϑ

]
ϑ=n

, n ∈ Z.(2.4)

The functions Iϑ, Kϑ are linearly independent solutions to the differential
equation

(2.5) z2ϕ′′(z) + zϕ′(z)− (z2 + ϑ2)ϕ(z) = 0,

which is known as the modified Bessel equation of order ϑ. The Wronskian
of the pair (Iϑ,Kϑ) is given by

(2.6) W (Iϑ,Kϑ)(z) = Iϑ(z)K ′ϑ(z)− I ′ϑ(z)Kϑ(z) = −1/z.

B. One-dimensional diffusion. Let us recall briefly some notions per-
taining to linear diffusion [BS]. We consider the one-dimensional diffusion
with generator of the form

(2.7) Lf(x) =
1
2
a2(x)

d2f

dx2
(x) + b(x)

df

dx
(x)− c(x)f(x),

with regular coefficients a(x), b(x) and c(x). Let B(x) be any indefinite in-
tegral for 2b(x)/a2(x). The basic characteristics of the diffusion (the speed
measure density m(x), the scale function s(x) and the killing measure den-
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sity k(x)) are given by

m(x) =
2

a2(x)
eB(x),(2.8)

s′(x) = e−B(x),(2.9)

k(x) =
2

a2(x)
c(x)eB(x).(2.10)

The λ-Green function Gλa,b(x, y) of the interval (a, b), −∞ ≤ a < b ≤ ∞,
with respect to the speed measure m(y)dy is given by

Gλa,b(x, y) =
{
c · φ↑(x)ψ↓(y), a < x < y < b,
c · φ↑(y)ψ↓(x), a < y < x < b,

(2.11)

where φ↑ and ψ↓ are respectively increasing and decreasing solutions of the
equation Lu = λu, such that limx→a+ φ↑(x) = 0 and limx→b− ψ↓(x) = 0.
The constant c is given by

c =
s′(z)

W (φ↑, ψ↓)(z)
,

where W (φ↑, ψ↓) is the Wronskian of the pair (φ↑, ψ↓).

C. Hyperbolic spaces and hyperbolic Brownian motion. We in-
vestigate Brownian motion in three models of hyperbolic spaces: in Hn which,
as a set, is a half-space of Rn, in Dn, being the unit ball in Rn, and in the
unit ball of Cn. The last one is a model of complex hyperbolic space. In every
model there is a specific Riemannian (hyperbolic) metric, which determines
the Riemannian volume and the Laplace–Beltrami operator ∆LB. Being the
divergence of the gradient, ∆LB is a second-order differential operator. By
the general theory of diffusion processes on manifolds, ∆LB is the generator
of a diffusion process (Xt), which is called the hyperbolic Brownian motion.
The transition probabilities p(t; x, y) of the process (Xt) are solutions of the
so-called heat equation ∂p(t; x, y)/∂t = ∆LBp(t; x, y); their properties and
estimates are well-known (see [D]).

D. Killed stochastic processes and their potential theory. Let D
be a domain in a hyperbolic space and let (Xt) be a hyperbolic Brownian
motion in this space, starting from a point x ∈ D. We set τD = inf{t > 0 :
Xt /∈ D} and consider (XD

t ), the process killed on exiting D, defined as
Xt for t < τD and ∂ for t ≥ τD. Here ∂ is some additional isolated state
(cemetery). The explicit form of the transition densities of (XD

t ) are known
only for a few classes of D. In general, such a density is given by the formula

pD(t;x, y) = p(t;x, y)− Ex[p(t− τD;XτD , y) : t > τD].

There are two notions, crucial in potential theory of stochastic processes: the
Poisson kernel and the Green function of a domain D. Because diffusions
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have continuous trajectories, when exiting D, they hit the boundary of D.
If x ∈ D and λ > 0 define the λ-harmonic measure by setting, for a Borel
set A ⊂ ∂D,

(2.12) P λD(x,A) = Ex[e−λτD1A(XτD)].

We will consider two types of domains D: half-spaces and balls. In both cases
there exist natural measures on ∂D: the Lebesgue measure or the uniform
surface measure on the sphere. The λ-Poisson kernel P λD(x, y) is the density
of the λ-harmonic measure with respect to the corresponding measure on ∂D.

The Green function GD(x, y) measures the time spent by a process at y,
when starting from x. More precisely, GD(x, y) =

	∞
0 pD(t;x, y) dt. We con-

sider a more general object, namely, for λ > 0, the λ-Green function is
defined by the following formula (x, y ∈ D):

(2.13) GλD(x, y) =
∞�

0

e−λt pD(t;x, y) dt.

3. Harmonic measures and Green functions of a half-space in Hn.
We start with the description of the half-space model of real hyperbolic
space. Define Hn = {x = (x1, . . . , xn−1, xn) = (x̃, xn) : xn > 0} ⊂ Rn. The
Riemannian distance in Hn is given by the formula

(3.14) cosh(dHn(x, y)) = 1 +
|x− y|2

2xnyn
,

and the canonical (hyperbolic) volume element is given by

dVHn(x) =
dx1 . . . dxn

xnn
.

We will denote the Laplace–Beltrami operator in Hn by ∆Hn . It is given by

∆Hn = x2
n

n∑
k=1

∂2

∂x2
k

− (n− 2)xn
∂

∂xn
.

The heat kernel on Hn is a function of d = dHn(x, y) and is given by Gruet’s
formula (see [Gr])

kn(t, d) =
e−(n−1)2t/4

2(n+1)/2π1+n/2t1/2
Γ

(
n+ 1

2

)∞�
0

e(π
2−r2)/4t sinh(r) sin(πr/2t)

(cosh(r) + cosh(d))(n+1)/2
dr.

The transition probability of the process (Xt) starting from x ∈ Hn is given
by

P x(Xt ∈ B) =
�

B

kn(t, dHn(x, y)) dVHn(y), B ∈ B(Hn).
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Consider the half-space Da = {x ∈ Hn : xn > a} for some fixed a > 0.
Define

τDa = inf{s > 0 : X(s) /∈ Da}.

Using the law of the iterated logarithm it is easy to check that for every
xn > 0,

lim
t→∞

Xn(t) = 0 P xn-a.s.

This means that τDa <∞ a.s. Observe that Xn(τDa) = a and consequently
the function P λDa(x, y) depends only on the starting point x of the process
X(t) and ỹ ∈ Rn−1, where y = (ỹ, a). We will use the notation P λDa(x, ỹ) for
the function P λDa(x, (ỹ, a)).

A. λ-Poisson kernel of a half-space. Now we will compute the
Fourier transform of the λ-Poisson kernel of Da.

Theorem 1 (Fourier transform of the λ-Poisson kernel). For every x
in Da, y ∈ ∂Da and u ∈ Rn−1 we have

�

Rn−1

exp(i〈u, ỹ〉)P λDa(x, ỹ) dỹ = exp(i〈u, x̃〉)
(
xn
a

)ν Kµ(rxn)
Kµ(ra)

,

where r = |u|, ν = (n− 1)/2, µ = (ν2 + λ)1/2 and Kµ is a modified Bessel
function of the third kind.

Proof. In a natural way the process (Xt) can be decomposed into two
parts: X̃(t) = (X1(t), . . . , Xn−1(t)) andXn(t). Observe that the process (Xt)
reaches ∂Da for the first time when Xn(t) hits the point a.

In order to compute the Fourier transform of the distribution of X̃(τDa)
we consider the family of processes

fu(X̃(t)) = ei〈u,X̃(t)〉 for u ∈ Rn−1,

and try to compute the characteristic function φ(u) = Ex(ei〈u,X̃(t)〉). The
main tool here is martingale theory; in order to apply it we will make the
process fu(X̃(t)) a martingale. For that purpose let us define the multiplica-
tive functional

Vt = exp
[ t�

0

q(Xn(s)) ds
]
,

where q is a non-negative, locally bounded Borel function to be specified
later, and consider the process

Zt = e−λtfu(X̃(t))Vt = e−λtei〈u,X̃(t)〉 exp
[ t�

0

q(Xn(s)) ds
]
.
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The process Vt is of bounded variation, hence dVt = q(Xn(t))Vt dt. Because
d〈Xj , Xk〉 = 2δjk dt, j, k = 1, . . . , n− 1, the Itô formula gives

dZt = −λe−λtfu(X̃(t))Vt dt+ e−λtfu(X̃(t))Vt
n−1∑
k=1

iukXn(t)dBk(t)

+
1
2

( n−1∑
k=1

i2u2
k

)
e−λtfu(X̃(t))VtX2

n(t) 2dt+ e−λtfu(X̃(t))Vtq(Xn(t)) dt

= e−λtfu(X̃(t))Vt
[
iXn(t)

n−1∑
k=1

ukdBk(t) +
(
q(Xn(t))− λ−X2

n(t)
n−1∑
k=1

u2
k

)]
.

The process Zt, being a sum of n − 1 stochastic integrals and a bounded
variation term, is a martingale if that term vanishes for all t. This is achieved
if we put

q(xn) = |u|2x2
n + λ, where |u|2 =

n−1∑
k=1

u2
k.

Now we can compute the expectation Ex(h(Xn(t)) ei〈u,X̃(t)〉), where h is a
bounded Borel function. We have

Ex(h(Xn(t))e−λtei〈u,X̃(t)〉) = Ex(h(Xn(t))e−λtei〈u,X̃(t)〉Vt · V −1
t )

= Ex(h(Xn(t))Zt · V −1
t ).

But we know that Zt is a martingale defined by the stochastic equation

dZt =
( n−1∑
k=1

iukXn(t)dBk(t)
)
e−λtfu(X̃(t))Vt.

This implies that Zt = Z0 +Z
(1)
t , where Z(1)

t is a martingale with EZ(1)
t = 0.

Moreover, Z(1)
t is a stochastic integral with respect to the Brownian processes

B1(t), . . . , Bn−1(t), which are independent of Bn(t), and Xn(t) depends only
on Bn(t). This implies that Ex(h(Xn(t))Z(1)

t · V
−1
t ) = 0, hence

Ex(h(Xn(t))Zt · V −1
t ) = Ex(h(Xn(t))(Z0 + Z

(1)
t ) · V −1

t )
= Ex(h(Xn(t))Z0 · V −1

t ) = Z0Exn(h(Xn(t)) · V −1
t ).

Finally, for all bounded Borel functions h we have

Ex(h(Xn(t))e−λtei〈u,X̃(t)〉) = Z0Exn
(
h(Xn(t)) exp

[
−

t�

0

q(Xn(s)) ds
])
.

Approximating τDa by bounded stopping times (cf. [Z, p. 177]), we get

Exn(e−λτDaei〈u,X̃(τDa )〉) = Z0Exn
(

exp
[
−
τDa�

0

q(Xn(s)) ds
])
.
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If X0 = (0, . . . , 0, xn), then obviously Z0 = ei〈u,X̃0〉 = e0 = 1. The quantity

φ(xn) = Exn
(

exp
[
−
τDa�

0

q(Xn(s)) ds
])

is called the gauge ([ChZ]); by the general Feynman–Kac theory for the
Schrödinger equation, φ is a solution of the appropriate Schrödinger equa-
tion, based on the generator of the process Xn(t) and the function q. In the
case we consider, the generator of Xn(t) is

Lf(xn) = x2
n

d2f(xn)
dx2

n

− (n− 2)xn
df(xn)
dxn

and, as we have just found, q(xn) = |u|2x2
n + λ. This means that φ(xn) is a

solution of

(3.15) x2φ′′(x)− (n− 2)xφ′(x)− (|u|2x2 + λ)φ(x) = 0.

After substitution φ(x) = x(n−1)/2ψ(x) we get

x2ψ′′(x) + xψ′(x)− (|u|2x2 + λ+ (n− 1)2/4)ψ(x) = 0.

Putting ν = (n− 1)/2 and µ =
√

((n− 1)/2)2 + λ =
√
ν2 + λ, we get

x2ψ′′(x) + xψ′(x)− (|u|2x2 + µ2)ψ(x) = 0.

After substituting y = |u|x the above equation becomes precisely (2.5), the
modified Bessel equation of order µ. Taking into account the general solution
of (2.5) we infer that

φ(xn) = xνn(c1Iµ(|u|xn) + c2Kµ(|u|xn)).

Because q is non-negative for all λ ≥ 0 and xn > 0, the gauge function
φ(xn) is bounded for xn → ∞. The function Iµ(|u|xn) is not bounded at
infinity, hence c1 = 0. Moreover, if the process starts from the point a, it is
instantaneously killed, hence φ(a) = 1 and this implies c2 = 1/(aνKµ(|u|a)).
Thus

φ(xn) =
(
xn
a

)ν Kµ(|u|xn)
Kµ(|u|a)

,

which gives the desired conclusion when the process starts from (0, . . . ,0, xn).
If it starts from (x̃, xn), then

φ(xn) = exp(i〈u, x̃〉)
(
xn
a

)ν Kµ(|u|xn)
Kµ(|u|a)

.

B. λ-Green function for a half-space. In a similar way one can com-
pute the λ-Green function of Da. Observe that for every isometry I of Rn−1

the function Hn 3 x 7→ (I(x̃), xn) ∈ Hn is an isometry of Hn. This is an easy
consequence of the distance formula (3.14). The Laplace–Beltrami operator,
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the generator of (Xt), is invariant under isometries of Hn. Moreover, τDa
depends only on Xn. Hence

GλDa(x, y) = GλDa((x̃+ b, xn), (ỹ + b, yn)), b ∈ Rn−1.

This means that it is enough to consider GλDa((0̃, xn), y). Moreover, the func-
tion

ỹ 7→ GλDa((0̃, xn), (ỹ, yn))

depends only on |ỹ|. Consequently, its Fourier transform, taken at u, depends
on r = |u|:

(̂GλDa)
r
(xn, yn) =

�

Rn−1

exp(i〈u, ỹ〉)GλDa((0̃, xn), (ỹ, yn)) dỹ, u ∈ Rn−1.

We have the following formula for (̂GλDa)
r
(xn, yn).

Theorem 2. For every r > 0, λ > 0 and x, y ∈ Da we get

(̂GλDa)
r
(xn, yn)

=


(xnyn)νKµ(rxn)

(
Iµ(ryn)−Kµ(ryn)

Iµ(ra)
Kµ(ra)

)
, xn ≥ yn,

(xnyn)νKµ(ryn)
(
Iµ(rxn)−Kµ(rxn)

Iµ(ra)
Kµ(ra)

)
, yn > xn,

where ν = (n− 1)/2 and µ = (ν2 + λ)1/2.

Proof. Being (L − q)-harmonic, the Green function must satisfy equa-
tion (3.15). Moreover, from the general theory of the Feynman–Kac equation
(see [ChZ]) and diffusions on the real line (see [BS]), we get

(̂GλDa)
1
(xn, yn) =

{
c · ψ(xn)φ(yn), a < yn ≤ xn,
c · φ(xn)ψ(yn), a < xn < yn.

Here the functions ψ, φ are defined (up to a multiplicative constant) as
solutions of the equation (3.15) such that ψ(xn) is decreasing, φ(yn) is
increasing and they satisfy the boundary conditions limxn→∞ ψ(xn) = 0,
limyn→a φ(yn) = 0. The constant c is given by the Wronskian of the pair
(ψ, φ), the density of the speed measure m(dx) and the function a(x). Let
u(w) = wνg(w), where ν = (n− 1)/2. We get

w2g′′(w) + wg′(w)− (w2 + µ2)g(w) = 0, µ = (ν2 + λ)1/2.

This is precisely (2.5), the modified Bessel equation of order µ. Taking into
account the general solution of (3.15), we infer that

ψ(xn) = xνn(c1Iµ(xn) + c2Kµ(xn)), φ(yn) = yνn(c3Iµ(yn) + c4Kµ(yn)).
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From the boundary conditions we get c1 = 0 and c4 = Iµ(a)/Kµ(a). Thus

ψ(xn) = xνnKµ(xn),

φ(yn) = yνn

(
Iµ(yn)−Kµ(yn)

Iµ(a)
Kµ(a)

)
.

Using (2.6) we calculate the Wronskian of the pair (ψ, φ):

W (ψ, φ)(x) = ψ(x)φ′(x)− ψ′(x)φ(x)
= −xn−1(K ′µ(x)Iµ(x)−Kµ(x)I ′µ(x)) = xn−2.

The density m(x) of the speed measure m(dx) for the diffusion with the
generator Lf(xn) = x2

nf
′′(xn) − (n − 2)xnf ′(xn) is given by the functions

a(x) and b(x) (formula (2.8)). Thus

m(x) = x−2e−(n−2) log x = x−n.

The constant c is given by c = 1
2a

2(x)W (ψ, φ)(x)m(x) = 1, which ends the
proof.

Remark 3. The Fourier transform of the function ỹ 7→ GλDa(x, (ỹ, yn))
for a general point x ∈ Da is given by

(̂GλDa)
u
(x, yn) = exp(i〈u, x̃〉)(̂GλDa)|u|((0̃, xn), yn).

4. Harmonic measures and Green functions of balls in real hy-
perbolic spaces. In [BM] the Poisson kernels for balls were computed. Now
we will show how one can modify those computations to get formulas for the
λ-Poisson kernels and λ-Green functions.

By Dn we denote the ball model of n-dimensional hyperbolic space, that
is, the unit ball in Rn equipped with the metric dDn(x, y) given by

cosh(2dDn(x, y)) = 1 +
2|x− y|2

(1− |x|2)(1− |y|2)
, |x| < 1, |y| < 1.

The hyperbolic volume element in Dn is given by

(4.16) dVDn(x) =
dx1 . . . dxn
(1− |x|2)n

.

Let (Xt) be the hyperbolic Brownian motion in Dn, that is, the diffusion
generated by the Laplace–Beltrami operator ∆Dn :

∆Dn = (1− |x|2)2
n∑
k=1

∂2

∂x2
k

+ 2(n− 2)(1− |x|2)
n∑
k=1

xk
∂

∂xk
.

As shown in [BM], the process (Xt) can be decomposed into radial and
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spherical parts: Rt = |Xt|2, Φt = cos ∠(X0, Xt) = 〈Xt,X0〉
|Xt| |X0| , where

dRt = 2(1−Rt)(
√
Rt dW1(t) + ((n− 4)Rt + n)dt),

dΦt = (1−Rt)
(

1− Φ2
t

Rt

)1/2

dW2(t)− (n− 1)
(

(1−Rt)2

Rt

)
Φt dt.

Here W1(t), W2(t) denote two independent one-dimensional Brownian mo-
tions such that E0W 2

i (t) = 2t, i = 1, 2.

A. λ-Poisson kernel of a ball. Our task is to compute the λ-Poisson
kernel of a ball Br = {x : |x| < r}. To do this, we define τr = inf{t > 0 :
Xt /∈ Br} and compute the density of the measure Ex(e−λτBr 1A(XτBr )),
defined in (2.12).

When working on the unit sphere in Rn, it is natural to consider the
family of Gegenbauer polynomials (Cρk(x))∞k=0, where ρ = (n− 2)/2. This
family is an orthogonal basis in L2( (−1, 1), (1 − x2)(n−3)/2dx), hence the
coefficients of any function f ∈ L2( (−1, 1), (1 − x2)(n−3)/2dx) with respect
to this basis determine f uniquely.

We recall the orthogonality relations for Gegenbauer polynomials:

(4.17)
1�

−1

Cρk(x)Cρl (x)(1− x2)(n−3)/2 dx = δkl
ρ

k + ρ
· C(ρ)

k (1) · ωn−1

ωn−2
,

where Cρk(1) = Γ (k + 2ρ)/(k!Γ (2ρ)) and ωn−1 = 2πn/2/Γ (n/2) is the total
mass of the associated (n − 1)-dimensional spherical measure on the unit
sphere in Rn.

Consider the family of processes Yk(t) = Cρk(Φt). Our task is to compute
E(e−λτrCρk(Φτr)), k = 0, 1, 2, . . . . In order to do it, we examine the family of
processes

Zk(t) = Cρk(Φt)Vt = Cρk(Φt) exp
( t�

0

q(Rs) ds
)

and try to find q that makes Zt a martingale. From the Itô formula we get

dZk(t) =
1−Rt
R

1/2
t

(1− Φ2
t )

1/2Vt(C
ρ
k)′(Φt)dW2(t) +

(1−Rt)2

Rt
H(Rt, Φt)dt,

where H(Rt, Φt) is equal to

(1− Φ2
t )(C

ρ
k)′′(Φt)− (n− 1)Φt(C

ρ
k)′(Φt) +

Rt
(1−Rt)2

q(Rt)C
ρ
k(Φt).

The Gegenbauer polynomials satisfy the equation

(1− x2)y′′(x)− (n− 1)xy′(x) + k(k + n− 2)y(x) = 0,
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and consequently the non-martingale part H(Rt, Φt) is equal to zero for all
t whenever q(Rt) = (1−Rt)2

Rt
k(k + n− 2). Thus

Zt = Z0 +
t�

0

(Cρk)′(Φs)Vs(1−Rs)
(

1− Φ2
s

Rs

)1/2

dW2(s) = Z0 + Z
(1)
t .

We start to evaluate the quantity E(e−λτDCρk(ΦτBr )) by computing the value
of E(e−λtCρk(Φt)). We obtain

E(e−λtCρk(Φt)) = E(Cnk (Φt))Vt · V −1
t e−λt) = E((Z0 + Z

(1)
t ) · V −1

t e−λt)

= E(Z0V
−1
t e−λt) + E(Z(1)

t V −1
t e−λt) = E(Z0V

−1
t e−λt),

because Z(1)
t is a stochastic integral with respect toW2(t), it has expectation

zero, and the process V −1
t depends only on W1(t). This means that we have

to evaluate

ϕ(x) = Ex(Z0V
−1
τBr

e−λτBr ) = Z0 · Ex
(

exp
[τBr�

0

(−q(Rs)− λ) ds
])
,

where Z0 = Cnk (1). But this is the gauge for the generator of the process (Rt)
and potential −(q+λ). From the general theory ([ChZ]), ϕ(x) is a solution of
the appropriate Schrödinger equation, based on the generator of the process
(Rt) and the function −(q + λ). In this case the generator of (Rt) is

L = 4(1− x)2x
d2

dx2
+ 2(1− x)((n− 4)x+ n)

d

dx

and, as we have found, q(x) = (1−x)2
x k(k + n − 2). Observe that x = Rt =

|Xt|2 ∈ [0, 1). This means that ϕ(x) is a solution of the differential equation

(4.18) 4(1−x)2xy′′(x) + 2(1−x)((n− 4)x+ n)y′(x)− (q(x)+λ)y(x) = 0.

Making the substitution ϕ(x) = (1− x)(n−1)/2−µ/2xk/2f(x) in (4.18), where
µ =

√
(n− 1)2 + λ, we get

(1− x)xf ′′(x) +
[
k +

n

2
− x
(
n

2
+ 1− µ+ k

)]
f ′(x)

− 1− µ
2

(
k +

n− 1
2
− µ

2

)
f(x) = 0.

This is the hypergeometric equation with coefficients α = k+(n− 1)/2−µ/2,
β = (1− µ)/2 and γ = k + n/2. The general solution of the equation is

c1 · Fn,k,λ(x) + c2 ·Gn,k,λ(x),

where

Fn,k,λ(x) = 2F1

(
k +

n− 1
2
− µ

2
,
1− µ

2
; k +

n

2
;x
)
.
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The definition of Gn,k,λ is more complicated. If n ∈ 2N + 1 or n ∈ 2N and
µ = n− 1 and k > 0 then

Gn,k,λ(x) = x1−k−n/2
2F1

(
1− µ

2
,
3
2
− 1

2
n− 1

2
µ− k; 2− k − n

2
;x
)
,

and if n ∈ 2N and µ = n− 1, k = 0 we have

Gn,k,λ(x) =
n− 2

2

n−2∑
i=0, i 6=(n−2)/2

(
n− 2
i

)
(−1)i+1

i− (n− 2)/2
xi+1−1/n

+
n− 2

2

(
n− 2

(n− 2)/2

)
(−1)n/2 log x.

In the case n ∈ 2N and µ is not an integer we have

Gn,k,λ(x) = 2F1

(
k +

n− 1
2
− µ

2
,
1− µ

2
; 1− µ; 1− x

)
,

and if n ∈ 2N and µ > n− 1 and µ is an integer then

Gn,k,λ(x) = (1− x)µ 2F1

(
1 + µ

2
, k +

n− 1
2

+
1
2
µ; 1 + µ; 1− x

)
.

In all cases the function Fn,k,λ is bounded at 0 and limx→0+ xk/2Gn,k,λ(x)
= ∞. We are looking for a solution ϕ that is bounded in the neighborhood
of x = 0, so that

ϕ(x) = c1(1− x)(n−1)/2−µ/2xk/2Fn,k,λ(x).

Moreover, if the process starts from the boundary of Br (i.e. if (Rt) starts
from r2), we have τBr = 0, hence φ(r2) = 1, which implies

c1 =
1

(1− r2)(n−1)/2−µ/2rkFn,k,λ(r2)
.

Finally, if the process starts from the point x inside Br, then the number x
in the above calculation is equal to |x|2, so that

Ex(e−λτBrCρk(ΦτBr )) = Cρk(1)
(1− |x|2)(n−1)/2−µ/2|x|kFn,k,λ(|x|2)

(1− r2)(n−1)/2−µ/2rkFn,k,λ(r2)
.

We have just proved the following representation for the λ-Poisson kernel of
a ball in Dn:

Theorem 4 (λ-Poisson kernel for a ball in Dn). For every x ∈ Br and
y ∈ ∂Br denote by θ the angle between x and y. Then

P λBr(x, y) = C
∞∑
k=0

k + ρ

ρ

(
1− |x|2

1− r2

)(n−1)/2−µ/2 |x|k

rk
Fn,k,λ(|x|2)
Fn,k,λ (r2)

Cρk(cos θ),

where C = Γ (n/2)/(2πn/2rn−1).
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Proof. It is easy to see that both sides have the same Gegenbauer co-
efficients, hence they are equal. The constant C(k + ρ)/ρ appearing in the
above formula is a consequence of the orthogonality relation (4.17) for the
Gegenbauer polynomials. The proof of the convergence of the above series is
precisely the same as the proof of the analogous result for the Poisson kernel
in [BM] and is omitted.

Remark 5. If we put λ = 0, we get the formula of [BM].

B. λ-Green function of a ball. Let (XBr
t , PBrt ) be the hyperbolic

Brownian motion in Dn killed at the boundary of the ball Br. We want to
find a formula for the λ-Green function of Br, defined in (2.13).

We introduce the following definition. If n ∈ 2N + 1 or n ∈ 2N and
µ = n− 1, then

an,k,λ =
Γ ((n− 2)/2)

4πn/2
;

if n ∈ 2N, µ > n− 1 and µ is not an integer then

an,k,λ = −Γ (k + (n− 1)/2− µ/2)Γ (1/2− µ/2)
Γ (1− µ)Γ (k + n/2− 1)

Γ ((n− 2)/2)
4πn/2

;

and finally for n ∈ 2N, µ > n− 1 and µ an integer we put

an,k,λ = −Γ (k + (n− 1)/2 + µ/2)Γ (1/2 + µ/2)
Γ (1 + µ)Γ (k + n/2− 1)

Γ ((n− 2)/2)
4πn/2

.

Due to the symmetry of the λ-Green function (with respect to the hyper-
bolic volume element (4.16)) it is enough to find the formula in the case
|x| < |y|.

Theorem 6 (λ-Green function formula). For |x| < |y| < r,

(4.19) GλBr(x, y) =
∞∑
k=0

an,k,λϕn,k,λ(|x|2)ψn,k,λ(|y|2)Cρk(cos θ).

where

ϕn,k,λ(z) = (1− z)(n−1)/2−µ/2zk/2Fn,k,λ(z),

ψn,k,λ(z) = (1− z)(n−1)/2−µ/2zk/2
(
Gn,k,λ(z)− Fn,k,λ(z)

Gn,k,λ(r2)
Fn,k,λ(r2)

)
and θ denotes the angle between x and y.

Proof. Similar arguments to those in the case of the λ-Poisson kernel
show that the λ-Green function GλBr(x, ·) as a function on the sphere S|y|
(with radius |y|) is invariant under each orthogonal transformation U such
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that Ux = x (see [BM]). Consequently, it is enough to find the values of

(̂GλBr)k(x, |y|) =
1

Cρk(1)
1

ωn−1|y|n−1

�

S|y|

Cρk(cos θ)GλBr(x, y) dσ|y|(y), x 6= 0,

for all k = 0, 1, . . . . Observe that the function x 7→ (̂GλBr)k(x, |y|) depends
only on |x|. Exactly the same arguments as in [BM] show that

(̂GλBr)k(|x|, |y|) =
Γ (n/2)

πn/2|y|n−2
Gλr (|x|2, |y|2),

where Gλr (η, ξ) is the λ-Green function for the interval [0, r2] and the one-
dimensional diffusion with generator

Lf(x) =
1
2
a2(x)

d2f

dx2
(x) + b(x)

df

dx
(x)− c(x)f(x),

where a(x) = 2(1 − x)
√

2x, b(x) = 2(1 − x)((n − 4)x + n) and c(x) =
k(k+n−2)(1− x)2/x. The speed measure density, scale function and killing
measure density are given by

m(x) =
1

4x(1− x)2
xn/2

(1− x)n−2
=

1
4
xn/2−1

(1− x)n
,

s′(x) =
(1− x)n−2

xn/2
,

k(x) =
1
4

(
k(k + n− 2)

(1− x)2

x

)
xn/2−1

(1− x)n
.

Using (2.11) we get

Gλr (η, ξ) = Cn,k,λ · ϕn,k,λ(η)ψn,k,λ(ξ), 0 < η < ξ < r2,

where ϕn,k,λ and ψn,k,λ are positive solutions of the equation Lu = λu such
that limη→0 ϕn,k,λ(η) = 0 and limξ→r2 ψn,k,λ(ξ) = 0 (the boundary con-
ditions are consequences of the character of the boundary points for the
diffusion). The constant Cn,k,λ is given by

Cn,k,λ =
s′(z)

W (ϕn,k,λ, ψn,k,λ)(z)
,

where W (ϕn,k,λ, ψn,k,λ) is the Wronskian of the pair (ϕn,k,λ, ψn,k,λ).
The equation Lu = λu is just (4.18) and taking into account its general

solution, we find that the functions

ϕn,k,λ(η) = (1− η)(n−1)/2−µ/2ηk/2Fn,k,λ(η),

ψn,k,λ(ξ) = (1− ξ)(n−1)/2−µ/2ξk/2
(
Gn,k,λ(ξ)− Fn,k,λ(ξ)

Gn,k,λ(r2)
Fn,k,λ(r2)

)
are the solutions which satisfy the boundary conditions at 0 and r2. From
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the general formula for the Wronskian for solutions of the hypergeometric
equation we get

W (ϕn,k,λ, ψn,k,λ)(z) = zk(1− z)n−1−µW (Fn,k,λ, Gn,k,λ)(z)

= zk(1− z)n−1−µz−k−n/2(1− z)µ−1 k + ρ

ρ

Γ (n/2)
4πn/2an,k,λ

= s′(z)
k + ρ

ρ

Γ (n/2)
4πn/2an,k,λ

.

Finally, comparing the formulas for the volume element dVDn and the density
of the speed measure m(ξ), we arrive at

(̂GλBr)k(|x|, |y|) =
ρ

k + ρ
an,k,λϕn,k,λ(|x|2)ψn,k,λ(|y|2).

The formula (4.19) is now an easy consequence of the orthogonality relation
(4.17) for Gegenbauer polynomials. The proof that the series is convergent
is very similar to that in [BM] and is omitted.

5. Harmonic measures and Green functions of balls in complex
hyperbolic spaces. Using a similar method to the one in the preceding
section, we can compute formulas for the λ-Poisson kernel and the λ-Green
function of a ball in complex hyperbolic space. For λ = 0 it was done in [Z].

Consider Cn with the Hermitian product 〈z, w〉=
∑n

j=1 zjw̄j for z, w ∈Cn.
Let B1 be the unit ball in Cn equipped with the Bergman metric, induced
by the form h = −4∂∂̄ logK(z) with K(z) = 1 − |z|2. This means that the
metric is given by the matrix (hij), where

hij =
(1− |z|2)δij + z̄izj

(1− |z|2)2
for i, j = 1, . . . , n.

The unit ball for this metric is a model of complex hyperbolic space. The vol-
ume element is given by dVCn(z) = (1− |z|2)−n−1 dz and ∆Cn , the Laplace–
Beltrami operator in this space, is (see [R])

∆Cnf(z) = 4(1− |z|2)
n∑

j,k=1

(δj,k − zj z̄k)
∂2f(z)
∂zj∂z̄k

.

Denote by (Xt) the process generated by ∆Cn . It is called the complex hy-
perbolic Brownian motion.

A. λ-Poisson kernel of a ball. In order to compute the Poisson kernel
or the Green function, we decompose (Xt) (as in [Z]) into the radial part
rt = |Xt|2 and “unitary spherical” part Yt = 〈Xt, X0〉/(|Xt| |X0|) = Rte

iθt .
Now for 0 < r < 1 take Br = {z ∈ Cn : |z| < r} and put τr = inf{t > 0 :
Xt /∈ Br}.
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We are looking for Ex(e−λτrXτr). In this context it is convenient to con-
sider the family of processes (Hp,q

n (Rteiθt))p,q=0,1,..., where (Hp,q
n ), p, q =

0, 1, . . . , is the family of unitary spherical harmonics, described by Koorn-
winder in [K] (cf. also [F]). This family forms an orthogonal basis in
L2({x2 + y2 < 1}, (1− x2 − y2)n−2dx dy).

The structure of unitary spherical harmonics is rather complicated, hence
the computations we need would be very long. Therefore we will use the
computations and results from [Z]: if we put

Q(x) = 4(1− x)
[ p+q

2

(p+q
2 + n− 1

)
x

−
(
p− q

2

)2]
,

then the process

Zt = Hp,q
n

(
〈Xt, X0〉
|Xt| |X0|

)
exp
( t�

0

Q(rs) ds
)

is a martingale. The generator of the process rt = |Xt|2 is

L = 4x(1− x)2
d2

dx2
+ 4(1− x)(n− x)

d

dx
.

Now we compute the expectation just as for Dn in the previous section:

Ex
(
e−λtHp,q

n

(
〈Xt, X0〉
|Xt| |X0|

))
= Ex

(
e−λtZt exp

(
−

t�

0

Q(rs) ds
))

= Z0Ex
(

exp
(
−

t�

0

(Q(rs) + λ) ds
))
.

We see that this time the gauge

φ(x) = Ex
(

exp
(
−
τr�

0

(Q(rs) + λ) ds
))

satisfies the equation

4x(1− x)2φ′′(x) + 4(1− x)(n− x)φ′(x)− (Q(x) + λ)φ(x) = 0.(5.20)

Making the substitution φ(x) = (1 − x)n/2−µ/2x(p+q)/2y(x), where µ =√
n2 + λ, we get

x(1− x)y′′(x) + (n+ p+ q − (n+ p+ q + 1− µ)x)y′(x)

+
1
4

[2(n+ p+ q)µ− 2(n+ p+ q)n− 4pq − λ]y(x) = 0.

This is the hypergeometric equation (2.1) with α = p + (n− µ)/2, β =
q+(n− µ)/2 and γ = n+p+q. Here the roles of the coefficients p and q are
symmetric, hence we always assume that p ≤ q. The general solution can be
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written ([E, 2.2.2 and 2.3.1]) as

c1 · Fn,p,q,λ(x) + c2 ·Gn,p,q,λ(x),

where

Fn,p,q,λ(x) = 2F1

(
p+

n− µ
2

, q +
n− µ

2
;n+ p+ q;x

)
.

The definition ofGn,p,q,λ(x) is more complicated: if (n− µ)/2 /∈ Z and 1−µ 6=
0,−1,−2, . . . then ([E, p. 75, formula (7)])

Gn,p,q,λ(x) = 2F1

(
p+

n− µ
2

, q +
n− µ

2
; 1− µ; 1− x

)
;

if (n− µ)/2 /∈ Z and 1− µ = 0,−1,−2, . . . then ([E, p. 75, formula (8)])

Gn,p,q,λ(x) = (1− x)µ 2F1

(
p+

n+ µ

2
, q +

n+ µ

2
; 1 + µ; 1− x

)
;

if (n− µ)/2 ∈ Z and p+ (n− µ)/2 = p− 1, . . . , 1 then ([E, p. 72, case 20])

Gn,p,q,λ(x) = (−x)−q−(n−µ)/2
2F1

(
q+

n−µ
2

, 1−p− n+µ

2
; q−p+ 1;x−1

)
;

and finally if (n− µ)/2 ∈ Z and p + (n− µ)/2 = 0,−1, . . . then ([E, p. 73,
case 23])

Gn,p,q,λ(x) = (1− x)µ 2F1

(
q +

n+ µ

2
, p+

n+ µ

2
; 1 + µ; 1− x

)
,

which is the same formula as in the second case.
In all cases Fn,p,q,λ is bounded at 0 and limx→0+ x(p+q)/2Gn,p,q,λ(x) =∞.

Investigating the Poisson kernel, we are looking for a solution φ that is
bounded in the neighborhood of x = 0, so that

φ(x) = c1x
(p+q)/2 (1− x)

n−
√
n2+λ
2 Fn,p,q,λ(x).

Condition φ(r) = 1 gives c1 and we finally get, for the process (Xt) with
X0 = x,

Ex
(
e−λτrHp,q

n

(
〈Xτr , X0〉
|Xτr | |X0|

))
= Hp,q

n (1)
(
|x|
r

)p+q(1− |x|2

1− r2

)n−
√
n2+λ
2 Fn,p,q,λ(|x|2)

Fn,p,q,λ(r2)
.

Knowing the coefficients with respect to the orthogonal basis (Hp,q
n ), we can

write down the series expansion of the function.
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Theorem 7 (λ-Poisson kernel for a ball in complex hyperbolic space).
For every x ∈ Br, x 6= 0, and y ∈ ∂Br,

P λBr(x, y) =
1

r2n−1

∞∑
p,q=0

(
|x|
r

)p+q(1−|x|2

1− r2

)n−√n2+λ
2 Fp,q,n(|x|2)

Fp,q,n(r2)
Hp,q
n

(
〈y, x〉
|y| |x|

)
.

The proof of the convergence of the above series is precisely the same as
the proof of the analogous result for the Poisson kernel in [Z] and is omitted.

Remark 8. 1. If x = 0 then, by the unitary invariance of the process,
the variable Xτr is uniformly distributed on the sphere ∂Br.

2. If we put λ = 0 in the above formula, we get the result of [Z].

B. λ-Green function of a ball. We continue the calculations from
the previous section, using the analogous method to compute the λ-Green
function in Dn. This time we compute the coefficients of the expansion of the
λ-Green function with respect to the orthogonal basis, consisting of (Hn

p,q).
Recall that µ =

√
n2 + λ. Denote by ω2n−1 = 2πn/Γ (n) the area of the

unit sphere in R2n and define bn,p,q,λ to be

−
Γ
(
p+ n−µ

2

)
Γ
(
q + n−µ

2

)
ω2n−1Γ (1− µ)Γ (n+ p+ q)

if n−µ2 /∈ Z and 1− µ 6= 0,−1, . . . ,

−
Γ
(
q + n+µ

2

)
Γ
(
p+ n+µ

2

)
ω2n−1Γ (1 + µ)Γ (n+ p+ q)

if n−µ2 /∈Z and 1− µ= 0,−1, . . . ,

or n−µ
2 ∈Z and 2p+n−µ

2 = −1,−2, . . . ,
(−1)n+p+qΓ

(
q+ n−µ

2

)
Γ
(
q + n+µ

2

)
ω2n−1Γ (1+q−p)Γ (n+p+q)

if n−µ2 ∈Z and 2p+n−µ
2 = p− 1, . . . , 0.

We have the following formula.

Theorem 9 (λ-Green function formula for Br). For 0 < |x| < |y| < r,

GλBr(x, y) =
1

2r2n−1

∞∑
p,q=0

bn,p,q,λϕn,p,q,λ(|x|)ψn,p,q,λ(|y|)Hp,q
n

(
〈x, y〉
|x| |y|

)
,

where

ϕn,p,q,λ(|x|) = (1− |x|2)(n−µ)/2|x|p+qFn,p,q,λ(|x|2),

ψn,p,q,λ(|y|) = (1− |y|2)(n−µ)/2|y|p+q

×
(
Gn,p,q,λ(|y|2)− Fn,p,q,λ(|y|2)

Gn,p,q,λ(r2)
Fn,p,q,λ(r2)

)
.

Proof. The Laplace–Beltrami operator ∆Cn commutes with unitary
transformations, hence the complex hyperbolic Brownian motion generated
by ∆Cn and starting at x is invariant under each unitary transformation U
such that Ux = x (see [Z]). This implies that the λ-Green function GλBr(x, ·),
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as a function on the sphere S|y| with radius |y|, is invariant under all unitary
transformations U with Ux = x.

Let (ĜλBr)p,q denote the coefficient of the expansion of GλBr with respect
to the basis (Hn

p,q). We will compute the values of

(̂GλBr)p,q(x, |y|) =
Hp,q
n (1)

ω2n−1|y|2n−1

�

S|y|

Hp,q
n

(
〈x, y〉
|x| |y|

)
GλBr(x, y) dσ|y|(y), x 6= 0,

for all p, q = 0, 1, . . . . Observe that the function x 7→ (̂GλBr)p,q(x, |y|) depends
only on |x|. Exactly the same arguments as in [Z] show that

(̂GλBr)p,q(|x|, |y|) =
1

ω2n−1|y|2n−1
Gλr (|x|2, |y|2),

where Gλr is the λ-Green function for the interval [0, r] of the one-dimensional
diffusion with generator

Lf(x) =
1
2
a2(x)

d2f

dx2
(x) + b(x)

df

dx
(x)− c(x)f(x),

where

a(x) = 2(1− x)
√

2x, b(x) = 4(1− x)(n− x),

c(x) = 4(1− x)
( p+q

2

(p+q
2 + n− 1

)
x

− (p− q)2

4

)
.

The basic characteristics of this diffusion are (cf. (2.8)–(2.10))

m(x) =
2

a2(x)
eB(x) =

1
4x(1− x)2

xn

(1− x)n−1
=

1
4

xn−1

(1− x)n+1
,

s′(x) = e−B(x) =
(1− x)n−1

xn
,

k(x) =
2

a2(x)
c(x) eB(x) =

[ p+q
2

(p+q
2 + n− 1

)
x

−
(
p− q

2

)2] xn−1

(1− x)n
.

The general theory of one-dimensional diffusions says that the λ-Green func-
tion for the interval [0, r] is of the form

Cn,p,q,λ · ϕn,p,q,λ(|x|)ψn,p,q,λ(|y|), |x| < |y|,

where ϕn,p,q,λ and ψn,p,q,λ are positive and monotone solutions of the equa-
tion Lu = λu.

The equation Lu = λu is just (5.20) and taking into account its gen-
eral solution, we get the formulas for ϕn,p,q,λ(|x|) and ψn,p,q,λ(|y|) as in the
statement.
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Finally, using the formula for the Wronskian of solutions to the hyperge-
ometric equation ([L, p. 84]), we get

W (ϕn,p,q,λ, ψn,p,q,λ)(z) = zp+q(1− z)n−µW (Fn,p,q,λ, Gn,p,q,λ)(z)

= zp+q(1− z)n−µz−n−p−q(1− z)µ−1Cn,p,q = s′(z)Cn,p,q,

where Cn,p,q equals

−Γ (1− µ)Γ (n+ p+ q)
Γ
(
p+ n−µ

2

)
Γ
(
q + n−µ

2

) if n−µ2 /∈ Z, 1− µ 6= 0,−1, . . . ,

−Γ (1 + µ)Γ (n+ p+ q)
Γ
(
q + n+µ

2

)
Γ
(
p+ n+µ

2

) if n−µ2 /∈ Z, 1− µ = 0,−1, . . . ,

or n−µ
2 ∈Z, 2p+n−µ

2 = −1,−2, . . . ,
(−1)n+p+qΓ (1 + q − p)Γ (n+ p+ q)

Γ
(
q + n−µ

2

)
Γ
(
q + n+µ

2

) if n−µ2 ∈Z, 2p+n−µ
2 = p−1, . . . , 0.

Comparing the formulas for the volume element dVCn and the density of the
speed measure m(x), we arrive at

(̂GλBr)p,q(|x|, |y|) =
Hp,q
n (1)

2Cn,p,q,λ
ϕn,p,q,λ(|x|2)ψn,p,q,λ(|y|2).

Hence the theorem follows, because the set of unitary spherical harmon-
ics (Hp,q

n ), p, q = 0, 1, 2, . . . , is an orthogonal basis in L2({x2 + y2 < 1},
(1−x2−y2)n−2dx dy). The proof that the series is convergent is very similar
to that given in [Z].

6. General case. Summarizing the above examples we can exhibit the
main idea of calculations. Suppose we are given a diffusion (Xt)t≥0 with
values in a subset of Rn. Suppose also that D is a regular domain in Rn

and τD = inf{t > 0 : Xt /∈ D} is finite with probability one, that is,
P x(τD <∞) = 1. Consider the process (XD

t )t≥0 killed upon exiting D.
Assumptions.
A. The generator L of the diffusion (Xt) commutes with a group G of

mappings of D, hence the distribution of the process starting from a point
x0 ∈ D is invariant with respect to all those mappings from G that leave x0

invariant.
B. (Xt) can be decomposed into two parts: a process rt such that τD =

inf{t > 0 : rt = a} for some constant a ∈ R and the second part, called
(X̃t), invariant with respect to all those transformations from G that leave
x0 unchanged.

C. It is possible to use harmonic analysis on ∂D, i.e. there exists a set
of functions (fu)u∈I such that fu : ∂D → C and the family (E(fu(X̃t)))u∈I
describes a distribution of X̃t in a unique way.



λ-POISSON KERNELS AND λ-GREEN FUNCTIONS 221

D. There exists a multiplicative functional Vt = exp(
	t
0 q(rs) ds) such

that the process Zt = fu(X̃t)Vt is a martingale.
If all these assumptions hold then we can find an ordinary differential

equation describing the gauge, so we can compute Ex(e−λτDfu(X̃τD)).
Observe that all the above assumptions were satisfied in the examples

discussed in Sections 3, 4 and 5. If the domain D is a half-space or a ball,
the group G consists of automorphisms of the half-space (inner translations
and rotations) or the ball (orthogonal or unitary transformations).

The method can also be applied in non-hyperbolic contexts. The authors
of [JG] computed the Poisson kernel for balls in the case of an Ornstein–
Uhlenbeck process. Using our method it is possible to describe the λ-Poisson
kernel for such a process.

As we mentioned in the Introduction, the authors of [BDH] investigated
the global Poisson kernel (on the whole space) for NA groups and genera-
tors of the form of a Laplace–Beltrami operator plus some additional term
of the first order. Complex hyperbolic space, realized as Siegel upper half-
space, is the main example of such NA groups. It is an interesting ques-
tion whether the above methods can help to compute the λ-Poisson ker-
nel or λ-Green function for a “half-space” of the Siegel domain, that is, for
D = {z ∈ Cn : =z1 −

∑n
k=2 |zk|2 > a}, for given a > 0.
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