
COLLOQU IUM MATHEMAT ICUM
VOL. 118 2010 NO. 1

SPHERICAL HARMONICS ON GRASSMANNIANS

BY

ROGER HOWE (New Haven, CT) and SOO TECK LEE (Singapore)

Abstract. We propose a generalization of the theory of spherical harmonics to the
context of symmetric subgroups of reductive groups acting on flag manifolds. We give
some sample results for the case of the orthogonal group acting on Grassmann manifolds,
especially the case of 2-planes.

1. Introduction. The theory of spherical harmonics is a classical piece
of mathematics, with manifold applications to physics, in any situation
where the dependence of a quantity on direction in space needs to be de-
scribed.

A representation-theoretic understanding of the theory is that it de-
scribes the behavior of polynomials under the action of the orthogonal group.
If P(Rn) = P is the space of complex-valued polynomial functions in n (real)
variables, then the group GLn(R) = GLn of linear transformations on Rn

also acts on the polynomial functions by the standard recipe:

(1.1) g(p)(~x) = p(g−1(~x)).

Here g ∈ GLn, p ∈ P, and ~x is a point in Rn. (We do not distinguish
notationally here between g as a linear transformation on Rn and on P;
which is meant should be clear from context.)

Let Pd(Rn) = Pd be the space of polynomials homogeneous of degree d.
Then it is well known that

(1.2) P '
∞⊕
d=0

Pd,

that the action (1.1) of GLn preserves each space Pd, and that the Pd are
irreducible representations for GLn. However, if On ⊂ GLn is the group of
orthogonal transformations, defined to be the linear transformations which
preserve the usual Euclidean (squared) length r2 =

∑n
i=1 x

2
i , then On does

not act irreducibly on the homogeneous components Pd. Indeed, it is easy
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to find operators on P that commute with the action of elements of On,
and these operators allow one to display subspaces of Pd that are invariant
under On.

The most obvious such operator is multiplication by r2 : p 7→ r2p. Since
r2 is homogeneous of degree two, multiplying by it raises the degree of a
polynomial by two, so we get mappings

(1.3) r2 : Pd → Pd+2

for each d. Since operators g defined in (1.1) are algebra automorphisms
of P, it is easy to check that g(r2p) = r2g(p) for g ∈ On. It follows that the
space r2(Pd) ⊂ Pd+2 is invariant under On.

Another operator that commutes with On, less obvious than r2, but
which presented itself in physics, is the Laplacian ∆ =

∑n
i=0 ∂

2/∂x2
i . The

Laplacian reduces the degree of polynomials by two; it defines mappings

(1.4) ∆ : Pd → Pd−2.

Since these maps commute with the action of On, it follows that the kernel

(1.5) Hd(Rn) = Hd = {p ∈ Pd : ∆p = 0}

of ∆, commonly known as the harmonic polynomials, is an On-invariant
subspace of Pd.

The main assertions of the theory of spherical harmonics are

Proposition 1.1 (Theory of Spherical Harmonics).

(a) The space Hd of harmonic polynomials of degree d is an irreducible
representation of On.

(b) Pd ' Hd ⊕ r2Pd−2.
(c) Pd '

⊕[d/2]
k=0 r

2kHd−2k is a decomposition of Pd into irreducible rep-
resentations for On.

Evidently, the main statement (c) follows from (a) and (b).
One way to prove these results is to study the interaction between the

operators r2 and ∆. They do not commute with each other, but it turns out
that there is an elegant formula for their commutator:

(1.6) [∆, r2] = ∆r2 − r2∆ = 4E + 2n,

where E =
∑n

i=1 xi∂/∂xi is the Euler degree operator, which acts on Pd by
the scalar d. From this, one can show by induction that, if h ∈ H`, then

(1.7) ∆(r2kh) = 2k(2(`+ k − 1) + n)r2(k−1)h.

From (1.7) it is evident that, if the decomposition (c) is true for Pd−2,
then ker∆ ∩ r2Pd−2 = {0}. Hence dim ker∆ ≤ dimPd − dimPd−2. On the
other hand, since ∆ maps Pd to Pd−2, it is likewise clear that dim ker∆ ≥
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dimPd − dimPd−2. Hence dim ker∆ = dimPd − dimPd−2, and equation
(b) holds for Pd, whence equation (c) does also.

In this situation, a remarkable fact is that the three operators r2, ∆ and

(1.8) [∆, r2] = 4E + 2n

span a three-dimensional Lie algebra isomorphic to the three-dimensional
simple Lie algebra sl2. Furthermore, the associative algebra generated by this
Lie algebra is the full algebra of polynomial coefficient differential operators
which commute with the action of On on P ([GW], [Ho]). This in turn
implies statement (a) of Proposition 1.1. (There are also ways of proving (a)
that do not involve observing the existence of the commuting sl2.)

We are interested in a generalization of the theory of spherical harmonics.
This theory is usually thought of as describing functions on the sphere, but
statement (c) of Proposition 1.1 in fact describes the relationship between
the space Hd, which is the On components of the functions on the sphere,
and the space P of all polynomials. Therefore, it is reasonable in thinking
about generalizing the theory of spherical harmonics to consider the nature
of P, in particular as a module for GLn.

The polynomial ring P can be thought of as the “homogeneous coor-
dinate ring” ([F]) of the projective space Pn−1 of lines through the ori-
gin in Rn. Projective space is the simplest of the flag manifolds associated
to GLn. Other flag manifolds for GLn include the Grassmann varieties of
k-dimensional subspaces of Rn, or higher flag manifolds associated to nested
sequences of subspace of specified dimensions. Each flag manifold has an as-
sociated homogeneous coordinate ring, which is a module for GLn, with a
well understood decomposition into irreducible representations. One could
think of the theory of “flag harmonics” to be concerned with the decompo-
sition of these GLn representations into irreducible subspaces for On.

But there is more to the theory of spherical harmonics than just the
irreducible decomposition. There is the action of the On invariant r2, and
even more directly implicated in the name, there is the understanding of the
operator ∆, and especially its kernel, the harmonic functions.

One can ask if there is some analog of this structure, in particular,
analogs of r2 and ∆, for other flag manifolds. This is easy to answer for r2.
The invariants of On in representations of GLn are well-understood; this is a
special case of the Cartan–Helgason Theorem (see Theorem 4.1 on page 535
of [He]). In particular, for each Grassmann variety, the algebra of On in-
variants is generated by a single well-understood element that bears a clear
relation to r2.

It is rather less obvious, but it turns out that there also exist differential
operators analogous to the Laplacian. Together, they generate an algebra of
operators that commute with the action of On. One can think of the theory
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of spherical harmonics as a description of the action of this algebra, and
most particularly, of the action of the Laplacian analog.

As we have seen above, in the classical theory of spherical harmonics,
one has the remarkable circumstance that the Laplacian and r2 generate
a Lie algebra. The commutation relations in this Lie algebra let one give
a precise description, not just of the kernel of ∆, but of the action of ∆
on all of P. Although one cannot expect that the analogs of r2 and ∆ will
live inside a finite-dimensional Lie algebra for more general flag manifolds,
still one might hope to give a reasonably explicit description of the action
of the ∆ analog. In this paper, we present an example that provides some
encouragement for such a hope.

2. Notation. The action of GLn(R) on P = P(Rn) can be complexi-
fied to give a representation of GLn(R) on the algebra P(Cn) of polynomial
functions on Cn. This action can be extended to an action by the com-
plexification of GLn(R), which is the complex general linear group GLn(C)
consisting of all n× n invertible complex matrices. The complexification of
On is the complex orthogonal group On(C). By a suitable change of coordi-
nates on Cn, we can assume that On(C) is the subgroup of GLn(C) which
preserves the symmetric bilinear form

(2.1)

〈
u1

...
un

 ,


v1
...
vn


〉

=
n∑
j=1

ujvn+1−j

on Cn. In the rest of the paper, we shall work with GLn(C) and On(C). So
from now on, GLn and On shall stand for GLn(C) and On(C) respectively.

We now introduce notation for the irreducible representations of GLn.
Let Bn = AnUn be the standard Borel subgroup of upper triangular matrices
in GLn, where An is the diagonal torus in GLn and Un is the maximal
unipotent subgroup consisting of all the upper triangular matrices with 1’s
on the diagonal. Recall that a Young diagram λ is an array of square boxes
arranged in left-justified horizontal rows, with each row no longer than the
one above it ([F]). If λ has at most m rows, then we shall write it as

λ = (λ1, . . . , λm)

where for each i, λi is the number of boxes in the ith row of λ. We shall
denote the number of rows in λ by d(λ), and call it the depth of λ. For later
use, we let 1k be the Young diagram with only one column of k boxes, i.e.

(2.2) 1k = (
k︷ ︸︸ ︷

1, . . . , 1).
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For a Young diagram λ = (λ1, . . . , λn) with at most n rows, let ψλn :
An → C× be the character given by

ψλn[diag(a1, . . . , an)] = aλ1
1 · · · a

λn
n .

Here diag(a1, . . . , an) is the n × n diagonal matrix such that its diagonal
entries are a1, . . . , an. Then ψλn is a dominant weight for GLn with respect
to the Borel subgroup Bn ([GW]), and we shall denote the irreducible rep-
resentation of GLn with highest weight ψλn by ρλn. We shall abuse notation
and say that the highest weight of ρλn is λ. If λ = m1n, then we also say
that the highest weight of ρλn is detmn .

The irreducible finite-dimensional representations of On are parameter-
ized by Young diagrams λ such that the sum of the lengths of the first two
columns of λ does not exceed n ([Wy],[GW],[Ho]). For such a Young di-
agram λ, we shall denote the On representation associated with λ by σλn.
Specifically, σλn is the irreducible representation of On generated by the GLn
highest weight vector in ρλn. See Section 3.6 of [Ho] for more details.

Let SOn denote the subgroup of On consisting of all elements of On with
determinant 1, and let

(2.3) ASOn = An ∩ SOn, Nn = Un ∩ SOn.

Explicitly,

ASOn =

{
{diag(a1, . . . , am, a

−1
m , . . . , a−1

1 ) : a1, . . . , am ∈ C×}, n=2m,

{diag(a1, . . . , am, 1, a−1
m , . . . , a−1

1 ) : a1, . . . , am∈C×}, n=2m+1.

Let λ be a Young diagram such that the sum of the lengths of its first
two columns does not exceed n. If 2d(λ) 6= n, then the restriction of σλn to
SOn is irreducible. If in addition 2d(λ) < n and φλn : ASOn → C× is the
restriction of the character ψλn to ASOn , then as an SOn module, σλn has
highest weight φλn. In this case, we shall abuse notation and say that λ is
the highest weight of σλn.

3. The On highest weight vectors on Grassmannians. Let 2k < n
and let Gn

k be the set of all k-dimensional subspaces of Cn. It has a struc-
ture of a projective variety. Let R(Gn

k) be the homogeneous coordinate
ring (1) of Gn

k . It carries an action by GLn × GLk, and On acts by re-

(1) If G is a reductive algebraic group, then a flag manifold for G is a coset space G/P ,
where P is a parabolic subgroup of G. The homogeneous coordinate ring for G/P is the
ring R(G/P (2)) of regular functions on the variety G/P (2), where P (2) is the commutator
subgroup of P . The variety G/P is a projective variety, and therefore has no nonconstant
regular functions. However, the variety G/P (2) is a torus bundle over G/P , and is quasi-
affine, so it has a large collection of regular functions, which can be thought of as (sums
of) sections of appropriate line bundles over G/P .
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striction from GLn. In this section, we shall describe the On ×GLk module
structure of R(Gn

k).
Let Mnk = Mnk(C) be the space of n × k complex matrices, and let

P(Mnk) be the algebra of polynomial functions on Mnk, that is, each p ∈
P(Mnk) is of the form

p(x) =
∑
α

aαx
α,

where x = (xij) ∈ Mnk, each α = (αij) appearing in the sum is an n × k
matrix of nonnegative integers, aα ∈ C and

xα =
∏
i,j

x
αij

ij .

We now define an action of GLn×GLk on Mnk. For each n×n complex
matrix A, there exists a unique n× n complex matrix Aτ such that

〈Au, v〉 = 〈u,Aτv〉,

where 〈·, ·〉 is given in (2.1). For g ∈ GLn, h ∈ GLk, and T ∈ Mnk, let

(3.1) (g, h)(T ) = (g−1)τTh−1, g ∈ GLn, h ∈ GLk, T ∈ Mnk.

This action induces an action of GLn × GLk on P(Mnk) in the usual way.
We have used (g−1)τ in the action by GLn so that this gives rise to a
more symmetrical decomposition of P(Mnk) into irreducible GLn × GLk
representations (see (3.2) below). Moreover, g ∈ On if and only if g = (g−1)τ .

Let SLk be the subgroup of GLk consisting of all elements of GLk with
determinant 1. Then it is well known ([F]) that R(Gn

k) can be identified
with the algebra

A = P(Mnk)SLk

of SLk invariants in P(Mnk). Thus in the remaining part of the paper, we
shall replace R(Gn

k) by A.
By the (GLn,GLk)-duality ([Ho]), under the action by GLn × GLk, we

have the decomposition

(3.2) P(Mnk) =
⊕
d(λ)≤k

ρλn ⊗ ρλk .

By extracting the SLk invariants, we obtain

A = P(Mnk)SLk =
⊕
d(λ)≤k

ρλn ⊗ (ρλk)SLk ,

where (ρλk)SLk denotes the space of SLk invariant vectors in ρλn. Now (ρλk)SLk

6= 0 if and only if λ = m1k for some nonnegative integer m, i.e. ρλn is the
one-dimensional space on which GLk acts by the character h 7→ (deth)m.
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We shall write ρm1k
k as detmk . Then under the action by GLn ×GLk,

(3.3) A =
∞⊕
m=0

Am

where for each m,
Am
∼= ρm1k

n ⊗ detmk .

Next, recall that Nn is the standard maximal unipotent subgroup in SOn

given in (2.3). Let
ANn = P(Mnk)Nn×SLk

be the algebra of Nn invariants in A. We now describe the generators of ANn .
For 1 ≤ i, j ≤ k and x ∈ Mnk, let

r2ij(x) = 〈xi, xj〉
where 〈·, ·〉 is the symmetric bilinear form given in (2.1), and xi and xj are
the ith and jth columns of x respectively. Then the algebra P(Mnk)On of
On invariants in P(Mnk) is a polynomial algebra on the generators {r2ij :
1 ≤ i ≤ j ≤ k} ([Ho], [GW]). Define

γj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x11 · · · x1k

0 ...
...

xj1 · · · xjk

x11 · · · xj1 r211 · · · r21k
...

...
...

...
x1k · · · xjk r2k1 · · · r2kk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0 ≤ j ≤ k − 1)

and

γk =

∣∣∣∣∣∣∣∣
x11 · · · x1k

...
...

xk1 · · · xkk

∣∣∣∣∣∣∣∣ .
Here, the vertical lines in γj indicate determinant. These polynomials are
joint SOn ×GLk highest weight vectors with the following weights:

SOn weight GLk weight

γ0 0 det2k

γj (1 ≤ j ≤ k − 1) 21j det2k

γk 1k detk

Proposition 3.1 ([ATZ]). The algebra ANn is a polynomial algebra on
the generators γ0, γ1, . . . , γk.
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Let a = (a0, a1, . . . , ak) ∈ Zk+1
≥0 , and

γa = γa0
0 γa1

1 · · · γ
ak
k .

Then γa is an SOn × GLk highest weight vector, and it has SOn weight
λ = (λ1, . . . , λk) and GLk weight detm(a)

k where

λj = 2
k−1∑
i=j

ai + ak (1 ≤ j ≤ k − 1), λk = ak

and

(3.4) m(a) = 2
k−1∑
i=0

ai + ak.

Let Am,a be the irreducible On module generated by γa. Then as a repre-
sentation of On, Am admits the decomposition

Am =
⊕
a

Am,a

where the sum is taken over all a ∈ Zk+1
≥0 such that m(a) = m. For each Am,a

which appears in the sum, its SOn highest weight λ is such that λ1 ≤ m
and λj ≡ m (mod 2) for all j. Conversely, every such λ is the SOn highest
weight of a unique Am,a in the sum. It follows that

(3.5) Am
∼=

⊕
λ1≤m

λj≡m (mod 2)

σλn,

which is On multiplicity free: any two irreducible On submodules are non-
isomorphic.

4. The map ∂ : P(Mnk) → D(Mnk). Let D(Mnk) be the space of
constant-coefficient differential operators on P(Mnk), that is, D(Mnk) con-
sists of the operators of the form∑

α

aα
∂|α|

∂xα

where each α = (αij) appearing in the sum is an n×k matrix of nonnegative
integers, aα ∈ C,

|α| =
∑
i,j

αij

and
∂|α|

∂xα
=

∂|α|

∂xα11
11 ∂x

α12
12 · · · ∂x

αnk
nk

.
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The algebra D(Mnk) is naturally isomorphic to the symmetric algebra
S(Mnk) on Mnk. In fact, for each u ∈ Mnk and f ∈ P(Mnk), we let

Du(f)(v) = lim
t→0

f(v + tu)− f(v)
t

, v ∈ Mnk.

Then the map D : Mnk → D(Mnk) is linear, and extends uniquely to an al-
gebra isomorphism D : S(Mnk)→ D(Mnk). Let GLn act on Mnk as in (3.1),
that is,

g.v = (g−1)τv, g ∈ GLn, v ∈ Mnk.

We extend this action to an action by GLn on S(Mnk) by algebra automor-
phisms, and this in turn induces an action on D(Mnk) via the map D.

For 1 ≤ i ≤ n and 1 ≤ j ≤ k, let

∂(xij) =
∂

∂xn+1−i,j
.

Then ∂ extends uniquely to an algebra isomorphism

∂ : P(Mnk)→ D(Mnk).

Specifically, if p =
∑

α aαx
α ∈ P(Mnk), then

(4.1) ∂(p) =
∑
α

aα
∂|α

′|

∂xα′

where α′ = (α′ij) and α′ij = αn+1−i,j for all 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Lemma 4.1. The map ∂ : P(Mnk) → D(Mnk) is an On map, that is,
it commutes with the action of On on P(Mnk) and D(Mnk) defined by the
restriction from the actions of GLn.

Proof. Define for u, v ∈ Mnk,

(u, v) = [∂−1(Dv)](u).

For 1 ≤ j ≤ k, let uj (respectively vj) be the jth column of u (respectively v).
Then

(u, v) =
k∑
j=1

〈uj , vj〉

where 〈·, ·〉 is the symmetric form on Cn given in (2.1). Hence for each n×n
complex matrix A, we have

(Au, v) = (u,Aτv).

Now for g ∈ GLn,

[∂−1(g.Dv)](u) = [∂−1(Dg.v)](u) = (u, g.v) = (gτ .u, v)
= [∂−1(Dv)](gτ .u) = [(g−1)τ .(∂−1(Dv))](u).
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This shows that ∂−1(g.Dv) = (g−1)τ .(∂−1(Dv)) for every v ∈ Mnk. Since
GLn acts on P(Mnk) and D(Mnk) by algebra automorphisms and ∂−1 is an
algebra isomorphism, we have ∂−1g = (g−1)τ∂−1 onD(Mnk), or equivalently,
g∂ = ∂(g−1)τ on P(Mnk). In particular, g∂ = ∂g for all g ∈ On. This proves
the lemma.

For 1 ≤ i, j ≤ k, let

∆ij = ∂(r2ij) =
n∑
a=1

∂2

∂xa,i∂xn+1−a,j
.

We also let

L = ∂(γ0) =

∣∣∣∣∣∣∣∣
∆11 · · · ∆1k

...
...

∆n1 · · · ∆nk

∣∣∣∣∣∣∣∣ .
Corollary 4.2. The map L : P(Mnk)→ P(Mnk) is an On map.

Proof. This is because L is an On invariant in D(Mnk).

Next, we shall define an inner product on P(Mnk) such that multiplica-
tion by γ0 and the operator L are adjoints of each other. If p =

∑
α aαx

α ∈
P(Mnk), we let

p̃(x) =
∑
α

aαx
α.

Here for each α, aα is the complex conjugate of aα. Then for p, q ∈ P(Mnk),
define

(4.2) 〈p, q〉 = {[∂(p)](q̃)}(0).

Explicitly, if p(x) =
∑

α aαx
α ∈ P(Mnk) and q(x) =

∑
β bβx

β ∈ P(Mnk),
then by (4.1),

〈p, q〉 =
∑
α,β

aαbβ

[
∂|α

′|

∂xα′ (xβ)
]
(0) =

∑
α

α′!aαbα′ ,

where for each α = (αij),

α′! =
∏
i,j

α′ij !.

From this it is easy to see that 〈·, ·〉 is an inner product on P(Mnk), and
homogeneous polynomials with distinct total degrees are orthogonal. In par-
ticular, the sum (3.3) is an orthogonal sum.

Moreover, for p, q, r ∈ P(Mnk),

〈pq, r〉= {[∂(qp)](r̃)}(0) = {[∂(q)∂(p)](r̃)}(0) = 〈q, ˜[∂(p)](r̃)〉= 〈q, [∂(p̃)](r)〉.
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Hence the operator ∂(p̃) is the adjoint to multiplication by p. In particular,
since γ̃0 = γ0, L = ∂(γ̃0) is the adjoint to multiplication by γ0.

5. Generalized Laplacian on Grassmannians. From the discussion
in Section 3, we see that γ0 generates the subalgebra of On invariants in A,
that is,

AOn = C[γ0].

Multiplication by γ0 defines an injective On map on A. We shall abuse nota-
tion and denote this operator also by γ0. Since γ0 is also a GLk eigenvector
corresponding to det2k, γ0 defines an On map

γ0 : Am → Am+2,

so its image γ0Am in Am+2 is an On submodule isomorphic to Am.
We recall that the “dual” operator L = ∂(γ0) is the adjoint of γ0 with

respect to the inner product defined in (4.2). Let

H = {p ∈ A : L(p) = 0}
be the space of all “harmonic polynomials” in A. For each m ≥ 0, the
restriction of L to Am also defines an On map

L : Am → Am−2.

In fact, if p ∈ A`, q ∈ Am and `+ 2 6= m, then

0 = 〈γ0p, q〉 = 〈p, L(q)〉.
This shows that L(q) is orthogonal to A` for ` 6= m−2, so that L(q) ∈ Am−2.

Next, we let
Hm = {f ∈ Am : L(f) = 0}.

Then we have

H =
∞⊕
m=0

Hm.

Proposition 5.1. For each m ≥ 2,

Hm =
⊕
λ1=m

λj≡m (mod 2)

σλn and Am = Hm ⊕ γ0Am−2.

Proof. Let p ∈ Am−2 and q ∈ Am. Then 〈γ0p, q〉 = 〈p, L(q)〉. Thus if
q ∈ Hm, then

〈γ0p, q〉 = 〈p, 0〉 = 0,

so that
q ∈ (γ0Am)⊥,

the orthogonal complement of γ0Am in Am. It follows that Hm ⊆ (γ0Am)⊥.
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Let σλn be an On representation which occurs in Am with λ1 = m. Since
L : Am → Am−2 and σλn does not occur in Am−2,

L(σλn) = 0.

So σλn ⊆ Hm. But these On representations σλn together with those in
γ0Am−2 have exhausted all the On representations in Am. So the lemma
follows.

Corollary 5.2. The space HNn of Nn invariants in H is the subalgebra
of A generated by {γ1, . . . , γk}.

Theorem 5.3. For m ≥ 2,

Am =
[m/2]⊕
j=0

γj0Hm−2j .

Consequently,

A ∼= H⊗ AOn .

Proof. The first assertion follows from (3.5) by induction on m together
with the observation that A0 = H0 and A1 = H1. The second assertion
follows from the first.

6. Eigenvalues of Lγ0 in the case k = 2. For each m ≥ 0, we have
the On maps

γ0 : Am → Am+2 and L : Am+2 → Am.

By composing these two maps, we obtain the On map

Lγ0 : Am → Am.

Since Am is multiplicity free as a representation of On, by Schur’s Lemma,
it acts by a scalar on each irreducible On submodule of Am. Thus if Am,a

is an irreducible On submodule of Am, then there exists a complex number
c(a) such that

Lγ0(v) = c(a)v, ∀v ∈ Am,a.

In particular, if we take v = γa, then

(6.1) Lγ0(γa) = c(a)γa.

It is easy to compute c(a) when k = 1, which has been discussed in the
Introduction. We shall compute the scalar c(a) in the case k = 2 in this
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section. In this case,

L =

∣∣∣∣∣∆11 ∆12

∆12 ∆22

∣∣∣∣∣ ,
γ0 =

∣∣∣∣∣r211 r212

r212 r222

∣∣∣∣∣ , γ1 =

∣∣∣∣∣∣∣
0 x11 x12

x11 r211 r212

x12 r212 r222

∣∣∣∣∣∣∣ , γ2 =

∣∣∣∣∣x11 x12

x21 x22

∣∣∣∣∣ .
Theorem 6.1. If k = 2 and a = (a0, a1, a2) ∈ Z3

≥0, then

c(a) = 2(a0 +1)(2a0 +2a1 +3)(2a0 +2a1 +2a2 +n−1)(2a0 +4a1 +2a2 +n).

The theorem follows by induction on a0 from Lemma 6.2 below. If T1

and T2 are two linear operators on A, then the commutator [T1, T2] is the
linear operator

[T1, T2] = T1T2 − T2T1.

Lemma 6.2. If k = 2 and a = (a0, a1, a2) ∈ Z3
≥0, then

[L, γ0](γa) = 2(4a0 + 4a1 + 2a2 + n)
× (8a2

0 +4a2
1 +16a0a1 +8a0a2 +4a1a2 +4a0n+2a1n+4a1 +6a2 +3n−3)γa.

Before we prove Lemma 6.2, we need to introduce some notations. Let
PD(Mnk) be the algebra of polynomial-coefficient differential operators
on P(Mnk). For 1 ≤ i, j ≤ k, let

Eij =
n∑
p=1

xpi
∂

∂xpj
+ δij

n

2
.

Let

p+ = Span{r2ij : 1 ≤ i ≤ j ≤ k},

p− = Span{∆ij : 1 ≤ i ≤ j ≤ k},
k = Span{Eij : 1 ≤ i, j ≤ k}.

Then k is a Lie algebra isomorphic to glk, and

p− ⊕ k⊕ p+

forms a Lie algebra isomorphic to the symplectic Lie algebra sp2k. We shall
denote k and p− ⊕ k ⊕ p+ by glk and sp2k respectively. Then sp2k gener-
ates the algebra PD(Mnk)On of operators in PD(Mnk) commuting with On

([Ho], [GW]). Consequently, PD(Mnk)On is a homomorphic image of the
universal enveloping algebra U(sp2k) of sp2k.

Proof of Lemma 6.2. Since both L and γ0 are elements of PD(Mn2)On ,
so is [L, γ0]. We shall express [L, γ0] in the form

[L, γ0] = X + Y E12 + ZE21
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where X,Y, Z are elements PD(Mn2)On such that the expression for X does
not involve the elements E12 and E21. Since GL2 acts on γa by a determinant
character, the Lie algebra sl2 of SL2 will annihilate it. In particular,

E12(γa) = E21(γa) = 0.

Consequently,

[L, γ0](γa) = X(γa) + Y E12(γa) + ZE21(γa) = X(γa).(6.2)

Thus it suffices to compute X(γa).
We now determine the elements X, Y and Z. We have

[L, γ0] =

[∣∣∣∣∣∆11 ∆12

∆12 ∆22

∣∣∣∣∣ , γ0

]
=

∣∣∣∣∣[∆11, γ0] ∆12

[∆12, γ0] ∆22

∣∣∣∣∣+

∣∣∣∣∣∆11 [∆12, γ0]
∆12 [∆22, γ0]

∣∣∣∣∣(6.3)

= [∆11, γ0]∆22 − [∆12, γ0]∆12 +∆11[∆22, γ0]−∆12[∆12, γ0]

We will need the following commutation relations in sp4 in our computations:

[∆ab, r
2
cd] = δbcEda + δacEdb + δbdEca + δadEcb,

[Eab, r2cd] = δbcr
2
ad + δbdr

2
ac,

[Eab, ∆cd] = −δac∆bd − δad∆cb.

Using these formulas, we obtain

[∆11, γ0] = −2r222 + 4r222E11 − 4r212E21,

[∆22, γ0] = −2r211 + 4r211E22 − 4r212E12,

[∆12, γ0] = 2r212 − 2r212(E11 + E22) + 2r211E21 + 2r222E12.

Substituting these expressions into (6.3) and simplifying, we obtain

X = 4(r222∆22 + r212∆12)E11 + 4(r211∆11 + r212∆12)E22

− 14E11 + 2E22 + 16E11E22 + 2(E11 + E22)2,

Y = −4r222∆12 − 4r212∆11 − 16E21,

Z = −4r212∆22 − 4r211∆12.

It follows from (6.2) that

[L, γ0](γa) = X(γa)

= 4(r222∆22 + r212∆12)E11(γa) + 4(r211∆11 + r212∆12)E22(γa)

+ {−14E11 + 2E22 + 16E11E22 + 2(E11 + E22)2}(γa).

Now

E11(γa) = E22(γa) = λγa where λ = 2a0 + 2a1 + a2 + n/2.
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So

[L, γ0](γa) = 4λT (γa) + {−14λ+ 2λ+ 16λ2 + 2(2λ)2}γa(6.4)

= 4λT (γa) + 12λ(2λ− 1)γa

where T is the operator

T = r211∆11 + r222∆22 + 2r212∆12.

We note that the operator T corresponds to the trivial representation of
GL2 in the tensor product S2(C2)⊗S2(C2∗). So it will act as a scalar on γa.
We now compute this scalar.

Routine calculations show

∆11(γa) = 2a0(2a0 + 4a1 + 2a2 + n− 3)r222γ
a0−1
0 γa1

1 γa2
2

− 2a1(2a1 + 2a2 + n− 4)x2
12γ

a0
0 γa1−1

1 γa2
2 ,

∆22(γa) = 2a0(2a0 + 4a1 + 2a2 + n− 3)r211γ
a0−1
0 γa1

1 γa2

− 2a1(2a1 + 2a2 + n− 4)x2
11γ

a0
0 γa1−1

1 γa2
2 ,

∆12(γa) = −2a0(2a0 + 4a1 + 2a2 + n− 3)r212γ
a0−1
0 γa1

1 γa2
2

+ 2a1(2a1 + 2a2 + n− 4)x11x12γ
a0
0 γa1−1

1 γa2
2 .

Using these formulas, we obtain

T (γa) = 2a0(2a0 +4a1 +2a2 +n−3){r211r
2
22 +r222r

2
11 − 2(r212)2}γa0−1

0 γa1
1 γa2

2

+ 2k(2a1 +2a2 +n−4){−x2
12r

2
11−x2

11r
2
22 +2x11x12r

2
12}γ

a0
0 γk−1

1 γa2
2

= 2a0(2a0 + 4a1 + 2a2 + n− 3){2γ0}γa0−1
0 γk1γ

a2
2

+ 2a1(2a1 + 2a2 + n− 4){γ1}γa0
0 γk−1

1 γa2
2

= {4a0(2a0 + 4a1 + 2a2 + n− 3) + 2a1(2a1 + 2a2 + n− 4)}γa.

This together with (6.4) gives

[L, γ0](γa) = 4λT (γa) + 12λ(2λ− 1)γa

= 4λ{4a0(2a0 + 4a1 + 2a2 + n− 3) + 2a1(2a1 + 2a2 + n− 4)}γa

+ 12λ(2λ− 1)γa

= 2(4a0 + 4a1 + 2a2 + n)(8a2
0 + 4a2

1 + 16a0a1 + 8a0a2

+ 4a1a2 + 4a0n+ 2a1n+ 4a1 + 6a2 + 3n− 3)γa.

This proves the lemma.
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