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Abstract. For any connected Lie group G and any Laplacian Λ = X2
1 +· · ·+X2

n ∈ Ug

(X1, . . . , Xn being a basis of g) one can define the commutant B = B(Λ) of Λ in the con-
volution algebra L1(G) as well as the commutant C(Λ) in the group C∗-algebra C∗(G).
Both are involutive Banach algebras. We study these algebras in the case of a “distin-
guished Laplacian” on the “Iwasawa part AN” of a semisimple Lie group. One obtains
a fairly good description of these algebras by objects derived from the semisimple group.
As a consequence one sees that both algebras are commutative (which is not immedi-
ate from the definition), B is C∗-dense in C, and B is a completely regular symmetric
Wiener algebra. As a byproduct of our approach we give another proof of the injectivity of
Harish-Chandra’s spherical Fourier transform, which is based on a theorem on C∗-algebras
of solvable Lie groups (due to N. V. Pedersen). The article closes with some open questions
for more general solvable Lie groups. To some extent the article is written with a view to
these questions, that is, we try to apply, as much as possible (at the moment), methods
which work also outside the semisimple context.

1. Introduction. On any connected Lie groupG one may study Laplace
operators: For any basis X1, . . . , Xn of the Lie algebra g of G one may form
the operator f 7→ Lf = (X2

1 + · · ·+X2
n)(f), which, of course, depends on the

chosen basis. At least since the seminal work of E. Nelson and W. Stinespring
[22, 23], in particular on analytic vectors in representation spaces, those
operators were intensely studied, for instance as regards the asymptotic
behaviour of the associated heat kernels pt, “pt = etL”, t > 0, or functional
calculus on L.

A. Hulanicki and his school made important contributions to this circle
of questions. The present article is closely related to one of his ideas. In [16]
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A. Hulanicki introduced the commutative closed subalgebra of L1(G) which
is generated by the kernels pt, t > 0. This algebra was studied in several
subsequent articles. A couple of years ago we investigated another, in general
larger subalgebra of L1(G), the “commutant” of L (see [27]), which can be
defined directly by Λ, that is, without knowing the heat kernels. For the
convenience of the reader we briefly recall the relevant definitions.

Any X ∈ g, considered as an element of the tangent space of G at the
origin, acts on smooth functions f on G via

(X ∗ f)(y) =
d

dt

∣∣∣∣
t=0

f(exp(−tX)y),

(f ∗X)(y) =
d

dt
f(y exp(−tX)) + tr ad(X)f(y)

for y ∈ G, thus defining right-invariant (in the first case) and left-invariant
vector fields; tr ad(X) denotes the trace of g 3 Y 7→ [X,Y ] ∈ g. If, as
usual, an involution is defined by f∗(y) = δ(y)−1 f(y−1), where δ denotes
the modular function of G, one has

(f ∗X)∗ = −X ∗ f∗.
Observe that δ(expX) = e−tr ad(X). Both actions extend to the universal
enveloping algebra Ug of g.

Definition 1.1. If Λ := X2
1 + · · · + X2

n ∈ Ug for a basis X1, . . . , Xn

of g then the subalgebra B = B(Λ) consists of all f ∈ L1(G) such that
Λ ∗ f = f ∗Λ; this is short for the equations (ϕ ∗Λ) ∗ f ∗ψ = ϕ ∗ f ∗ (Λ ∗ψ)
which have to hold for all ϕ,ψ ∈ D(G) = C∞c (G). Evidently, B is a closed
involutive subalgebra of L1(G) containing the heat kernels pt.

Likewise one may form the commutant of Λ in the C∗-hull C∗(G) of
L1(G).

Definition 1.2. If Λ is as above then the closed involutive subalgebra
C = C(Λ) of C∗(G) consists of all f ∈ C∗(G) with Λ ∗ f = f ∗Λ. (See Prop.
3.1 in [27] for a more detailed discussion.)

For the (ax + b)-group and the Heisenberg group these algebras B and
C were studied in detail in [27]. Parts of the results obtained will be used
here, where we study the case of so-called distinguished Laplacians. They are
certain Laplacians on the “AN -part” of a semisimple Lie group (see below
for a precise definition), and they were already studied by A. Hulanicki and
others (cf. e.g. [4, 5, 11, 13]).

Also in this case we get a fairly good picture of the algebras B(Λ) and
C(Λ) expressed by some objects derived from the semisimple group which
was taken as point of departure (cf. Proposition 4.7 and Theorem 4.8 below).
As a byproduct of our approach we obtain another proof of the injectivity
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of the Harish-Chandra transform, actually on a space which is somewhat
bigger than Harish-Chandra’s Schwartz space. Interestingly enough, a ba-
sic tool is a theorem (due to Niels Vigand Pedersen [25]) on C∗-algebras
of certain solvable Lie groups. This proof was already formulated in the
(unpublished) manuscript [26] where we focused on this aspect. At several
points the present article goes beyond that manuscript.

2. A criterion for T : C∗(G)→ C∗(G/N) being injective on C(Λ).
In this section let the Lie algebra g be the semidirect product of an abelian
subalgebra a and a nilpotent ideal n, such that the action of a on n is diago-
nalizable: There is a basis X1, . . . , Xr of n (fixed for the rest of this section),
and there are α1, . . . , αr ∈ a′ = HomR(a,R) with [H,Xj ] = αj(H)Xj for
H ∈ a and j = 1, . . . , r. For a chosen basis A1, . . . , A` of a (also fixed for the
rest of this section) we form, as above, Λ = A2

1+· · ·+A2
`+X

2
1 +· · ·+X2

r ∈ Ug.
By capital letters A,N,G we denote the simply connected Lie groups cor-
responding to a, n, g. One has G = A nN , G/N ∼= A. By integration over
N , (Tf)(a) =

	
N f(ax) dx, where dx is a chosen Haar measure on N , we

obtain a surjective map T : L1(G) → L1(A). This map extends to a map
C∗(G) → C∗(A) denoted by the same letter. The algebra C∗(A) is, via
Fourier transform, isomorphic to C∞(Â) where Â ∼= a′ denotes the Pontrya-
gin dual of A.

Proposition 2.1. In addition to the above assume that there is an ele-
ment A0 ∈ a such that αj(A0) > 0 for j = 1, . . . , r. Let π be a continuous
irreducible unitary representation of G in the Hilbert space H. By differen-
tiation, π(X) = d

dt

∣∣
t=0

π(exp tX), X ∈ g, π yields a representation of Ug,
and Λ leads to a self-adjoint operator π(Λ), unbounded in general, on H
(cf. [23]). If π(Λ) happens to have an eigenvector then necessarily π factors
through G → G/N = A. The latter property is equivalent to π being one-
dimensional (or finite-dimensional). In other words, π(Λ) has eigenvectors
for no infinite-dimensional irreducible representation π.

Proof. Suppose that there is a non-zero ξ in the domain of π(Λ) such
that π(Λ)ξ = λξ for some (real) scalar λ. For short, put at = exp(tA0) and
ξt = π(at)ξ. One has

λξt = λπ(at)ξ = π(at)π(Λ)π(at)−1π(at)ξ = π(Λt)ξt

with

Λt = Ad(at)(Λ) = A2
1 + · · ·+A2

l +
r∑
j=1

e2tαj(A0)X2
j = ∆+

r∑
j=1

e2tαj(A0)X2
j .

For the following computations observe that ξ and ξt are in the domain of a
Laplacian, which by [22, Lemma 6.1] dominates all operators derived from
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linear or quadratic expressions in Ug. Plugging into 〈λξ, ξt〉 = 〈ξ, λξt〉 the
two eigenvalue equations one obtains〈

π(∆)ξ +
r∑
j=1

π(X2
j )ξ, ξt

〉
=
〈
ξ, π(∆)ξt +

r∑
j=1

e2tαj(A0)π(Xj)2ξt
〉
,

whence 〈 r∑
j=1

π(X2
j )ξ, ξt

〉
=
〈 r∑
j=1

e2tαj(A0)π(X2
j )ξ, ξt

〉
,

or
r∑
j=1

(e2tαj(A0) − 1)〈π(X2
j )ξ, ξt〉 = 0.

The latter equation holds true for all real t. Dividing by t 6= 0 and taking
the limit for t→ 0 yields

r∑
j=1

2αj(A0)〈π(X2
j )ξ, ξ〉 = 0.

As αj(A0) > 0 and 〈π(X2
j )ξ, ξ〉 ≤ 0 for all j we conclude that π(Xj)ξ = 0

for all j, which implies that ξ is in the space HN of N -fixed vectors. But N
being normal in G, the latter space is G-invariant, hence HN = H as π is
irreducible. Therefore, π factors through G→ G/N = A, as was claimed.

The above result can also be expressed in terms of bounded operators.
By a result of Nelson and Stinespring, [23], the closure Λ(1) of the operator
f 7→ (Id−Λ)∗f , f ∈ D(G), in L1(G) has an inverse: there is an L1-function
k1 such that Λ(1)(k1 ∗ f) = f for all f ∈ L1(G), and k1 ∗ Λ(1)(g) = g for all
g in the domain of Λ(1). The above proposition can be rephrased by saying
that π(k1) has eigenvectors for no infinite-dimensional irreducible unitary
represention π of G.

Theorem 2.2. The restriction of T : C∗(G) → C∗(A) to C(Λ) is one-
to-one. A fortiori, T : L1(G)→ L1(A) is injective on B(Λ).

Remark 2.3. The theorem implies in particular that C(Λ) and B(Λ)
are commutative, which is not obvious from their definition.

Proof. We first note that clearly C may also be described as C = {f ∈
C∗(G) | f ∗ k1 = k1 ∗ f}, with k1 as above. For the following argument
it is crucial that the postliminal C∗-algebra C∗(G) (for the definition of
postliminal C∗-algebras see [8]) has in fact a finite composition series as was
proved by N. V. Pedersen [25], that is, there is a sequence 0 = Jn+1 ( Jn (
· · · ( J1 ( J0 = C∗(G) of closed two-sided involutive ideals in C∗(G) such
that for each k, 0 ≤ k ≤ n, each irreducible involutive representation π of
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Jk/Jk+1 in the Hilbert space Hπ maps Jk onto the algebra of compact oper-
ators of Hπ. For further reading on the representation theory of exponential
groups we recommend two articles of B. Currey [6, 7], as well as the book
[21] by H. Leptin and J. Ludwig.

Clearly the above composition series may be chosen such that J1 is just
the kernel of T . Assume, contrary to our claim, that J1 ∩C = kerT ∩C 6= 0.
Let k ≤ n+1 be the largest number such that Jk∩C 6= 0 (hence 1 ≤ k ≤ n). If
a is any non-zero element in Jk∩C then b := a∗a is also in Jk∩C and different
from zero. Even the image b• of b under the quotient map Jk → Jk/Jk+1 is
different from zero because otherwise b would be contained in C∩Jk+1, which
is zero by the maximality of k. Hence there exists an irreducible involutive
representation π of Jk/Jk+1 in the Hilbert space H with π(b•) 6= 0. The
representation π extends uniquely to a representation of C∗(G), denoted by
the same letter π, which vanishes on Jk+1. By the properties of composition
series, π(b•) = π(b) is a compact self-adjoint operator in H, hence there
exists a non-zero λ such that the eigenspace Hλ = {ξ ∈ H | π(b)ξ = λξ} is
non-zero and finite-dimensional. As b commutes with k1, the operators π(b)
and π(k1) commute as well. Therefore, Hλ is invariant under π(k1), and
there exist eigenvectors for π(k1) in Hλ, which implies by Proposition 2.1
(and the observation preceding the theorem) that π is trivial on kerT = J1.
This contradicts Jk ⊂ J1 and π(Jk) 6= 0, whence our assumption J1 ∩ C 6= 0
was false.

For later use we include a technical lemma on a transformation law for Λ
under positive characters. Each positive character on A is given by a linear
functional σ ∈ a′, namely σ̃(expX) = eσ(X) defines a positive character on
A, and hence onG = AnN . The chosen basis A1, . . . , A` of a implicitly yields
an Euclidean structure 〈 , 〉 on a : A1, . . . , A` is assumed to be orthonormal.
Using 〈 , 〉 we will occasionally identify a with a′ in the usual manner: for
β ∈ a′ we have Hβ ∈ a such that β(X) = 〈Hβ, X〉 for all X ∈ a. In a
later application we shall also need the right action of g (or Ug) on smooth
functions on G without the correction term tr ad.

For X ∈ g and a smooth function f on G we define

(f ∗′ X)(y) =
d

dt

∣∣∣∣
t=0

f(y exp(−tX)).

Lemma 2.4. For σ ∈ a′ with associated character σ̃ ∈ Hom(G,R+) the
transformed operator f 7→ σ̃(Λ ∗ (σ̃−1f)) can be written as

σ̃(Λ ∗ (σ̃−1f)) = Λ ∗ f + 2Hσ ∗ f + ‖Hσ‖2f.

Further, we have

σ̃((σ̃−1f) ∗ Λ) = f ∗′ Λ+ 2f ∗′ Hσ+tr ad + ‖Hσ+tr ad‖2f.
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Proof. Evidently, only the a-part of Λ contributes to the transformation
law. For H ∈ a one has σ̃(H ∗ (σ̃−1f)) = H ∗ f + σ(H)f0, as is easily
computed. Applying this formula twice one obtains

σ̃(H2 ∗ (σ̃−1f)) = H2 ∗ f + 2σ(H)H ∗ f + σ(H)2f,

from which we conclude that

σ̃(Λ ∗ (σ̃−1f)) =
r∑
j=1

X2
j ∗ f +

∑̀
k=1

A2
k ∗ f

+ 2
r∑

k=1

σ(Ak)Ak ∗ f +
r∑

k=1

σ(Ak)2f

= Λ ∗ f + 2Hσ ∗ f + ‖Hσ‖2f.

Also for the action from the right we have

σ̃((σ̃−1f) ∗H) = f ∗H + σ(H)f,

yielding
σ̃((σ̃−1f) ∗H) = f ∗′ H + (σ + tr ad)(H)f,

which gives

σ̃((σ̃−1f) ∗H2) = f ∗′ H2 + 2(σ + tr ad)(H)f ∗′ H + (σ + tr ad)(H)2f.

Summation, similar to the above, leads to the claimed formula.

3. Distinguished Laplacians, notations. We recall the construction
of a distinguished Laplacian on the Iwasawa part AN of a semisimple Lie
group S with finite center, and we introduce several notations. Denote, as
usual, by s the Lie algebra of S, and by Θ a fixed Cartan involution on s.
Decompose s into the Θ-eigenspaces, s = k ⊕ p, where the (+1)-eigenspace
k corresponds to a maximal compact subgroup K of S. Further, choose a
maximal abelian subspace a of p. Then s decomposes into a-eigenspaces,

s = s0 ⊕
∑
α∈R

sα,

where R is a subset of a′ \ {0}, and s0 = a + m with m = s0 ∩ k. Moreover,
choose a point A0 in a such that α(A0) 6= 0 for all α ∈ R, and let

R+ = {α ∈ R | α(A0) > 0}, n =
∑
α∈R+

sα, g = a + n.

If A,N,G denote the corresponding groups one has the Iwasawa decom-
position S = ANK = GK. The group G is an exponential Lie group, its
modular function δ is trivial on N , and for H ∈ a one has

δ(expH) = e−2ρ(H)

where ρ ∈ a′ is defined by ρ = 1
2

∑
α∈R+

(dim sα)α.
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By means of the Iwasawa decomposition the manifolds S/K and G can
be identified, hence functions on these spaces can be identified. Explicitly,
if h on S is K-right-invariant define r(h) on G by r(h)(x) = h(x); if f
is a function on G define Ef on S by (Ef)(xk) = f(x) for x ∈ G and
k ∈ K. In order to make these operations commute, at least partly, with the
involutions on the unimodular group S and the non-unimodular group G we
have to modify them by an appropriate power of the modular function δ:
For a K-right-invariant function h on S define r0(h) on G by

r0(h) = r(h)δ−1/2, that is, r0(h)(x) = h(x)δ(x)−1/2 for x ∈ G;

and for a function f on G define E0f on S by (E0f)(xk) = f(x)δ(x)1/2 for
x ∈ G and k ∈ K. Then r0(h∗) = r0(h)∗ if h is K-biinvariant.

Also, we wish to compare some Lp-norms under these identifications.
By da, dx, dk we denote chosen Haar measures on the unimodular groups
A,N,K (dk being normalized). Then dg = da dx gives a left Haar measure
on G = AN with the above mentioned modular function δ. The Iwasawa
decomposition S = GK, s = gk, yields a Haar measure ds = dg dk on S,
while the decomposition S = KG leads to ds = δ(g)−1dk dg. For any p, the
extension operator E and the restriction operator r yield isometries between
Lp(G) and Lp(S/K), where Lp(S/K) denotes the space of K-right-invariant
functions in Lp(S, ds). The case of r0 is a little more subtle; first we consider
p = 2.

Lemma 3.1. The map r0 defines an isometry from L2(S//K, ds), the
space of K-biinvariant functions in L2(S, ds), onto a (closed) subspace of
L2(G, dg).

Proof. For h ∈ L2(S//K, ds) put f = r0(h), that is, f(x) = h(x)δ(x)−1

for x ∈ G. Then

‖f‖22 =
�

G

|f(x)|2 dx =
�

G

|h(x)|2δ(x)−1 dx

=
�

K

�

G

|h(kx)|2δ(x)−1dk dx =
�

S

|h(s)|2 ds

by the above relation ds = δ(g)−1dk dg.

For a K-biinvariant function h on S we put, as above, f = r0(h), and
we wish to express the L1-norm of f in terms of h. To this end we recall the
0th elementary zonal spherical function Ξ given by

Ξ(s) =
�

K

(Eδ)(ks)−1/2 dk, s ∈ S,

or by
Ξ(s) =

�

K

(Ẽδ)(sk)1/2 dk,
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if Ẽδ denotes the K-left-invariant extension of δ, that is, Ẽδ(kx) = δ(x) for
x ∈ G and k ∈ K.

This function is a matrix coefficient of a unitary representation, in par-
ticular it is less than or equal 1, and its asymptotic behaviour is very well
understood (cf. for instance [10, Chap. 4.6]). Moreover, it is invariant under
involution, Ξ(s−1) = Ξ(s) for all s ∈ S. Now we simply compute, using the
K-biinvariance of h:�

G

|f(x)| dx =
�

G

|h(x)|δ(x)−1/2 dx =
�

S

|h(s)|(Eδ)(s)−1/2 ds

=
�

K

�

G

|h(kg)|(Eδ)(kg)−1/2δ(g)−1 dk dg

=
�

G

|h(g)|Ξ(g)δ(g)−1 dg =
�

S

|h(s)|Ξ(s) ds.

We conclude that r0 defines an isometry from the weighted spaceL1(S//K,
Ξ(s)ds) onto a closed subspace of L1(G) (with inverse E0). Moreover, it is
easy to see that r0 is multiplicative with convolution on both sides. As
observed earlier, r0 commutes with the involution. Since later the resulting
subalgebra of L1(G) will play a decisive role, we introduce a name for it.

Proposition and Definition 3.2. Denote by A the image of L1(S//K,
Ξ(s)ds) under r0. This is a closed involutive subalgebra of L1(G), via r0/E0

isometrically ∗-isomorphic to L1(S//K,Ξ(s)ds).

Remark 3.3. A common way to obtain more general convolution al-
gebras (so-called Beurling algebras) than just the ordinary L1-algebras is
to introduce weight functions which are submultiplicative and greater than
or equal to 1 (cf. e.g. [28]). The submultiplicativity guarantees the crucial
property ‖ab‖ ≤ ‖a‖ ‖b‖ of Banach algebras. The “weight” Ξ is neither sub-
multiplicative nor greater than 1. Here, the submultiplicativity of the norm
in L1(S//K, S/K,Ξ(s)ds) is deduced from the corresponding property in
L1(G). In addition, it may be worthwhile to notice that the underlying
space K\S/K of the algebra L1(S//K) is not a group at all. Moreover, the
measure Ξ(s)ds is defined on the whole group S, while what actually counts,
is the induced measure on K\S/K. The algebra L1(S//K,Ξ(s)ds) may be
viewed as a subalgebra, namely as those functions which are summable with
respect to this measure, of the measure algebra associated with a hypergroup
structure on K\S/K.

For the construction of a distinguished Laplacian of G we also need the
Killing form B on s. Using this form we choose a basis X1, . . . , Xr of n
consisting of a-eigenvectors, say [H,Xj ] = αj(H)Xj for H ∈ a, 1 ≤ j ≤ r,
such that

B(Xj , ΘXk) = −2δjk.
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Clearly such a basis exists. Moreover, we choose an orthonormal basisA1, . . . ,
A` of a (with respect to the Killing form). Then we define the distinguished
Laplacian Λ by

Λ = A2
1 + · · ·+A2

2 +X2
1 + · · ·+X2

r ∈ Ug ⊂ Us.

4. The algebras A,B,C. We study the relations between the algebras
mentioned in the title of this section in the case of a distinguished Laplacian.
At the end we shall see that A = B, and that B is C∗-dense in C. Also, we
determine the Gelfand space of the commutative Banach algebra B = B(Λ).
In a first step we show that A ⊂ B.

Theorem 4.1. If A ⊂ L1(G) is as in 3.2 and B = B(Λ) is the commu-
tant of a distinguished Laplacian then A is contained in B.

Proof. More or less, the proof consists of some well-known computa-
tions in the universal enveloping algebra Us. These computations are in-
cluded because they are crucial, short and nice. In addition to A1, . . . , A`,
X1, . . . , Xr choose a basis W1, . . . ,Wm of m such that B(Wj ,Wk) = −δjk.
Then A1, . . . , A`, W1, . . . ,Wm, X1, . . . , Xr, ΘX1, . . . , ΘXr is a basis of s with
dual basis (with respect to the Killing form B) A1, . . . , A`, −W1, . . . ,−Wm,
−1

2ΘX1, . . . ,−1
2ΘXr, −1

2X1, . . . ,−1
2Xr. Therefore (cf., e.g., [31, Ch. 3, Sec-

tion 11]),

Ω := A2
1 + · · ·+A2

` −W 2
1 − · · · −W 2

m − 1
2

r∑
j=1

XjΘXj − 1
2

r∑
j=1

(ΘXj)Xj ∈ Us

is the Casimir element. This particular representation of the Casimir element
played a decisive role, in particular in the rank 1 case, in Lepowsky’s [20]
treatment of the Harish-Chandra homomorphism.

For each j, the bracket [Xj , ΘXj ] sits in the eigenspace s0 = a+m; as this
bracket is a (−1)-eigenvalue of Θ it has to be in a. From −B([Xj , H], ΘXj) =
B(H, [Xj , ΘXj ]) for H ∈ a, we obtain B(H, [Xj , ΘXj ]) = αj(H)B(Xj , ΘXj)
= −2αj(H). The Killing form yields an isomorphism from a′ onto a; as in
Section 2, for β ∈ a′ we denote by Hβ the corresponding element in a, that
is, β(H) = B(H,Hβ) for all H ∈ a. With this notation the above relation
reads

[Xj , ΘXj ] = −2Hj ,

where we put Hj = Hαj for brevity. Using this relation, or rather its
equivalent form 1

2{Xj(ΘXj) + (ΘXj)Xj} = Hj + Xj(ΘXj), we find that
Ω =

∑`
k=1A

2
k −

∑m
µ=1W

2
µ − 2Hρ +

∑r
j=1X

2
j −

∑r
j=1Xj(Xj +ΘXj); recall

that 2ρ =
∑r

j=1 αj = tr ad ∈ a′. This implies that we can write
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(Cas) Ω = Λ− 2Hρ +Γ with Γ := −
m∑
µ=1

W 2
µ −

r∑
j=1

Xj(Xj +ΘXj) ∈ (Us)k,

or, applying the involution in Us,

(Cas′) Ω = Λ+ 2Hρ + Γ ∗ with Γ ∗ ∈ k Us.

Let f be a smooth function on G. We wish to interpret the equation Λ∗f =
f ∗ Λ by means of E0f . Define f0 : G → C by f0(x) = f(x)δ(x)1/2, that is,
E0f = E(f0). In order to apply Lemma 2.4 we write

δ1/2(Λ ∗ f − f ∗ Λ) = δ1/2(Λ ∗ (δ−1/2f0))− δ1/2((δ−1/2f0) ∗ Λ).

Choosing σ̃ = δ1/2, that is, σ = −1
2tr ad = −ρ, in Lemma 2.4 we obtain

δ1/2(Λ ∗ f − f ∗ Λ) = Λ ∗ f0 − 2Hρ ∗ f0 + ‖Hρ‖2f0 − f0 ∗′ Λ
= 2f0 ∗′ Hρ − ‖Hρ‖2f0

= (Λ− 2Hρ) ∗ f0 − f0 ∗′ (Λ+ 2Hρ).

We would like to apply the extension operator E to this equation. While E :
C∞(G) → C∞(S/K) ⊂ C∞(S) commutes with the left action of Ug ⊂ Uσ
(and likewise r : C∞(S/K) → C∞(G)), this is no longer true for the right
Ug-action. (In fact, Ug does not act at all from the right on C∞(S/K).) But,
of course, if h is any C∞-function on S and if u ∈ Ug then h ∗u|G = h|G ∗′ u
(this obvious formula is the reason why we had to use ∗′ temporarily—
for transition from a non-unimodular situation to a unimodular one). If
both h and h ∗ u happen to be in C∞(S/K) then r(h ∗ u) = r(h) ∗′ u and
h ∗ u = E(r(h) ∗′ u). We apply this simple observation to h = E(f0) and
u = Λ+ 2Hρ. As Ω is the Casimir element we have

Ω ∗ h = h ∗Ω ∈ C∞(S/K).

From Ω = Λ+2Hρ+Γ ∗ (see (Cas′)), we conclude that h∗Ω = h∗(Λ+2Hρ)
as Γ ∗ ∈ k Us and h is K-right-invariant. Thus we get E(f0 ∗′ (Λ + 2Hρ)) =
E(f0) ∗ (Λ + 2Hρ) whence E(δ1/2(Λ ∗ f − f ∗ Λ)) = E0(Λ ∗ f − f ∗ Λ) =
(Λ− 2Hρ) ∗ E(f0)− E(f0) ∗Ω = (Λ− 2Hρ −Ω) ∗ E(f0) = −Γ ∗ E(f0).

As Γ ∈ (Us)k we see that the K-biinvariance of E0(f) = E(f0), in
particular the invariance from the left, implies that f commutes with Λ.
This shows that A∩D(G) is contained in B, and as A∩D(G) is dense in A
with respect to the L1-norm we are done.

The inclusion A ⊂ B allows us to prove the injectivity of the Harish-
Chandra transform. The results of Section 2 apply in the present situa-
tion. Thus, we know in particular that the canonical map T : L1(G) →
L1(G/N = A) is injective on A. Hence also the composition

H′ := T ◦ r0 : L1(S//K,Ξ(s)ds)→ L1(A)

is injective.
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Definition 4.2. If F : L1(A)→ C∞(Â) denotes the (Euclidean) Fourier
transform then we define H : L1(S//K,Ξ(s)ds)→ C∞(A) by H = F ◦H′ =
F ◦ T ◦ r0.

This is one of the possible descriptions of the Harish-Chandra transform.
The relation to the other possible form (perhaps more traditional, using the
elementary spherical functions ϕλ) is established in [10, p. 107].

Corollary 4.3. The Harish-Chandra transform H : L1(S//K,Ξ(s)ds)
→ C∞(a′) is one to one.

Remark 4.4. It is pretty obvious that L1(S//K, Ξ(s)ds) contains Ha-
rish-Chandra’s Schwartz space C(S//K) (we mean the “classical space” cor-
responding to p = 2, see [10, p. 253]). Originally, Harish-Chandra [12] proved
the injectivity on C(S//K) using discrete series representations. Later, J. Ro-
senberg [30] gave another proof based on results of S. Helgason and R. Gan-
golli [14, 9]. For further results in this direction, also involving Harish-
Chandra’s Schwartz spaces for p 6= 2, see also J.-Ph. Anker [1]. Observe
that our proof uses no particular information on the elementary spherical
functions ϕλ. In fact, they do not appear at all (except for λ = 0). When
I circulated the manuscript [26], some people seemed to be surprised that
I considered H on an L1-space rather than on an L2-space. But as |ϕλ| ≤ Ξ
for all (purely imaginary) λ (see [10, p. 168]), the space L1(S//K,Ξ(s)ds)
appears as a natural candidate for being the domain of H—just as in the
classical Fourier analysis the L1-space is a natural candidate for the domain
of the Fourier transform.

In order to obtain some information on the image of C ⊂ C∗(G) under
the canonical map T we need some facts on root systems. Let v be an
a-invariant complement of the commutator algebra [n, n], n = v ⊕ [n, n].
Assume now that our numbering of the eigenvectors Xk (which fixes the
numbering of the αk’s) has the property that for j ≤ q ≤ r the form αj
appears as an eigenfunctional in v, while for q < j ≤ r it does not. Observe
that this does not mean that Xk (k ≤ q) occurs in v. Among the αk’s
there may be many repetitions, r = dim n is not (in general) the number
of different (positive) roots. Also observe that v is isomorphic to n/[n, n]
as an a-space. Therefore, the eigenfunctionals for the action of a on v are
intrinsically defined. The space v was chosen because we want to use that
n is generated (as a Lie algebra) by v. This is a general fact on nilpotent
Lie algebras, true for any complement of the commutator algebra. For each
k let sk be the reflection corresponding to αk ∼ Hk, that is, sk : a → a is
given by sk(X) = X − 2 〈H,Hk〉

〈Hk,Hk〉Hk. With this notation we have

Lemma 4.5. The Weyl group W of the root system R is generated by sk,
k ≤ q.
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Proof. This is a corollary to some results in Bourbaki [3], or other
sources. As n is generated by v we conclude that each root ak, k > q,
which occurs only in [n, n], is a proper linear combination of the αj ’s,
j ≤ q, with non-negative integral coefficients. According to our choice R+ =
{α1, . . . , αr} of positive roots there is a well-defined “basis” B ⊂ R+. The
above property of the αk’s, k > q, shows (see [3, Ch. VI, 1.6, Corollaire
1, p. 159]) that those roots do not qualify for being members of B, hence
B ⊂ {α1, . . . , αq}. But since the reflections corresponding to B already gen-
erate W (see [3, Ch. VI, 1.5, Théorème 2, Remarque 1, p. 153]), the lemma
follows.

Proposition 4.6. If Λ is a distinguished Laplacian then the image of
C = C(Λ) ⊂ C∗(G) under T is contained in C∗(A)W ∼= C∞(a′)W , where, as
usual, ( )W denotes the elements fixed by the Weyl group W .

Proof. We use the notation introduced before Lemma 4.5. Fix a p ≤ q
for a while. We may assume that the orthonormal basis A1, . . . , A` of a
has the property that αp(Aj) = 0 for j < `. (The operator Λ remains
unchanged after transition to another orthonormal basis.) In particular, A`
is proportional to Hp. Further, we choose an a-invariant one-codimensional
subspace np of n, containing [n, n], such that the action of a on n/np = RY
is given by

[H,Y ] = αp(H)Y.

Let Gp = G/Np = An (N/Np) with Lie algebra gp = a n (n/np). The image
of Λ under the quotient map g→ gp is just

Λp := A2
1 + · · ·+A2

` + Y 2

if Y is properly normalized. Further, by integration over N/Np, there is a
morphism Tp : L1(Gp)→ L1(A). The map T is the composition of the canon-
ical map L1(G)→ L1(Gp) with Tp (if Haar measures are properly adapted).
These maps have C∗-analogues, and we conclude that T (C(Λ)) is contained
in Tp(C(Λp)) ⊂ C∗(A). Using the results of [27] on the (ax+b)-group we are
going to show that Tp(C(Λp)) consists of those elements in C∗(A) which are
fixed by the reflection sp. This is merely a matter of pure formalism. Write
a = e⊕ d with e = LR(A1, . . . , A`−1) and d = RA`. Then gp = e⊕ (d n RY )
and Gp = E × (D n R), whence C∗(G) is the C∗-tensor product of C∗(E)
with C∗(DnR), which can be identified with C∞(Ê, C∗(DnR)) via Fourier
transform with respect to E. Since A1, . . . , A`−1 play no role when consid-
ering the commutant, under the above identification C(Λp) corresponds to
C∞(Ê,C(Λ′p)) with Λ′p = A2

` + Y 2 ∈ U(d n RY ). Consistently, we denote
the canonical map C∗(D n R) → C∗(D) by T ′p. Further, we denote by FE ,
FA, FD the Euclidean Fourier transforms with respect to the corresponding
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variables. Then we have the diagram

C∗(Gp = E × (D n R))

Tp

��

FE // C∞(Ê, C∗(D n R)) ⊃ C∞(Ê,C(Λ′p))

Id⊗T ′p
��

C∗(A)

FA

��

C∞(Ê, C∗(D))

Id⊗FD

��

C∞(Â) C∞(Ê, C∞(D̂)) = C∞(Ê × D̂)

which is commutative when completed by the obvious identification of the
spaces in the last line. By [27, Theorem 5.7], FD ◦T ′p maps C(Λ′p) isomorphi-
cally onto the even functions in C∞(D̂). By what we have seen earlier this im-
plies that FA◦Tp maps C(Λp) onto the functions fixed by sp. But since (FA◦
T )(C(Λ)) is contained in (FA ◦Tp)(C(Λp)), we conclude that all members of
(FA ◦ T )(C(Λ)) are fixed by all sp, p ≤ q. Using Lemma 4.5 we are done.

In order to obtain further information on C (and later on A and B) we
have to use more substantial results from the theory of spherical functions.

Proposition 4.7. If Λ is a distinguished Laplacian then T : C∗(G) →
C∗(A) induces an isomorphism from C(Λ) onto C∗(A)W . The intersection
A ∩ C∞c (G) is C∗-dense in C(Λ).

Proof. By an older result of S. Helgason, [14], T maps A ∩ C∞c (G)
onto C∞c (A)W . (In Helgason’s paper an additional assumption was imposed,
which was removed later. In fact, the above mentioned result is well estab-
lished, and much more is known, in particular on extensions of this result to
Schwartz spaces, which will be used below. The point is that it is just this
result which helps at the moment.) As D(A)W is C∗-dense in C∗(A)W , it
follows that C∗(A)W is contained in T (C(Λ)). In view of our earlier results
the statements of the proposition are now clear.

Theorem 4.8. If Λ is a distinguished Laplacian then A = B(Λ), and this
algebra is C∗-dense in C(Λ). In particular, B(Λ) is isometrically isomorphic
to L1(S//K,Ξ(s)ds).

Proof. Recall (Lemma 3.1) that r0 induces an isometry fromL2(S//K, ds)
onto a closed subspace H of L2(G). Since L2(S//K, ds) is invariant under
convolution with Cc(S//K), and since r0 is multiplicative on K-biinvariant
functions, it follows that λ(A∩Cc(G))(H) is contained in H, where λ denotes
the left regular representation on L2(G). Using Proposition 4.7 we see that H
is invariant under λ(C(Λ)) and, a fortiori, under λ(B(Λ)), that is, B∗H ⊂ H.
Let b ∈ B be a fixed element, and ϕ be any element in Cc(G)∩A = Cc ∩H.
Then b∗ϕ is in H∩C(G)∩L1(G). Hence E0(b∗ϕ) is a well defined (continuous)
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function in L2(S//K). As b ∗ ϕ ∈ L1(G) it follows that E0(b ∗ ϕ) is in
L1(S//K,Ξ(s)ds), hence b ∗ ϕ ∈ A. But there exists a sequence (ϕj) in
A∩Cc(G) which is a bounded approximate identity for L1(G). As b∗ϕj ∈ A
and A is closed it follows that b is in A.

Now we consider some properties of the commutative Banach ∗-algebra
A = B(Λ). The Gelfand space of A was also determined in [11].

Theorem 4.9. The Gelfand space of B(Λ) is homeomorphic to the orbit
space Â/W . Moreover, B(Λ) is symmetric and completely regular in the
sense of [29], and it is a Wiener algebra in the sense of [28], that is, the
ideal of all elements in B(Λ) with compactly supported Gelfand transform
is dense in B(Λ).

Proof. For the following see [10, in particular Theorem 6.4.1, p. 273]. If
again F : L1(A) → C∞(Â) denotes the Fourier transform then (F ◦ T )(A)
contains S(Â)W , the Schwartz functions fixed byW . The preimage of S(Â)W

is just r0(C(S//K)), where, as in Remark 4.4, C(S//K) denotes Harish-
Chandra’s Schwartz space. The inverse of F ◦ T provides a continuous mul-
tiplicative map K : S(Â)W → A with dense image (where S(Â) is endowed
with the pointwise operations and the usual Schwartz topology).

Now, if χ : A→ C is a (continuous) multiplicative linear functional then
composing with the above map K : S(Â)W → A yields a continuous mul-
tiplicative functional χ̃ : S(Â)W → C. The topological algebra S(Â)W is a
standard function algebra with the Wiener property which implies that χ̃ is
point evaluation. (For all this see [28, pp. 18–22, in particular 2.4 on p. 22].)
The density of r0(C(S//K)) in A shows that χ is what it should be: there
is a point η (only determined up to W -conjugation) in Â such that χ(f) =
((F ◦ T )(f))(η) for all f ∈ A. In particular, A is symmetric. As already ob-
served, the image of the Gelfand transform contains sufficiently many func-
tions (namely S(Â)W ), which guarantees complete regularity. As C∞c (Â)W

is dense in S(Â)W , the Wiener property is an immediate consequence.

Remark 4.10. We have seen that B(Λ) is a symmetric subalgebra of
L1(G). In the case of the (ax + b)-group such a situation was studied by
A. Hulanicki [18] already in 1976. It should be noticed that in many cases
the ambient algebra L1(G) is not symmetric. In fact, as was observed by
T. Nomura [24], in the present situation L1(G) is not symmetric if S is
simple and dimA > 1, while for dimA = 1 it is symmetric.

Translating back into the semisimple situation, we conclude from Theo-
rem 4.9 that the convolution algebra L1(S//K,Ξ(s)ds) is symmetric while
L1(S//K, ds) is never symmetric as was noticed by J. Jenkins [19]. Observe
en passant that L1(S//K, ds) is a dense subalgebra of L1(S//K,Ξ(s)ds)
because Ξ ≤ 1 being a matrix coefficient.
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5. Concluding remarks. Let us return to the situation studied in
Section 2, G = A n N with a more general action of the vector group A
on the simply connected nilpotent Lie group N . Also in this case the map
T : L1(G) → L1(G/N = A) provides an injection of B(Λ) into L1(A).
Each “root” α for the action of a on n yields a reflection sα on a (or a′,
which is isomorphic to a as we used a basis of a to define Λ, giving a scalar
product on a). Let F be the closure in the orthogonal group of a of the group
generated by the sα, where α is a root of the action of a on n/[n, n]. The
arguments of Section 4, notably the proof of Proposition 4.6, tell us that
T (B(Λ)) is contained in L1(A)F . In our previous considerations we used
results from the theory of spherical functions (and from root systems) in
order to show that the image T (B(Λ)) is sufficiently rich. There is an obvious
question: Are there suitable assumptions which guarantee, for instance, that
T (B(Λ)) contains C∞c (A)F or S(A)F , or that even T (B(Λ)∩C∞c (G)) is equal
to C∞c (A)F ? It seems to me that already the case of n abelian might lead to
some interesting questions. Even if there are no satisfactory results in this
direction one may still ask if B(Λ) is a symmetric (commutative) Banach
algebra.
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