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In memory of Andrzej Hulanicki (1933–2008), a distinguished Polish
mathematician, a guide and a friend, who has left many orphans in

Wroc law and around the world. We miss you.

Abstract. We first establish a geometric Paley–Wiener theorem for the Dunkl trans-
form in the crystallographic case. Next we obtain an optimal bound for the Lp → Lp norm
of Dunkl translations in dimension 1. Finally, we describe more precisely the support of
the distribution associated to Dunkl translations in higher dimension.

1. Introduction. Dunkl theory generalizes classical Fourier analysis
on RN . It started twenty years ago with Dunkl’s seminal work [5] and was
further developed by several mathematicians. See for instance the surveys
[14, 6] and the references cited therein.

In this setting, the Paley–Wiener theorem is known to hold for balls
centered at the origin. In [8], a Paley–Wiener theorem was conjectured for
convex neighborhoods of the origin, which are invariant under the underlying
reflection group, and was partially proved. Our first result in Section 3 is
a proof of this conjecture in the crystallographic case, following the third
approach in [8].

Generalized translations were introduced in [13] and further studied in
[18, 15, 17]. Apart from their abstract definition, we lack precise information,
in particular about their integral representation

(τxf)(y) =
�

RN
f(z) dγx,y(z),

which was conjectured in [13] and established in few cases, for instance in
dimension N = 1 or when f is radial. Our second result in Section 4 is an
optimal bound for the integral
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�

R
| dγx,y(z)|

in dimension N = 1, improving upon earlier results in [12, 17]. Our bound
depends on the multiplicity k ≥ 0 and tends from below to

√
2 as k → +∞.

Our third result in Section 5 deals with the support of the distribution γx,y
in higher dimension, which we determine rather precisely in the crystallo-
graphic case.

2. Background. In this section, we recall some notations and results
in Dunkl theory; for more details we refer to the articles [5, 7] and surveys
[14, 6].

Let G ⊂ O(RN ) be a finite reflection group associated to a reduced root
system R, and k : R → [0,+∞) a G-invariant function (called multiplicity
function). Let R+ be a positive root subsystem, Γ+ the corresponding open
positive chamber, Γ+ its closure, Γ+ =

∑
α∈R+ R+α the dual cone, and

denote by x+ the intersection point of any orbit G.x in RN with Γ+.
The Dunkl operators Tξ on RN are the following k-deformations of the

directional derivatives ∂ξ by difference operators:

Tξf(x) = ∂ξf(x) +
∑
α∈R+

k(α)〈α, ξ〉 f(x)− f(σα. x)
〈α, x〉

,

where

σα. x = x− 〈α, x〉
2|α|2

α

denotes the reflection with respect to the hyperplane orthogonal to α. The
Dunkl operators are skewsymmetric with respect to the measure w(x) dx
with density

w(x) =
∏
α∈R+

|〈α, x〉|2k(α).

The operators ∂ξ and Tξ are intertwined by a Laplace-type operator

(1) V f(x) =
�

RN
f(y) dµx(y)

associated to a family of compactly supported probability measures
{µx | x ∈ RN}. Specifically, µx is supported in the convex hull

Cx = co(G.x).

For every λ ∈ CN , the simultaneous eigenfunction problem

Tξf = 〈λ, ξ〉f ∀ξ ∈ RN
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has a unique solution f(x) = E(λ, x) such that E(λ, 0) = 1, which is given
by

(2) E(λ, x) = V (e〈λ,·〉)(x) =
�

RN
e〈λ,y〉 dµx(y) ∀x ∈ RN .

Furthermore, λ 7→ E(λ, x) extends to a holomorphic function on CN and
the following estimate holds:

|E(λ, x)| ≤ e〈(Reλ)+, x+〉 ∀λ ∈ CN , ∀x ∈ RN .

In dimension N = 1, these functions can be expressed in terms of Bessel
functions. Specifically,

E(λ, x) = jk−1/2(λx) +
λx

2k + 1
jk+1/2(λx),

where

jν(z) = Γ (ν + 1)
+∞∑
n=0

(−1)n

n!Γ (ν + n+ 1)

(
z

2

)2n

are normalized Bessel functions.
The Dunkl transform is defined on L1(RN , w(x)dx) by

Df(ξ) =
1
c

�

RN
f(x)E(−iξ, x)w(x) dx,

where
c =

�

RN
e−|x|

2/2w(x) dx.

We list some known properties of this transform:

(i) The Dunkl transform is a topological automorphism of the Schwartz
space S(RN ).

(ii) (Plancherel Theorem) The Dunkl transform extends to an isometric
automorphism of L2(RN , w(x)dx).

(iii) (Inversion formula) For every f ∈ S(RN ), and more generally for
every f ∈ L1(RN , w(x)dx) such that Df ∈ L1(RN , w(ξ)dξ), we have

f(x) = D2f(−x) ∀x ∈ RN .

(iv) (Paley–Wiener theorem) The Dunkl transform is a linear isomor-
phism between the space of smooth functions f on RN with supp f
⊂ B(0, R) and the space of entire functions h on CN such that

(3) sup
ξ∈CN

(1 + |ξ|)Me−R|Im ξ| |h(ξ)| < +∞ ∀M ∈ N.
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3. A geometric Paley–Wiener theorem. In this section, we prove
a geometric version of the Paley–Wiener theorem, which was looked for
in [8, 18, 9], under the assumption that G is crystallographic. The proof
consists merely in resuming the third approach in [8] and applying it to the
convex sets considered in [1, 2, 3, 4] instead of the convex sets considered
in [10]. Recall that the second family consists of the convex hulls

CΛ = co(G.Λ)

of G-orbits G.Λ in RN , while the first family consists of the polar sets

CΛ = {x ∈ RN | 〈x, g.Λ〉 ≤ 1 ∀g ∈ G}.

Λ
Λ

Fig. 1. The sets CΛ and CΛ for the root system A1 ×A1

Λ Λ

Fig. 2. The sets CΛ and CΛ for the root system B2

Before stating the geometric Paley–Wiener theorem, let us make some
remarks about the sets CΛ and CΛ. Firstly, they are convex, closed, G-
invariant and the following inclusion holds:

CΛ ⊂ |Λ|2CΛ.
Secondly, we may always assume that Λ = Λ+ belongs to the closed positive
chamber Γ+ and, in this case, we have

CΛ ∩ Γ+ = Γ+ ∩ (Λ− Γ+), CΛ ∩ Γ+ = {x ∈ Γ+ | 〈Λ, x〉 ≤ 1}.
Thirdly, on one hand, every G-invariant convex subset in RN is a union of
sets CΛ while, on the other hand, every G-invariant closed convex subset in
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RN is an intersection of sets CΛ. For instance,

B(0, R) =
⋃
|Λ|=R

CΛ =
⋂

|Λ|=R−1

CΛ.

Fourthly, we shall say that Λ ∈ Γ+ is admissible if the following equivalent
conditions are satisfied:

(i) Λ has nonzero projections in each irreducible component of (RN , R),
(ii) CΛ is a neighborhood of the origin,

(iii) CΛ is bounded.

In this case, we may consider the gauge

χΛ(ξ) = max
x∈CΛ

〈x, ξ〉 = min{r ∈ [0,+∞) | ξ ∈ rCΛ}

on RN .

Theorem 3.1. Assume that Λ ∈ Γ+ is admissible. Then the Dunkl
transform is a linear isomorphism between the space of smooth functions
f on RN with supp f ⊂ CΛ and the space of entire functions h on CN such
that

(4) sup
ξ∈CN

(1 + |ξ|)Me−χΛ(Im ξ)|h(ξ)| < +∞ ∀M ∈ N.

Proof. Following [8], this theorem is first proved in the trigonometric
case, which explains the restriction to crystallographic groups, and next
obtained in the rational case by passing to the limit. The proof in the
trigonometric case is similar to the proof of the Paley–Wiener Theorem
in [10, 11], and actually to the initial proof of Helgason for the spherical
Fourier transform on symmetric spaces of the noncompact type. This was
already observed in [16] and will be developed below for the reader’s conve-
nience. The limiting procedure is described thoroughly in [8] and needs no
further explanation.

Thus assume that h is an entire function on CN satisfying (4) and, by
resuming the proof of [10, Theorem 8.6(2)], let us show that its inverse
Cherednik transform

(5) f(x) = const ·
�

RN
h(ξ)Ẽ(iξ, x)w̃(ξ) dξ

vanishes outside CΛ. Firstly, one may restrict by G-equivariance to x =
g0.x+, where x+ ∈ Γ+ rCΛ and g0 denotes the longest element in G, which
interchanges the chambers Γ+ and −Γ+. Secondly, by expanding{ ∏

α∈R+

(〈α̌, ξ〉 − kα)
}
Ẽ(ξ, x) =

∑
g∈G

∑
q∈Q+

c(−g.ξ)Ẽq(g, g.ξ)e〈g.ξ+%+q,x〉
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(5) becomes

f(x) = const ·
∑
g∈G

det g
∑
q∈Q+

fg,q(x)e〈%+q,x〉,

where

(6) fg,q(x) =
�

RN
h(g−1.ξ)Ẽq(g, iξ)ei〈ξ,x〉

{ ∏
α∈R+

Γ (i〈α̌, ξ〉+ kα)
Γ (i〈α̌, ξ〉+ 1)

}
dξ.

Thirdly, one shows that all expressions (6) vanish, by shifting the contour
of integration from RN to RN + itg0.Λ with t > 0, which produces an
exponential factor e−ct with c = 〈Λ, x+〉 − 1 > 0, and by letting t→ +∞.

Since every G-invariant convex compact neighborhood of the origin in
RN is the intersection of admissible sets CΛ, Theorem 3.1 generalizes as
follows.

Corollary 3.2 (Geometric Paley–Wiener Theorem). Let C be a G-
invariant convex compact neighborhood of the origin in RN and χ(ξ) =
maxx∈C〈x, ξ〉 the dual gauge. Then the Dunkl transform is a linear iso-
morphism between the space C∞C (RN ) of smooth functions f on RN with
supp f ⊂ C and the space Hχ(CN ) of entire functions h on CN such that

sup
ξ∈CN

(1 + |ξ|)Me−χ(Im ξ)|h(ξ)| < +∞ ∀M ∈ N.

Remark 3.3. Notice that the Dunkl transform D always maps C∞C (RN )
intoHχ(CN ) and that the assumption that G is crystallographic is only used
to prove that D is onto.

4. Lp bounds for generalized translations in dimension 1. Dunkl
translations are defined on S(RN ) by

(τxf)(y) =
1
c

�

RN
Df(ξ)E(iξ, x)E(iξ, y)w(ξ) dξ ∀x, y ∈ RN .

They have an explicit integral representation [12] in dimension N = 1:

(τxf)(y) =
�

R
f(z) dγx,y(z),

where

(7) dγx,y(z) =


γ(x, y, z)|z|2k dz if x, y ∈ R∗,
dδy(z) if x = 0,
dδx(z) if y = 0,
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is a signed measure such that
	
R dγx,y(z) = 1. Specifically,

γ(x, y, z) = dσ(x, y, z)ρ(|x|, |y|, |z|)1I|x|,|y|(|z|) ∀x, y, z ∈ R∗,

where

d =
Γ (k + 1/2)√

πΓ (k)
,

σ(x, y, z) = 1− x2 + y2 − z2

2xy
+
z2 + y2 − x2

2zy
+
x2 + z2 − y2

2xz

=
(z + x+ y)(z + x− y)(z − x+ y)

2xyz
∀x, y, z ∈ R∗,

ρ(a, b, c) =
{c2 − (a− b)2}k−1{(a+ b)2 − c2}k−1

(2abc)2k−1

=
(2b2c2 + 2a2c2 + 2a2b2 − a4 − b4 − c4)k−1

(2abc)2k−1
∀a, b, c > 0,

and Ia,b denotes the interval [|a− b|, a+ b]. Notice the symmetries

(8) γ(x, y, z) =


γ(y, x, z),
γ(−x,−y,−z),
γ(−z, y,−x) = γ(x,−z,−y).

Proposition 4.1. The following inequality holds, for every x, y ∈ R:

(9)
�

R
|dγx,y(z)| ≤ Ak =

√
2

{Γ (k + 1/2)}2

Γ (k + 1/4)Γ (k + 3/4)
.

Actually there is equality if x = y ∈ R∗. Moreover Ak
<→
√

2 as k → +∞.

Remark 4.2. This result improves earlier bounds obtained in [12] and
[17], which were respectively 4 and 3.

Proof. Let x, y ∈ R∗.

Case 1: xy < 0. Then
∣∣|x| − |y|∣∣ = |x+ y| and |x|+ |y| = |x− y|, hence

σ(x, y, z)1I|x|,|y|(|z|) =
z + x+ y

z

(x− y)2 − z2

−2xy
1I|x|,|y|(|z|)

and γx,y are positive. Thus
�

R
|dγx,y(z)| =

�

R
dγx,y(z) = 1.
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Case 2: xy > 0. By symmetry, we may reduce to 0 < x ≤ y. Then

�

R
|dγx,y(z)| =

0�

−∞
|dγx,y(z)|+

+∞�

0

|dγx,y(z)|

= 2d
y+x�

y−x

x+ y

2xyz

(
z2 − x2 − y2 + 2xy

2xyz

)k (x2 + y2 + 2xy − z2

2xyz

)k−1

z2k dz.

After performing the change of variables z =
√
x2 + y2 − 2xy cos θ and set-

ting y = sx, we get

(10)
�

R
|dγx,y(z)| =

Γ (k + 1/2)√
πΓ (k)

(1 + s)
π�

0

(1− cos θ) sin2k−1 θ√
1 + s2 − 2s cos θ

dθ.

Denote by F (s) the right hand side of (10). Since

F ′(s) =
Γ (k + 1/2)√

πΓ (k)
(1− s)

π�

0

sin2k+1 θ

(1 + s2 − 2s cos θ)3/2
dθ

is nonpositive, F (s) is a decreasing function on [1,+∞), which reaches its
maximum at s = 1. Let us compute it:

Ak = F (1) =
√

2Γ (k + 1/2)√
π Γ (k)

π�

0

(1− cos θ)k−1/2(1 + cos θ)k−1 sin θ dθ

= 22k Γ (k + 1/2)√
πΓ (k)

1�

0

tk−1/2(1− t)k−1 dt

= 22k Γ (k + 1/2)√
πΓ (k)

B(k + 1/2, k) = 22k {Γ (k + 1/2)}2√
πΓ (2k + 1/2)

=
√

2
Γ (k + 1/2)
Γ (k + 1/4)

Γ (k + 1/2)
Γ (k + 3/4)

,

after performing the change of variables t = (1− cos θ)/2 and using standard
properties of the beta and gamma functions.

Finally, let us show that Ak
<→
√

2 as k → +∞. Write

Ak =
√

2
G(k + 1/4)
G(k + 1/2)

, where G(u) =
Γ (u+ 1/4)

Γ (u)
∀u > 0.

Since the logarithmic derivative Γ ′/Γ is a strictly increasing analytic func-
tion on (0,+∞), the logarithmic derivative

G′(u)
G(u)

=
Γ ′(u+ 1/4)
Γ (u+ 1/4)

− Γ ′(u)
Γ (u)

is positive. Hence G is strictly increasing and Ak <
√

2. On the other hand,
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using Stirling’s formula

Γ (u) ∼
√

2π uu−1/2e−u as u→ +∞,
we get G(k + 1/4) ∼ G(k + 1/2), hence Ak →

√
2 as k → +∞.

As a first consequence, we obtain the L1 → L1 operator norm of Dunkl
translations in dimension N = 1.

Corollary 4.3. Let x ∈ R∗. Then τx is a bounded operator on
L1(R, |x|2kdx), with ‖τx‖L1→L1 = Ak.

Proof. The inequality ‖τx‖L1→L1≤Ak follows from (9), together with (8),
and it remains to prove the reverse inequality. By symmetry, we may assume
that x > 0. Since

Ak = lim
y→x

�

R
|γ(x, y, z)| |z|2k dz,

for every 0 < ε < Ak there exists 0 < η < x such that, for every y ∈
[x− η, x+ η],

(11)
�

R
|γ(x, y, z)| |z|2k dz > Ak − ε.

Let f be a nonnegative measurable function on R such that

supp f ⊂ [−x− η,−x+ η] and ‖f‖L1 =
�

R
f(z)|z|2k dz = 1.

Since {
γ(x, y, z) ≥ 0 ∀y < 0, ∀z < 0,
γ(x, y, z) ≤ 0 ∀y > 0, ∀z < 0,

we have

|(τxf)(y)| =
−x+η�

−x−η
f(z)|γ(x, y, z)| |z|2k dz.

Hence, using (8) and (11), we find that

‖τxf‖L1 =
�

R
|(τxf)(y)| |y|2k dy

=
−x+η�

−x−η

{�
R
|γ(x,−z,−y)| |y|2k dy

}
f(z)|z|2k dz

is bounded from below by Ak − ε. Consequently, ‖τx‖L1→L1 ≥ Ak − ε and
we conclude by letting ε→ 0.

Let us next compute the L2 → L2 operator norm of Dunkl translations.

Lemma 4.4. Let x ∈ R. Then τx is a bounded operator on L2(R, |x|2kdx),
with ‖τx‖L2→L2 = 1.
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Proof. The proof is straightforward, via the Plancherel formula, and gen-
eralizes to higher dimensions. On one hand, the inequality ‖τx‖L2→L2 ≤ 1
follows from the estimate |E(iξ, x)| ≤ 1. On the other hand, let

fε(x) = εk+1/2f(εx)

be a rescaled normalized function in L2(R, |x|2kdx). Then

‖fε‖L2 = ‖f‖L2 = 1

while

‖τxfε‖2L2 =
�

R
|E(iξ, x)|2ε−2k−1|Df(ε−1ξ)|2 |ξ|2k dξ

=
�

R
|E(iεξ, x)|2 |Df(ξ)|2|ξ|2k dξ

tends to �

R
|Df(ξ)|2|ξ|2k dξ = ‖f‖2L2 = 1

as ε→ 0. This concludes the proof of the lemma.

Eventually, Corollary 4.3 and Lemma 4.4 imply the following result, by
interpolation and duality.

Corollary 4.5. Let x ∈ R and 1 ≤ p ≤ ∞. Then τx is a bounded
operator on Lp(R, |x|2kdx), with ‖τx‖Lp→Lp ≤ A2|1/p−1/2|

k .

Remark 4.6. In the product case, where G = ZN2 acts on RN , we have

‖τx‖Lp→Lp ≤ A2|1/p−1/2|N
k

for every x ∈ RN and 1 ≤ p ≤ ∞.

5. A support theorem for generalized translations. As mentioned
in the introduction, we lack information about Dunkl translations in general.
In this section, we locate more precisely the support of the distribution

〈γx,y, f〉 = (τxf)(y),

which is known [18] to be contained in the closed ball of radius |x|+ |y|.
Theorem 5.1.

(i) The distribution γx,y is supported in the spherical shell{
z ∈ RN

∣∣ ∣∣|x| − |y|∣∣ ≤ |z| ≤ |x|+ |y|}.
(ii) If G is crystallographic, then the support of γx,y is contained in

{z ∈ RN | z+ 4 x+ + y+, z+ < y+ + g0.x+ and z+ < x+ + g0.y+}.
Here 4 denotes the partial order on RN associated to the cone Γ+ :
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a 4 b ⇔ b− a ∈ Γ+,

and g0 is the longest element in G, which interchanges the chambers Γ+

and −Γ+.

x+ y

x− y

Fig. 3. Support of γx,y for the root system A1 ×A1

x+ y

x− y

Fig. 4. Support of γx,y for the root system B2

Proof. Let h ∈ C∞c (RN ) be an auxiliary radial function such that
�

RN
h(x)w(x) dx = 1

and supph ⊂ − co(G.u), where u ∈ Γ+ is a unit vector. For every ε > 0 and
x, y, z ∈ RN , set
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γε(x, y, z) =
1
c2

�

RN
Dh(εξ)E(iξ, x)E(iξ, y)Ek(−iξ, z)w(ξ) dξ.

Firstly, according to (3) and (2),

ξ 7→ Dh(εξ)E(iξ, x)E(iξ, y)

is an entire function on CN satisfying

(12) |Dh(εξ)E(iξ, x)E(iξ, y)| ≤ CM (1 + |ξ|)−Me−〈g0.(x++y++εu),(Im ξ)+〉.

Secondly,

〈γx,y, f〉 =
1
c

�

RN
Df(ξ)E(iξ, x)E(iξ, y)w(ξ) dξ

= lim
ε→0

1
c

�

RN
Dh(εξ)Df(ξ)E(iξ, x)E(iξ, y)w(ξ) dξ

= lim
ε→0

�

RN
f(z)γε(x, y, z)w(z) dz,

i.e. the distribution γx,y is the weak limit of the measures γε(x, y, z)w(z) dz.
Thirdly, notice the symmetries

(13) γε(x, y, z) =


γε(y, x, z),
γε(g.x, g.y, g.z) ∀g ∈ G ∪ {−Id},
γε(−z, y,−x) = γε(x,−z,−y).

If G is crystallogaphic, we use Corollary 3.2 (actually the third version
of the Paley–Wiener theorem in [8]), and deduce from (12) that the function
z 7→ γε(x, y, z) is supported in

co{G.(x+ + y+ + εu)} = co(G.x) + co(G.y) + ε co(G.u).

Equivalently,
γε(x, y, z) 6= 0 ⇒ z+ ≺ x+ + y+ + εu.

Using the symmetries (13), we see that γε(x, y, z) 6= 0 implies also{−g0.x+ ≺ −g0.z+ + y+ + εu, i.e. z+ � x+ + g0.y+ + εg0.u,

−g0.y+ ≺ −g0.z+ + x+ + εu, i.e. z+ � g0.x+ + y+ + εg0.u.

The conclusion of Theorem 5.1 in the crystallographic case is obtained by
letting ε→ 0.

If G is not crystallographic, we can only use the spherical Paley–Wiener
theorem and we deduce this way that γε(x, y, z) 6= 0 implies

|z| ≤ |x|+ |y|+ ε,

|x| ≤ |z|+ |y|+ ε,

|y| ≤ |x|+ |z|+ ε,
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hence ∣∣|x| − |y|∣∣− ε ≤ |z| ≤ |x|+ |y|+ ε.

We conclude again by letting ε→ 0.
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Bâtiment de Mathématiques, B.P. 6759
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