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Abstract. We just published a paper showing that the properties of the shift invari-
ant spaces, 〈f〉, generated by the translates by Zn of an f in L2(Rn) correspond to the

properties of the spaces L2(Tn, p), where the weight p equals [f̂ , f̂ ]. This correspondence
helps us produce many new properties of the spaces 〈f〉. In this paper we extend this
method to the case where the role of Zn is taken over by locally compact abelian groups
G, L2(Rn) is replaced by a separable Hilbert space on which a unitary representation of

G acts, and the role of L2(Tn, p) is assumed by a weighted space L2( bG, w), where bG is the
dual group of G. This provides many different extensions of the theory of wavelets and
related methods for carrying out signal analysis.

Professor Hulanicki was a very dear friend. He was also a very good
mathematician who helped me by sending several young people to work
with me either as PhD students or post doctoral fellows. His work and all
he has done to Polish mathematics has left a very special place in my heart
for him and for the mathematical school he created. I miss him very much
and am very happy to be a part of this volume dedicated to him.

Guido L. Weiss

1. Introduction. Suppose H is a Hilbert space and T : g 7→ Tg is a
strongly continuous representation of a topological group G acting on H by
bounded linear operators on H. For short, we say that T is a representation
of G on H. If ψ ∈ H, the T -cyclic subspace 〈ψ〉T is the closure in H of
the linear subspace spanned by {Tgψ : g ∈ G}. For the special case H =
L2(Rn), G = Zn and (Tkψ)(x) = ψ(x + k), k ∈ Zn, 〈ψ〉T is often called
the principal shift invariant subspace generated by ψ. These spaces play an
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important role in wavelet theory. In this case let

pψ(ξ) =
∑
j∈Zn
|ψ̂(ξ + j)|2, where ψ̂(ξ) =

�

Rn
ψ(x)e−2πiξ·x dx

is the Fourier transform of ψ. It is well known ([9]) that ϕ ∈ 〈ψ〉T if and
only if ϕ̂ = mψ̂, where m is a Zn-periodic function satisfying

(1.1) ‖ϕ‖2L2(Rn) =
�

[0,1)n

|m(ξ)|2pψ(ξ) dξ <∞.

It is not hard to see that the map Jψ : L2([0, 1)n, pψ) → L2(Rn), where
Jψm = (mψ̂)∨, is an isometry onto 〈ψ〉T . Let ek(ξ) = e2πik·ξ, k ∈ Zn,
ξ ∈ Tn = [0, 1)n. Then Jψek = Tkψ since the Fourier transform of translation
by k is multiplication by ek. The isometry Jψ that gives us the correspodence
between the exponential system {ek : k ∈ Zn} and the generating system
B = {Tkψ : k ∈ Zn} of 〈ψ〉T allows us to show that each property of 〈ψ〉T (or
of B) corresponds to properties of the weight pψ (or the space L2(Tn, pψ)).
In many cases this is easily seen to be true; for example, it is clear that
B is an orthonormal basis of 〈ψ〉T if and only if pψ(ξ) = 1 a.e. There are,
however, surprising results that are definitely not obvious. The result of
Nielsen and Šikić ([15], [16]) is a good example: The system B is a Schauder
basis if and only if pψ is an A2 weight (in the sense of Hunt, Muckenhoupt
and Wheeden).

The goal of this article is to extend these results to considerably more
general situations. For a better understanding of this we briefly describe a
more immediate extension of the results we just mentioned involving 〈ψ〉T
and L2(Tn, pψ). We replace Zn by G = Zn × Zn and consider the repre-
sentation (k, l) 7→ (TkMlψ)(x) ≡ e2πil·xψ(x + k) of G acting on L2(Rn).
The role of the Fourier transform is assumed by the Zak transform Z. Let
(x, ξ) ∈ Tn × Tn and

(1.2) (Zψ)(x, ξ) =
∑
l∈Zn

ψ(x+ l)e2πil·ξ ≡ ϕ(x, ξ)

for ψ ∈ L2(Rn). It is not hard to see that Z is an isometry from L2(Rn)
onto L2(Tn × Tn):

�

Tn×Tn
|ϕ(t, ξ)|2 dt dξ =

�

Tn×Tn
|(Zψ)(t, ξ)|2 dt dξ =

�

Rn
|ψ(t)|2 dt

(see [4]). We replace the system of translates B = {Tkψ : k ∈ Zn} by the
system B̃ = {TkMlψ : (k, l) ∈ G}. This is an example of a Gabor system
in L2(Rn). The weight pψ on Tn is replaced by qψ(t, ξ) ≡ |(Zψ)(t, ξ)|2,
(t, ξ) ∈ Tn×Tn. The T -cyclic space 〈ψ〉T is replaced by 〈ψ〉T,M, the closure
in L2(Rn) of the span of B̃. One can again show that the properties of
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B̃ correspond to properties of the weight qψ. Again this follows from an
isometry between 〈ψ〉T,M and L2(Tn × Tn, qψ) and the correspondence, via
this isometry, between the system B̃ and the system {e2πikxe2πilξ : (k, l)∈G}.
Some of these results can be found in the work of Heil and Powell ([7])
(we will be more explicit about this later). We will also discuss further
the relation between these two examples as well as derive the following
relationship between the two weights pψ and qψ,

(1.3) pψ(ξ) =
�

Tn
qψ(x, ξ) dx.

As we indicated above, this paper is devoted to the fact that these re-
sults are particular cases of a more general theory involving representations
of LCA groups. In order to explain this we need to establish appropriate
notation, some definitions and other examples. We begin doing this in the
second section.

2. Locally compact abelian (LCA) groups and their duals. For
G an LCA group, a character of G is a continuous homomorphism from G
into the multiplicative abelian group {z ∈ C : |z| = 1}. For simplicity we
restrict our attention to separable LCA groups G and we write the group
operation additively. For example, if G = Rn, each character of G has the
form x 7→ eξ(x) = e2πiξ·x for a unique ξ ∈ Rn; if G = Zn each character
has the form eξ(k) = e2πiξ·k for a unique ξ ∈ Rn/Zn = Tn. In each of these
two cases there is a natural duality: in the first case, the element ξ is also a
member of an LCA group which we denote by R̂n (here R̂n is also Rn) and
each x ∈ Rn corresponds to a homomorphism

ξ 7→ ex(ξ) = e2πix·ξ.

In the second case, ξ is also a member of the LCA group Tn and each
k ∈ Zn corresponds to a homomorphism ξ 7→ ek(ξ) = e2πik·ξ of Tn into
{z ∈ C : |z| = 1}.

Motivated by these two examples, we will consider the dual group Ĝ of an
LCA group G to be an LCA group together with a continuous bi-additive
map (ξ, x) 7→ 〈ξ, x〉 ∈ T = R/Z, where (ξ, x) ∈ Ĝ × G, such that every
character of G is of the form eξ(x) = e2πi〈ξ,x〉 for a unique ξ ∈ Ĝ; vice versa,
every character of Ĝ is of the form ex(ξ) (= eξ(x)) = e2πi〈ξ,x〉 for a unique
x ∈ G. It is easy to see that choices for Ĝ exist and any two choices are
canonically isomorphic.

As is well known (see [2] or [17]), any two Haar measures (translation
invariant Borel measures) differ by a positive scalar and, for each choice of a
Haar measure dg on G, there is a unique Haar measure, dξ, on Ĝ for which
the Fourier transform
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(2.1) FG : f 7→ f̂(ξ) =
�

G

f(g)e−ξ(g) dg

is a unitary operator from L2(G, dg) onto L2(Ĝ, dξ).
Fix an LCA group G and let T be a unitary representation of G on H

with inner product 〈 , 〉. Thus, Tg is a unitary operator on H for each g ∈ G
and the bounded functions g 7→ 〈ϕ, Tgψ〉, ϕ,ψ ∈ H, are continuous. We say
that T is dual integrable if and only if there exist a Haar measure dξ on Ĝ
and a function [· , ·]T : H×H→ L1(Ĝ, dξ), called the bracket function for T ,
such that

(2.2) 〈ϕ, Tgψ〉 =
�

bG
[ϕ,ψ]T (ξ)e−g(ξ) dξ for all g ∈ G and ϕ,ψ ∈ H.

Examples. The modulation representation g 7→ Mg of G, acting on
H = L2(Ĝ, dξ), is defined by (Mgϕ)(ξ) = eg(ξ)ϕ(ξ). This representation is
trivially dual integrable when we use [ϕ,ψ]M(ξ) = ϕ(ξ)ψ(ξ):

(2.3)
�

bG
[ϕ,ψ]M(ξ)e−g(ξ) dξ =

�

bG
ϕ(ξ) (Mgψ)(ξ) dξ = 〈ϕ,Mgψ〉.

The regular representation R of G acting on H = L2(G, dg) is defined by

(Rgf)(x) = f(g + x).

Clearly (Rgf)∧ = Mgf̂ . It follows that Rg is unitarily equivalent to Mg

via the Fourier transform FG (defined by (2.1)). Consequently, R is dual
integrable with [f1, f2]R = [f̂1, f̂2]M.

Remark. Dual integrability is a property of equivalence classes of uni-
tary representations in the sense that, if T is a unitary representation of G
on H and T is equivalent to a unitary representation T ′ on H′ via a unitary
operator U : H → H′ (that is, UTg = T ′gU for all g ∈ G), then T ′ is dual
integrable with [Uϕ,Uψ]T ′ = [ϕ,ψ]T .

The following well known result and the corollaries that follow it are
important to us since they will be used in §3 to establish properties of dual
integrable representations. The next result is known as Stone’s theorem (see
[13, p. 147]).

Theorem (2.4). Let T be a unitary representation of an LCA group G
on a Hilbert space H.

(i) There exists a Borel measure P on Ĝ with values in {E : E a self-
adjoint projection operator on H} such that

Tg =
�

bG
eg(ξ) dP (ξ) for all g ∈ G.
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(ii) For each ϕ,ψ ∈ H, part (i) allows us to define a C-valued Borel
measure µϕ,ψ by letting

µϕ,ψ(S) = 〈P (S)ϕ,ψ〉 = 〈ϕ, P (S)ψ〉 = 〈P (S)ϕ, P (S)ψ〉.

It follows that

〈T−gϕ,ψ〉 = 〈ϕ, Tgψ〉 =
�

bG
eg(ξ) dµϕ,ψ(ξ) for all g ∈ G.

Corollary (2.5). Let T be a unitary representation of an LCA group G
acting on a Hilbert space H. The following are equivalent:

(i) T is dual integrable.
(ii) For each ϕ,ψ ∈ H the measure µϕ,ψ (defined in Theorem (2.4)) is

absolutely continuous with respect to dξ.

In this situation, the bracket [ϕ,ψ]T is the Radon–Nikodym derivative dµϕ,ψ
dξ .

Proof. (ii)⇒(i). If µϕ,ψ is absolutely continuous with respect to dξ, we
write dµϕ,ψ(ξ) = [ϕ,ψ]T (ξ) dξ. The result now follows from part (ii) of
Theorem (2.4).

(i)⇒(ii). Let dνϕ,ψ(ξ) = dµϕ,ψ(ξ)− [ϕ,ψ]T (ξ) dξ. It follows that νϕ,ψ is
a bounded Borel measure whose Fourier transform satisfies

F bG(νϕ,ψ)(g) =
�

bG
eg(ξ) dµϕ,ψ(ξ) dξ −

�

bG
eg(ξ) [ϕ,ψ]T (ξ) dξ

= 〈ϕ, Tgψ〉 − 〈ϕ, Tgψ〉 = 0

for all g ∈ G. By the uniqueness theorem for the Fourier transform (see
p. 103 of [2]) we conclude that νϕ,ψ = 0; this shows that µϕ,ψ is absolutely
continuous with respect to dξ.

Corollary (2.6). Suppose T is a dual integrable unitary representation
of an LCA group G on a Hilbert space H. Then [ϕ,ψ]T : H×H→ L1(Ĝ, dξ)
is a sesquilinear hermitian symmetric map having the following properties:

(i) (Positivity) [ϕ,ϕ]T ≥ 0 a.e.
(ii) (Cauchy–Schwarz) |[ϕ,ψ]T | ≤ [ϕ,ϕ]1/2T [ψ,ψ]1/2T a.e.

(iii) ‖[ϕ,ψ]T ‖L1( bG)
≤ ‖ϕ‖H‖ψ‖H for all ϕ,ψ ∈ H.

Proof. For each measurable S ⊂ Ĝ, µϕ,ψ(S) is linear in ϕ, conjugate
linear in ψ and µϕ,ψ(S) = µψ,ϕ(S). It follows that [ϕ,ψ]T has the same
properties.

To prove (i) observe that µϕ,ϕ(S) = 〈P (S)ϕ, P (S)ϕ〉 = ‖P (S)ϕ‖2 ≥ 0
by Theorem (2.4)(ii). Thus, [ϕ,ϕ]T ≥ 0 a.e.



318 E. HERNÁNDEZ ET AL.

From Theorem (2.4)(ii) and the Cauchy–Schwarz inequality in H we
have, for a measurable set S ⊂ Ĝ,

|µϕ,ψ(S)| = |〈P (S)ϕ, P (S)ψ〉|
≤ ‖P (S)ϕ‖ ‖P (S)ψ‖ = (µϕ,ϕ(S))1/2(µψ,ψ(S))1/2.

Part (ii) now follows immediately.
The third inequality follows from (ii), the Cauchy–Schwarz inequality for

functions in L2(Ĝ) and the fact that�

bG
[ϕ,ϕ]T (ξ) dξ = ‖ϕ‖2;

see (2.2) with g = 0 and ψ = ϕ.

Corollary (2.7). Suppose T is a dual integrable unitary representation
of an LCA group G acting on a Hilbert space H.

(i) For g ∈ G and ϕ,ψ ∈ H, we have

[Tgϕ,ψ]T = eg[ϕ,ψ]T = [ϕ, T−gψ]T a.e. in Ĝ.

(ii) Let Γ be a finite subset of G and ϕ,ψ ∈ H. For pΓ (ξ)=
∑

g∈Γ ageg(ξ)
a trigonometric polynomial on Ĝ and

pΓ (T ) =
∑
g∈Γ

agTg

we have

[pΓ (T )ϕ,ψ]T = pΓ [ϕ,ψ]T = [ϕ, pΓ (T )ψ]T a.e. in Ĝ;

also
[pΓ (T )ψ, pΓ (T )ψ]T = |pΓ |2[ψ,ψ]T a.e. in Ĝ.

Proof. Let g, k ∈ G and use (2.2) to obtain

〈Tgϕ, Tkψ〉 = 〈ϕ, Tk−gψ〉 =
�

bG
[ϕ,ψ]T (ξ) ek−g(ξ) dξ

=
�

bG
eg(ξ)[ϕ,ψ]T (ξ) ek(ξ) dξ.

But (2.2) also implies

〈Tgϕ, Tkψ〉 =
�

bG
[Tgϕ,ψ]T (ξ) ek(ξ) dξ.

By the uniqueness of the Fourier transform on Ĝ we thus obtain

eg[ϕ,ψ]T = [Tgϕ,ψ]T a.e. on Ĝ.

The other properties follow from the linearity and sesquilinearity of the
bracket.
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Lemma (2.8). Let ϕ,ψ ∈ H and T a dual integrable representation of G
acting on H. Let

〈ψ〉T = span{Tgψ : g ∈ G}

(the closure in H). Then ϕ⊥ 〈ψ〉T if and only if [ϕ,ψ]T = 0 a.e. in Ĝ.

Proof. ϕ ⊥ 〈ψ〉T if and only if 〈ϕ, Tgψ〉 = 0 for all g ∈ G. By (2.2) this
is equivalent to �

bG
[ϕ,ψ]T (ξ)e−g(ξ) dξ = 0 for all g ∈ G.

By the uniqueness of the Fourier transform this is equivalent to [ϕ,ψ]T = 0
in L2(Ĝ, dξ).

Lemma (2.9). Let pψ = [ψ,ψ]T and Ωψ = {ξ ∈ Ĝ : pψ(ξ) > 0}. If
ϕ,ψ ∈ H, then [ϕ,ψ]T (ξ) = 0 for a.e. ξ ∈ Ωc

ψ.

Proof. By Corollary (2.6)(ii) we have

0 ≤
�

Ωcψ

|[ϕ,ψ]T (ξ)| dξ ≤
�

Ωcψ

([ϕ,ϕ]T (ξ))1/2([ψ,ψ]T (ξ))1/2 dξ = 0

since [ψ,ψ]T (ξ) = 0 if ξ ∈ Ωc
ψ.

In the introduction we presented the example of the principal shift
invariant space 〈ψ〉T generated by ψ ∈ L2(Rn) and the translates Tkψ,
k ∈ Zn (= G). We explained how the properties of 〈ψ〉T (or the system
B = {Tkψ : k ∈ Zn}) correspond to the properties of

pψ(ξ) = [ψ̂, ψ̂]T (ξ) =
∑
k∈Zn

|ψ̂(ξ + k)|2.

This correspondence is obtained through a basic linear isometry between
the spaces 〈ψ〉T and L2(Ĝ, pψ) = L2(T, pψ). We are now prepared, because
of the result we have just developed, to establish this isometry between the
more general spaces 〈ψ〉T and the weighted space L2(Ĝ, [ψ,ψ]T ).

3. An isometric isomorphism

Theorem (3.1). Let T : g 7→ Tg be a dual integrable unitary represen-
tation of an LCA group G acting on a Hilbert space H.

(i) If ψ 6= 0 belongs to H, then the map Sψ : 〈ψ〉T → L2(Ĝ, pψ) defined
by

Sψϕ = χΩψ
[ϕ,ψ]T
[ψ,ψ]T

is a linear isometry between these two spaces.
(ii) If g ∈ G and ϕ,ψ ∈ H, then Sψ(Tgϕ)(ξ) = eg(ξ)Sψϕ(ξ) for a.e.

ξ ∈ Ĝ.
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We remind our readers that pψ and Ωψ are defined in Lemma (2.9).

Proof. (i) If ϕ ∈ H, then, from the definition of Sψ and Corollary
(2.6)(ii), we have

�

bG
|Sψϕ(ξ)|2pψ(ξ) dξ =

�

Ωψ

∣∣∣∣ [ϕ,ψ]T (ξ)
[ψ,ψ]T (ξ)

∣∣∣∣2[ψ,ψ]T (ξ) dξ

≤
�

Ωψ

[ϕ,ϕ]T (ξ)[ψ,ψ]T (ξ)
([ψ,ψ]T (ξ))2

[ψ,ψ]T (ξ) dξ

=
�

Ωψ

[ϕ,ϕ]T (ξ) dξ = 〈ϕ,ϕ〉 = ‖ϕ‖2,

where we used the definition of the bracket in (2.2) for the penultimate
equality. This shows that Sψ maps H into L2(Ĝ, pψ). Recall that the linearity
of Sψ is a consequence of the fact that the bracket [ϕ,ψ]T is the Radon–
Nikodym derivative dµϕ,ψ/dξ (see Corollary (2.5)).

Let us now show the isometry property of Sψ (and, thus, the one-to-one
property). Let ϕ be a finite sum

∑
ahThψ (h ∈ G). By Corollary (2.7)(ii),

we see that�

bG
|(Sψϕ)(ξ)|2pψ(ξ) dξ =

�

bG
∣∣∣∑ aheh(ξ)

∣∣∣2pψ(ξ) dξ =
�

bG
[ϕ,ϕ]T (ξ) dξ = ‖ϕ‖2

(see (2.2)). Since these finite sums are dense in 〈ψ〉T we have this isometry
for all ϕ ∈ 〈ψ〉T .

We now show that Sψ is onto L2(Ĝ, pψ). Suppose Sψ(〈ψ〉T ) does not
contain a non-zero m ∈ L2(Ĝ, pψ); we can, in fact, assume

m⊥ Sψ(〈ψ〉T ).

Thus,
0 =

�

bG
m(ξ)Sψ(Thψ)(ξ)pψ(ξ) dξ for all h ∈ G.

By Corollary (2.7)(i), Sψ(Thψ) = χΩψeh. Thus,

0 =
�

bG
m(ξ)eh(ξ)pψ(ξ) dξ for all h ∈ G.

By the uniqueness of the Fourier transform it follows that m(ξ)pψ(ξ) = 0
for a.e. ξ ∈ Ĝ. But this means that m, as a function in L2(Ĝ, pψ), is the zero
function, contrary to assumption.

Part (ii) is an immediate consequence of Corollary (2.7)(i).

Remark. In the special case described at the beginning of the Intro-
duction, G = Zn, H = L2(Rn), (Tkψ)(x) = ψ(x + k), Ĝ = Tn, the map we
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denoted by Jψ corresponds to the inverse S−1
ψ of the isometry Sψ introduced

in this section.

Observe that m 7→ mp
1/2
ψ is an isometry from L2(Ĝ, pψ) into L2(Ωψ) ⊂

L2(G). Using this, we obtain the following alternative version of Theo-
rem (3.1):

Corollary (3.2). Under the same hypotheses of Theorem (3.1), the
map Vψ : 〈ψ〉T → L2(Ĝ) defined by

Vψϕ = χΩψ
[ϕ,ψ]T
p

1/2
ψ

, ϕ ∈ H,

is a unitary map from 〈ψ〉T onto L2(Ωψ, dξ). Moreover, for g ∈ G and
ϕ,ψ ∈ H, VψTgϕ = egVψϕ a.e. in Ĝ.

We originally defined Sψ and Vψ on the cyclic space 〈ψ〉T generated by ψ.
The reader can observe that their definitions make sense for all ϕ ∈ H and
these operators are 0 for ϕ⊥ 〈ψ〉T .

Remark (3.3). Suppose T is a dual integrable unitary representation of
an LCA group acting on a Hilbert space H, and T ′ is another such represen-
tation acting on H′. We shall denote the maps Sψ and Vψ corresponding to
T and T ′ by Sψ,T , Vψ,T and Sψ,T ′ , Vψ,T ′ . Suppose T is unitarily equivalent
to T ′ via U : H→ H′; we then have the following commutative diagram:

〈ψ〉T
U−→ 〈U(ψ)〉T ′

Vψ,T↘ ↙VU(ψ),T ′

L2(Ĝ)

When ϕ,ψ ∈ H, ψ 6= 0, we have ϕ′ = Uϕ, ψ′ = Uψ and Vψ′,T ′ϕ′ = Vψ,Tϕ.

Consider the example of the modulation representation g 7→ Mg of
G introduced after (2.2). The regular representation R of G, acting on
H = L2(G), is unitarily equivalent, via the Fourier transform FG, to the
modulation representation M of G acting on L2(Ĝ). For ψ ∈ L2(G) with
ψ̂(ξ) 6= 0 for a.e. ξ, we have 〈ψ〉R = L2(G), 〈ψ̂〉M = L2(Ĝ), pψ = pψ̂ = |ψ̂|2

and, when ϕ ∈ L2(G), Vψ,R ϕ = Vψ̂,Mϕ̂ = ϕ̂ψ̂/|ψ̂| a.e.

Corollary (3.4). Let T be a unitary representation of G on a separable
Hilbert space H. Then the following are equivalent:

(i) T is dual integrable.
(ii) T is unitarily equivalent to a subrepresentation of the direct sum of

countably many copies of the modulation representation M.
(iii) T is unitarily equivalent to a subrepresentation of the direct sum of

countably many copies of the regular representation R.
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(iv) T is square integrable in the sense that there is a dense subspace
K ⊂ H such that, for each ψ ∈ K,

(Wψϕ)(g) = 〈ϕ, Tgψ〉
defines a bounded linear map Wψ : H→ L2(G).

Proof. (i)⇒(ii) Since T is unitary, we can choose a countable Ψ = {ψi :
i ∈ I} such that H is the orthogonal direct sum of the cyclic subspaces
〈ψi〉T , i ∈ I. Then VΨϕ ≡ {Vψiϕ}i∈I defines a linear isometry from H into
`2(I, L2(Ĝ)) and, via VΨ , T is unitarily equivalent to a subrepresentation of
the representation on `2(I, L2(G)) of |I| copies of M.

(ii)⇔(iii) is immediate from the unitary equivalence of M and R.
(ii)⇒(i)&(iv)M is dual integrable (see the example following (2.2)) and

it is also square integrable with K = L2(Ĝ) ∩ L∞(Ĝ). It follows easily that
any subrepresentation of the direct sum of countably many copies of M is
both dual integrable and square integrable.

(iv)⇒(iii) When T is square integrable, for each ψ ∈ K, Wψ has the
polar decomposition Wψ = Uψ|Wψ| with Uψ a linear isometry from 〈ψ〉T into
L2(G) and zero on the orthogonal complement of 〈ψ〉T . Moreover, UψTg =
RgUψ for all g ∈ G. Using the Gram–Schmidt process, we can construct
a countable subset Ψ = {ψi : i ∈ I} ⊂ K for which H is the orthogonal
direct sum of the subspaces 〈ψi〉T , i ∈ I, and deduce that T is unitarily
equivalent to a subrepresentation of the direct sum of |I| copies of R via the
map UΨ : H→ `2(I, L2(G)) defined by UΨϕ = {Uψiϕ}i∈I .

We note that, in practice, direct verification that a representation T is
square integrable is often difficult. In contrast, as we will illustrate below in
Sections 4 and 6, determination that T is dual integrable is often elementary.
Also, a variety of calculations for T are most easily carried out using the
properties of [·, ·]T discussed above.

4. Integer translations on L2(Rn) and Gabor systems. We can
extend the regular representation R of the LCA group Zn to a representation
T of Zn acting on L2(Rn) by (Tkf)(x) = f(x+ k). As in the example after
(2.3), the Fourier transform from L2(Rn) onto L2(R̂n) converts T to the
multiplier representation (Mkf̂) = ekf̂ , where ek(ξ) = e2πiξ·k. Since R̂n is
the disjoint union of Zn translates of [0, 1)n ∼ R̂n/Tn = Ẑn, we see that T
is equivalent to countably many copies of R and, hence, by Corollary (3.4),
is dual integrable. Explicitly, for ϕ,ψ ∈ L2(Rn) the bracket function

[ϕ,ψ]T (ξ) = [ϕ̂, ψ̂]M(ξ) =
∑
k∈Zn

(ϕ̂ψ̂)(ξ + k)

satisfies (2.2).
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The Gabor representation, (T,M), of the product group Zn × Zn acts
on L2(Rn) by

(TkMlf)(x) = f(x+ k)el(x)f(x).

To show that (T,M) is dual integrable, we make use of the Zak transform
Z defined by

(4.1) (Zf)(x, ξ) =
∑
j∈Zn

f(x+ j)ej(ξ).

Since
‖f‖2L2(Rn) =

�

[0,1)n

∑
k

|f(x+ k)|2 dx,

(Zf)(x, ·) is a square integrable Zn-periodic function for a.e. x whose Fourier
coefficients are f(x+ k), k ∈ Zn. Using this, for f , g ∈ L2(Rn) we obtain

〈f, g〉L2(Rn) =
�

[0,1)n

∑
k

f(x+ k) g(x+ k) dx(4.2)

=
�

[0,1)n

�

[0,1)n

(Zf)(x, ξ) (Zg)(x, ξ) dξ dx.

Now by a simple change of indices

(4.3) Z(TkMlf)(x, ξ) = e−k(x) el(ξ)(Zf)(x, ξ).

It follows from (4.2) and (4.3) that (Zf) (Zg) is a Zn×Zn-periodic function,
which is integrable on the dual group Tn × Tn of Zn × Zn, and

(4.4)
�

[0,1)n

�

[0,1)n

(Zf)(x, ξ)(Zg)(x, ξ) ek(x) e−l(ξ) dx dξ = 〈f, TkM−lg〉.

As a consequence, (T,M) is dual integrable with bracket function

[f, g]T,M = Zf Zg.

We can now show, as we claimed in §1, that pψ(ξ) = [ψ,ψ]T (ξ) =
[ψ̂, ψ̂]M(ξ) coincides a.e. with

�

[0,1)n

qψ(x, ξ) dx =
�

[0,1)n

|(Zψ)(x, ξ)|2 dx.

One easy way to see this is to observe, from (4.4), that both [ϕ,ψ]T (ξ) and
ξ 7→

	
[0,1)n(Zϕ)(x, ξ) dx satisfy the dual integrable criterion (2.2) for T , and

hence must coincide a.e. There are also a variety of direct ways to establish
this result using connections between the Zak and the Fourier transforms.

Some recent results about the Zak transform can be found in [11], [12]
and Chapter 8 of [4].
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5. Properties of the set Bψ = {Tkψ : k ∈ G} and its span 〈ψ〉T . In
the introduction we asserted that if G = Zn, ψ ∈ L2(Rn), and Bψ = {Tkψ :
k ∈ G} is the collection of translates of ψ, then the T -cyclic subspace 〈ψ〉T
(also known as the principal shift invariant subspace generated by Bψ) has
properties that correspond to those of the weight pψ. These properties also
correspond to properties of the generating system Bψ. In this section we
show how this extends to the more general cases we have been considering
that involve LCA groups.

We consider a countable abelian group G with the discrete topology and
a dual integrable representation T of G, T : k 7→ Tk, acting on a separable
Hilbert space H. For ψ ∈ H \ {0} the cyclic T -invariant subspace 〈ψ〉T is,
by definition, the closure (in H) of the span of the set Bψ = {Tkψ : k ∈ G}.
We shall show how properties of Bψ correspond to properties of the weight
function pψ = [ψ,ψ]T introduced in §2.

We begin with the property that Bψ is an orthonormal set:

〈Tkψ, Tlψ〉 = δk,l for k, l ∈ G.
Since each Tk is unitary this is equivalent to 〈ψ, Tkψ〉 = 〈T0ψ, Tkψ〉 = δ0k ≡
δk for all k ∈ G (0 is the zero element of G). Property (2.2) tells us that we
must have all the Fourier coefficients of the bracket [ψ,ψ]T , as a function
in L1(Ĝ), equal to 0, except the one corresponding to k = 0. Hence, pψ =
[ψ,ψ]T equals 1 a.e. in Ĝ. Conversely, if pψ(ξ) = 1 for a.e. ξ ∈ Ĝ, then

〈ψ, Tkψ〉 =
�

bG
e−k(ξ) dξ = δk0 for all k ∈ G;

thus, Bψ is an o.n. system.
We have shown:

Proposition (5.1). Let G be a countable abelian group and T a dual
integrable unitary representation of G on a Hilbert space H. Then Bψ is an
orthonormal basis of 〈ψ〉T if and only if [ψ,ψ]T = pψ equals 1 a.e. in Ĝ.

From Theorem (3.1) we see that

(5.2) Sψ(Tkψ) = ekSψ(ψ) = χΩψek

for all k ∈ G. This makes it clear that properties of Bψ should be readable
from properties of the spanning set {χΩψek : k ∈ G} in L2(Ĝ, pψ). The
following propositions make use of this last observation.

Proposition (5.3). Under the same assumptions of Proposition (5.1),
Bψ is a Riesz basis for 〈ψ〉T with constants 0 < A ≤ B < ∞ if and only if
for a.e. ξ ∈ Ĝ,

A ≤ pψ(ξ) ≤ B.



UNITARY REPRESENTATIONS 325

Remark. By definition, Bψ is a Riesz basis with constants A and B
provided

(5.4) A
∑
k∈G
|ak|2 ≤

∥∥∥∑
k∈G

akTkψ
∥∥∥2

H
≤ B

∑
k∈G
|ak|2

for all {ak : k ∈ G} ∈ `2(G).
It is well known that Riesz bases are precisely those that are images,

under invertible bounded linear operators (on H), of orthonormal bases. In
the particular case we are considering,

(5.5) Sψ(Tkψ) = χΩψek, k ∈ G.

When A ≤ pψ(ξ) ≤ B a.e., the spaces L2(Ĝ, pψ) and L2(Ĝ, dξ) are equal
(and their norms are equivalent). Proposition (5.3) follows easily from this
remark.

Following Chapter 2, §11, of [19] we say that Bψ has the Besselian
property if and only if the convergence of

∑
k∈G akTkψ in 〈ψ〉T implies∑

k∈G |ak|2 < ∞. Theorem 11.1 in [19] tells us that this last property is
equivalent to the existence of a constant A > 0 such that

A
∑
k∈G
|ak|2 ≤

∥∥∥∑
k∈G

akTkψ
∥∥∥2

for all finite sequences {ak : k ∈ G}. It follows from the observations made
after Proposition (5.3) that Bψ has the Besselian property in 〈ψ〉T if and
only if pψ ≥ A a.e. in Ĝ.

In Chapter 2, §11 of [19] the system Bψ has the Hilbertian property if
and only if

∑
k∈G |ak|2 < ∞ implies that

∑
k∈G akTkψ converges in 〈ψ〉T .

Theorem 11.1 in [19] asserts that this is equivalent to the existence of B <∞
such that ∥∥∥∑

k∈G
akTkψ

∥∥∥2
≤ B

∑
k∈G
|ak|2

for all finite sequences {ak : k ∈ G}. Again, the above observations show
that Bψ has the Hilbertian property in 〈ψ〉T if and only if pψ(ξ) ≤ B a.e.
in Ĝ.
Bψ is a frame with constants 0 < A ≤ B <∞ for 〈ψ〉T if and only if

(5.6) A‖ϕ‖2 ≤
∑
k∈G
|〈ϕ, Tkψ〉|2 ≤ B‖ϕ‖2

for all ϕ ∈ 〈ψ〉T . Notice the difference between (5.4) and (5.6). In fact,
frames are different from Riesz bases; however, if pψ(ξ) > 0 for a.e. ξ, then
Bψ is a frame if and only if Bψ is a Riesz basis. This will be a consequence
of the theorem we prove next that characterizes when Bψ is a frame.
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Theorem (5.7). Under the same hypothesis of Proposition (5.3), Bψ is
a frame for 〈ψ〉T with constants 0 < A ≤ B <∞ if and only if

(5.8) A ≤ pψ(ξ) ≤ B for a.e. ξ ∈ Ωψ.

Proof. Suppose (5.8) is true, then, by Theorem (3.1) and equality (5.2),
if ϕ ∈ 〈ψ〉T ,∑
k∈G
|〈ϕ, Tkψ〉|2 =

∑
k∈G
|〈Sψϕ, Sψ(Tkψ)〉

L2( bG,pψ)
|2

=
∑
k∈G
|〈Sψ(ϕ), χΩψek〉L2( bG,pψ)

|2 =
∑
k∈G

∣∣∣ �bGSψ(ϕ)χΩψekpψ
∣∣∣2.

Since {ek : k ∈ G} is an o.n. basis of L2(Ĝ, dξ), Plancherel’s theorem
and the above equalities give us

(5.9)
∑
k∈G
|〈ϕ, Tkψ〉|2 =

�

bG
|Sψ(ϕ)pψχΩψ |

2 dξ.

This equality and (5.8) imply

A
�

bG
|Sψ(ϕ)|2pψ ≤

∑
k∈G
|〈ϕ, Tkψ〉|2 ≤ B

�

bG
|Sψ(ϕ)|2pψ.

These inequalities and the isometry result of Theorem (3.1)(i) are equivalent
to those in (5.6). Thus, (5.8) implies that Bψ is a frame for 〈ψ〉T .

Now suppose Bψ is a frame for 〈ψ〉T . We establish (5.8) by contradiction.
Suppose pψ(ξ) < A on a set E ⊂ Ωψ ⊂ Ĝ of positive measure. Since
pψ ∈ L1(Ĝ, dξ) we have χE ∈ L2(Ĝ, pψ). Since Sψ is onto, there exists
ϕE ∈ 〈ψ〉T such that Sψ(ϕE) = χE and

(5.10) ‖χE‖L2( bG,pψ)
= ‖ϕE‖H.

An argument similar to the one we used to establish (5.9), with ϕE playing
the role of ϕ, yields

(5.11)
∑
k∈G
|〈ϕE , Tkψ〉|2 =

�

bG
χEp

2
ψ dξ.

Since pψ(ξ) < A for ξ ∈ E, the right side of (5.11) is strictly smaller than

A
�

E

pψ(ξ) dξ = A‖ϕE‖2H

(by (5.10)). Consequently, the left inequality of (5.6) does not hold for ϕ =
ϕE . This shows that A ≤ pψ(ξ) a.e. in Ωψ. A completely similar argument
shows that pψ(ξ) ≤ B a.e. in Ωψ. Hence, (5.8) must be true if Bψ is a frame
for Ωψ.
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Remark. In [7, Theorem 2.8] and [8, Theorem 4.3.3], results that we
derived in this section can be found that are associated with the Gabor uni-
tary representation acting on Rn (see §1, §4). In this situation the bracket
is obtained from the Zak transform. In particular, the weight whose prop-
erties correspond to Bψ is denoted by qψ (see §1 where we introduced the
weight with the equality qψ(t, ξ) = |(Zψ)(t, ξ)|2). We also remind the reader
of equality (1.3) and the proof we gave at the end of §4.

6. Biorthogonality and minimality. In this section we continue to
consider a countable abelian group G endowed with the discrete topology
and a dual integrable unitary representation T of G acting on a Hilbert
space H.

Suppose ψ and ψ̃ belong to H \ {0}. The collections Bψ = {Tkψ : k ∈ G}
and Bψ̃ = {Tkψ̃ : k ∈ G} are said to be biorthogonal if and only if
〈Tkψ, Tlψ̃〉 = δkl for all k, l ∈ G. If ψ ∈ H \ {0}, Bψ = {Tkψ : k ∈ G} is said
to be minimal for 〈ψ〉T if and only if there does not exist a k0 ∈ G such that

Tk0ψ ∈ span{Tkψ : k ∈ G, k 6= k0}.
It can be shown (see [9]) that Bψ is minimal for 〈ψ〉T if and only if ψ /∈
span{Tkψ : k ∈ G, k 6= 0} (the closure is in H).

Theorem (6.1). Under the hypothesis stated at the beginning of this
section and ψ ∈ H \ {0}:

(i) If there exists ψ̃ ∈ 〈ψ〉T such that Bψ and Bψ̃ are biorthogonal, then
Bψ is minimal.

(ii) Conversely, if Bψ is minimal, then there exists ψ̃ ∈ 〈ψ〉T such that
Bψ and Bψ̃ are biorthogonal.

Proof. If Bψ and Bψ̃ are biorthogonal then 0 = 〈Tkψ, ψ̃〉 for all k ∈ G,
k 6= 0. Thus,

ψ̃ ⊥ span{Tkψ : k ∈ G, k 6= 0}.
Since 〈ψ, ψ̃〉 = 1, ψ /∈ span{Tkψ : k ∈ G, k 6= 0}. Thus, Bψ is minimal and
(i) is established.

Now assume Bψ is minimal. Then

span{Tkψ : k ∈ G, k 6= 0} ( 〈ψ〉T .
Hence, there exists ψ̃ ∈ 〈ψ〉T , ψ̃ 6= 0, such that ψ̃ ⊥ {Tkψ : k ∈ G, k 6= 0}. It
follows that 〈ψ, ψ̃〉 6= 0 and we can clearly assume 〈ψ, ψ̃〉 = 1. Consequently,
〈Tkψ, Tkψ̃〉 = 〈ψ, ψ̃〉 = 1; while, if k 6= l, 〈Tkψ, Tlψ̃〉 = 〈Tk−lψ, ψ̃〉 = 0.

Theorem (6.2). Under the same hypotheses stated at the beginning of
§6 suppose ψ ∈ H \ {0}. Then there exists ψ̃ ∈ 〈ψ〉T such that Bψ and Bψ̃
are biorthogonal if and only if 1/pψ ∈ L1(Ĝ, dξ).
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Proof. Suppose Bψ and Bψ̃ are biorthogonal with ψ̃ ∈ 〈ψ〉T . By Theorem

(3.1), Sψ(ψ̃) ∈ L2(Ĝ, pψ) and ‖ψ̃‖H = ‖Sψ(ψ̃)‖
L2( bG,pψ)

. Also
�

bG
(|Sψ(ψ̃)|p1/2

ψ )p1/2
ψ ≤

( �

bG
|Sψ(ψ̃)|2pψ

)1/2( �

bG
pψ

)1/2
= ‖ψ̃‖H‖ψ‖H <∞

since Sψ is an isometry and, from the definition of dual integrability,( �

bG
pψ

)1/2
= ‖ψ‖H (see (2.2)).

We also have, by (5.2), Theorem (3.1), and the biorthogonality,�

bG
Sψ(ψ̃)e−kpψ =

�

bG
Sψ(ψ̃)Sψ(Tkψ)pψ = 〈Sψ(ψ̃), Sψ(Tkψ)〉

L2( bG,pψ)

= 〈ψ̃, Tkψ〉 = δk0 .

Thus, the Fourier coefficients of Sψ(ψ̃)(ξ)pψ(ξ) are zero except the one cor-
responding to k = 0. Hence, Sψ(ψ̃)(ξ)pψ(ξ) = 1 a.e. in Ĝ. This means that
pψ(ξ) > 0 a.e. and we can write |Sψ(ψ̃)|2pψ(ξ) = 1/pψ(ξ). We therefore have

�

bG
1

pψ(ξ)
dξ =

�

bG
|Sψ(ψ̃)|2pψ(ξ) dξ = ‖ψ̃‖H

(since Sψ is an isometry) and we see that 1/pψ ∈ L1(Ĝ, dξ).
Now suppose 1/pψ ∈ L1(Ĝ, dξ). Then, clearly, 1/pψ ∈ L2(Ĝ, pψ) and, by

Theorem (3.1), S−1
ψ (1/pψ) is a well defined element in 〈ψ〉T ; let us denote

it by ψ̃. We have

〈Tkψ, ψ̃〉H = 〈Tkψ, S−1
ψ (p−1

ψ )〉H = 〈Sψ(Tkψ), p−1
ψ 〉L2( bG,pψ)

= 〈ek, 1/pψ〉L2( bG,pψ)
=

�

bG
ek

1
pψ

pψ =
�

bG
ek(ξ) dξ = δk0 .

We have used Theorem (3.1), (5.2) and the orthogonality of {ek : k ∈ G} in
L2(Ĝ, dξ). This shows that Bψ̃ with ψ̃ = S−1

ψ (1/pψ) is biorthogonal to Bψ.

As a corollary of the two theorems, (6.1) and (6.2), we have

Theorem (6.3). Under the same hypotheses and ψ ∈ H \ {0}, Bψ is
minimal if and only if p−1

ψ ∈ L
1(Ĝ, dξ).

7. A general framework for dual integrable representations. As
discussed in §2 and §4, the translation representation T of Zn on L2(Rn) is
dual integrable and can be combined with the modulation representation,
M, of a second copy of Zn to obtain the dual integrable Gabor representation
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(T,M) of Zn×Zn on L2(Rn). In the theory of wavelets, we consider unitary
dilation representations

(Daf)(x) = |det a|1/2f(ax),

where a is a member of a countable abelian subgroup, A, of GL(n,R). In
this section, we will give sufficient conditions on A so that a 7→ Da is dual
integrable. More generally, we will consider a σ-finite measure space (X , µ)
and an action (k, x) 7→ k • x of a countable abelian group G on X . Thus,

(1) (k, x) 7→ k•x is a µ-measurable mapping fromG×X into X satisfying
k • (l • x) = (k + l) • x for all k, l ∈ G and x ∈ X .

(2) 0 • x = x for each x ∈ X .

We will, in addition, assume the following regularity properties:

(3) µ is quasi -G-invariant in the sense that for each k ∈ G, the Radon–
Nikodym derivative

Jk(x) =
dµ(k • x)
dµ(x)

exists and is positive a.e.
(4) There exists a µ-measurable subset C ⊂ X which is a tiling domain

for the action of G in the sense that the tiles k • C, k ∈ G, are
mutually disjoint and, modulo a µ-null set, X is their union.

While (3) is a natural assumption, (4) is restrictive and excludes, for
example, the action of G = Z on R2 defined by k •x equal to the rotation of
x by 2πkα, α /∈ Q. On the other hand, (4) is satisfied by the dyadic action
j • x = 2jx of Z on Rn; also, by the shearing action j • (x, y) = (x, y + jx)
of Z on R2.

From the chain rule for Radon–Nikodym derivatives we have

(7.1) Jk+l(x) = Jk(l • x)Jl(x) a.e. for k, l ∈ G.

Moreover, using (1), (7.1) and a simple change of variable arguments we
see that

(7.2) k 7→ Dk, where (Dkf)(x) = Jk(x)1/2f(k • x),

is a unitary representation of G on L2(X , µ).

Theorem (7.3). Given an action of G on (X , µ) satisfying the regularity
conditions (3) and (4), the representation D of G on L2(X , µ), defined by
(7.2), is dual integrable.

Proof. Consistent with our treatment in §4 of dual integrability for
translation representations, we define the generalized Zak transform Zψ,
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ψ ∈ L2(X , µ), by

(7.4) (Zψ)(x, ξ) =
∑
k∈G

(Dkψ)(x)ek(ξ).

Using the fact that {ek : k ∈ G} is an orthonormal basis, and also the tiling
condition (4), we obtain

�

C

�

bG
|(Zψ)(x, ξ)|2 dξ dµ(x) =

�

C

∑
k∈G
|(Dkψ)(x)|2 dµ(x)(7.5)

=
∑
k∈G

�

C

Jk(x)|ψ(k • x)|2 dµ(x)

=
∑
k∈G

�

k•C
|ψ(y)|2 dµ(y)

=
�

X
|ψ(y)|2 dµ(y) = ‖ψ‖2L2(X ,µ).

Using (7.2) and a change of summation index, for each l ∈ G we obtain

(ZDlψ)(x, ξ) =
∑
k∈G

(DkDlψ)(x, ξ)ek(ξ)(7.6)

=
∑
j∈G

(Djψ)(x)ej(ξ)e−l(ξ)

= e−l(ξ)(Zψ)(x, ξ).

By (7.5), ψ 7→ Zψ is an isometry from L2(X , µ) onto L2(C × Ĝ, dµ(x) dξ).
Define the bracket function [·, ·]D : L2(X , µ)× L2(X , µ)→ L1(Ĝ) by

(7.7) [ϕ,ψ]D(ξ) =
�

C

(Zϕ)(x, ξ) (Zψ)(x, ξ) dµ(x).

Combining (7.6) and polarization of (7.5), we have
�

bG
[ϕ,ψ]D(ξ)e−l(ξ) dξ =

�

bG
�

C

(ZDlϕ)(x, ξ) (Zψ)(x, ξ) dµ(x) dξ(7.8)

= 〈Dlϕ,ψ〉L2(X ,µ) = 〈ϕ,D−lψ〉L2(X ,µ).

Thus, [·, ·]D satisfies (2.2) in the definition of dual integrable representa-
tions.

The object defined in (7.4) is a generalization of the Zak transform
adapted to our situation. It coincides with the Zak transform when Zn acts
on Rn by translations. When the action is dilation by 2 in the real line, the
object defined in (7.4) is called the multiplicative Zak transform in [3]. It
also appears in the work [18] and more generally in [20] and [5]. We thank
Professor Wojciech Czaja for pointing out some of these references to us.
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