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Abstract. We study the holomorphic Hardy–Orlicz spaces HΦ(Ω), where Ω is the
unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex
domain in Cn. The function Φ is in particular such that H1(Ω) ⊂ HΦ(Ω) ⊂ Hp(Ω) for
some p > 0. We develop maximal characterizations, atomic and molecular decomposi-
tions. We then prove weak factorization theorems involving the space BMOA(Ω). As a
consequence, we characterize those Hankel operators which are bounded from HΦ(Ω) into
H1(Ω).

Introduction. This work has been motivated by a new kind of fac-
torization in the unit disc, obtained in [BIJZ]. Namely, the product of a
function in BMOA with a function in the Hardy space H1 of holomorphic
functions lies in some Hardy–Orlicz space defined in terms of the func-
tion Φ1(t) := t/log(e+ t). Conversely, every holomorphic function in this
Hardy–Orlicz space can be written as the product of a function in BMOA
and a function in H1. This exact factorization relies heavily on the classical
factorization theorem through Blaschke products and does not generalize
to higher dimensions. Nevertheless, it was proven by Coifman, Rochberg
and Weiss in the seventies [CRW] that Hp, for p ≤ 1, admits weak fac-
torization, namely, F =

∑
j GjHj with

∑
j ‖Gj‖

p
q‖Hj‖pr ≤ Cpq‖F‖pp when

1/q + 1/r = 1/p. This was extended later on by Krantz and Li to strictly
pseudoconvex domains [KL], then by Peloso, Symesak and the present au-
thors to convex domains of finite type [BPS1], [GP]. We rely on the methods
of these two last papers, which are somewhat simpler, to obtain the weak
factorization of Hardy–Orlicz spaces under consideration. Note that such a
weak factorization for Hp is typical of the case p ≤ 1, in contrast to the case
of the unit disc where factorization is valid for all p > 0.
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A natural application of such factorizations is to characterize classes of
symbols of Hankel operators. We are able to characterize the symbols of
Hankel operators mapping continuously Hardy–Orlicz spaces into H1 for a
large class of Hardy–Orlicz spaces containing H1. We do this for all do-
mains for which we have weak factorization. However, weak factorization is
a stronger property, since the Hardy–Orlicz spaces under consideration are
not Banach spaces. We have given in [BGS] a direct proof of the fact that
Hankel operators are bounded on H1 of the unit ball if and only if their
symbol is in the space LMOA, without involving Hardy–Orlicz spaces, even
if the idea of weak factorization is indirectly present in that note.

Let us mention, in the same direction, the factorization obtained by
Cohn and Verbitsky [CV] in the disc, which allows characterizing those
symbols for which the corresponding Hankel operator is bounded from H2

into some Hardy–Sobolev space. A generalization to higher dimensions of
their factorization seems much more difficult than ours.

At the end of this paper, we state the same theorems for a class of
domains in Cn which includes the strictly pseudoconvex domains and the
convex domains of finite type. We explain briefly how to modify the proofs.

Let us give some notations and describe the results more precisely. Let
Bn be the unit ball and Sn be the unit sphere in Cn. Let Φ be a continuous,
positive and non-decreasing function on [0,∞). The Hardy–Orlicz space
HΦ(Bn) is defined as the space of holomorphic functions f such that

(1) sup
0<r<1

�

Sn
Φ(|f(rw)|) dσ(w) <∞

where dσ denotes the surface measure on Sn. We recover the Hardy spaces
Hp(Bn) when Φ(t) = tp. We are especially interested in the case Φp(t) =
tp/log(e+ t)p, 0 < p ≤ 1, since the space HΦp(Bn) arises naturally in
the study of pointwise products of functions in Hp(Bn) with functions in
BMOA(Bn) inside the unit ball. Indeed, we prove that the product of an
Hp(Bn)-function and a BMOA(Bn)-function belongs to HΦp(Bn), and con-
versely, there is weak factorization.

We will restrict ourselves to concave functions Φ which satisfy an addi-
tional assumption so that H1(Bn) ⊂ HΦ(Bn) ⊂ Hp(Bn) for some 0 < p ≤ 1.
In particular, any function f in the Orlicz space HΦ(Bn) admits a unique
boundary function still denoted by f which, by the Fatou Theorem, satisfies	
Sn Φ(|f |) dσ <∞.

Before going on, we need some basic notations for the geometry of Sn.
We recall that the Korányi metric on Sn is given by d(z, w) := |1−z.w| (see
[R]). All along the paper, except when speaking of the unit ball itself, balls
(or Korányi balls) will be open subsets of Sn that are balls for the Korányi
metric.
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We also consider the real Hardy–Orlicz space HΦ(Sn) defined as the
space of distributions on Sn which have an atomic decomposition defined
in terms of Korányi balls. More precisely, HΦ(Sn) is the space of distribu-
tions f which can be written as

∑∞
j=0 aj , where the aj ’s satisfy adapted

cancellation properties, are supported in some ball Bj and are such that∑
j σ(Bj)Φ(‖aj‖2σ(Bj)−1/2) <∞.
We first prove maximal characterizations of Hardy–Orlicz spaces. As a

corollary, we deduce that the Hardy–Orlicz space HΦ(Bn) continuously em-
beds into HΦ(Sn), while the Szegö projection is a projector onto HΦ(Bn). In
particular, every f ∈ HΦ(Bn) has boundary values that belong to HΦ(Sn),
and f may be written in terms of the Szegö projection of its atomic decom-
position. The work of Viviani [V] plays a central role: atomic decomposition
is proved there for Hardy–Orlicz spaces in the context of spaces of homoge-
neous type with a restriction on the lower type p of Φ, which, in the case
of the unit ball, is the condition p > 2n/(2n+ 1). We prove the atomic de-
composition for all values of p, with the same kind of control of the norm as
obtained by Viviani.

Since the Szegö projection of an atom is a molecule, we also get a molec-
ular decomposition as in the classical Hardy spaces (see [TW] for instance).

The atomic decomposition allows us to prove a (weak) factorization the-
orem on HΨ (Bn). In particular, we generalize the factorization theorem
proved in the disc for HΦ1 in [BIJZ]. More precisely, we prove that, given
any f ∈ HΨ (Bn), there exist fj ∈ HΦ(Bn), gj ∈ BMOA(Bn) such that f =∑∞

j=0 fjgj where Ψ and Φ are linked by the relation Ψ(t) = Φ(t/log(e+ t)).
As a consequence, we characterize the class of symbols for which the

Hankel operators are bounded from HΦ(Bn) to H1(Bn). The symbols belong
to the dual space of HΨ (Bn), which can be identified with the BMOA-space
with weight ρΨ where ρΨ (t) = 1/tΨ−1(1/t). Weighted BMOA-spaces have
been considered by Janson in the Euclidean space [J]. Here they are defined
by

BMOA(ρΨ )

:=
{
f ∈ H2(Bn) : sup

B
inf

P∈PN (B)

1
σ(B)ρΨ (σ(B))2

�

B

|f − P |2 dσ <∞
}
.

where the integral is taken on the unit sphere, f stands for the boundary
values of the function, and balls are with respect to the Korányi metric.
Moreover, PN (B) denotes the set of polynomials of degree ≤ N = NΨ in an
appropriate basis, with N large enough.

When Ψ = Φ1, this space is usually referred to as the space LMOA of
functions of logarithmic mean oscillation. Duality has been proven in Rn by
Janson [J]. Viviani proves it as a consequence of atomic decomposition. In
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the context of holomorphic functions, this is also a consequence of atomic
decomposition and continuity of the Szegö projection.

Our method allows us to characterize BMOA(ρΦ) as the class of symbols
of Hankel operators which map HΦ into H1

weak.
As pointed out before, we have chosen to allow the lower type of Φ to be

arbitrarily small, and not only the upper type to be larger than 2n/(2n+ 1)
(for the unit ball of Cn, or for a strictly pseudoconvex domain; for a general
convex domain of finite type, the critical index is different). This raises many
technical difficulties: for instance, it is not sufficient to deal with atoms with
mean 0 and we need extra moment conditions; in parallel, one has to deal
with polynomials of positive degree to define the dual space BMO , and not
only with constants.

Here and in what follows, H(Bn) denotes the space of holomorphic func-
tions in Bn. For two positive functions f and g, we use the notation f . g
when there is some constant c such that f(w) ≤ c g(w), where w stands for
the parameters that we are interested in (typically, the constant c will only
depend on the geometry of the domain under consideration). We define the
symbols & and ' analogously.

1. Statements of results

1.1. Growth functions and Orlicz spaces. Let us give a precise
definition for the growth functions which are used in the definition of Hardy–
Orlicz spaces (see also [V]).

Definition 1.1. Let 0 < p ≤ 1. A function Φ is called a growth function
of order p if it has the following properties:

(G1) Φ is a homeomorphism of [0,∞) such that Φ(0) = 0. Moreover, the
function t 7→ Φ(t)/t is non-increasing.

(G2) Φ is of lower type p, that is, there exists a constant c > 0 such
that, for s > 0 and 0 < t ≤ 1,

(2) Φ(st) ≤ ctpΦ(s).

We will also say that Φ is a growth function whenever it is a growth
function of some order p < 1. Two growth functions Φ1 and Φ2 define the
same Hardy–Orlicz spaces when Φ1 ' Φ2. In particular, the growth function
Φ of order p is equivalent to the function

	t
0(Φ(s)/s) ds, which is also a growth

function of the same order and has the following additional property.

(G3) Φ is concave. In particular, it is subadditive.

Our typical example Φp(t) = tp/log(e+ t)p satisfies (G1) and (G2) for p ≤ 1.
The same is valid for the function Φp,α(t) = tp(log(C+t))αp, provided that C
is large enough, for p < 1 and any α, or for p = 1 and α < 0. In the following,
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we still denote by Φp (or Φp,α) the modified but equivalent functions which
satisfy (G3) as well.

Remark 1.2. If Φ and Ψ are two growth functions, then so is Φ ◦ Ψ .

Observe also that Φ is doubling: more precisely,

(3) Φ(2t) ≤ 2Φ(t),

a property that will be widely used.
For (X, dµ) a measure space, we denote by LΦ the corresponding Orlicz

space, that is, the space of functions f such that

‖f‖LΦ :=
�

X

Φ(|f |) dµ <∞.

The quantity ‖·‖LΦ is subadditive, but is not homogeneous. One may prefer
the Luxemburg quasi-norm, which is homogeneous but not subadditive. It
is defined as

‖f‖lux
LΦ = inf

{
λ > 0 :

�

X

Φ(|f(x)|/λ) dµ(x) ≤ 1
}
.

It is easily seen that, when Φ is of lower type p,

‖f‖lux
LΦ . max{‖f‖LΦ , ‖f‖

1/p

LΦ
},

while
‖f‖LΦ . max{‖f‖lux

LΦ , (‖f‖
lux
LΦ )p}.

Endowed with the distance ‖f − g‖LΦ , LΦ is a metric space. When T is a
continuous linear operator from LΦ into a Banach space B, there exists a
constant C such that

‖Tf‖B ≤ C‖f‖lux
LΦ .

Conversely, a bounded operator is continuous.

1.2. Adapted geometry on the unit ball. Let us recall here some
geometric notions (see [R]) that will be necessary for the description of
spaces of holomorphic functions.

For ζ ∈ Sn and w ∈ Bn, let

d(ζ, w) := |1− 〈ζ, w〉|.

We recall that, when restricted to Sn × Sn, this is a quasi-distance. For
ζ0 ∈ Sn and 0 < r < 1, we denote by B(ζ0, r) the ball on Sn of center ζ0 and
radius r for the distance d. Recall that σ(B(ζ0, r)) ' rn. In particular,

(4) σ(B(ζ0, λr)) ' λnσ(B(ζ0, r)),

with constants that do not depend on ζ0 and r.
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For each ζ0 ∈ Sn, we choose an orthonormal basis v(1), . . . , v(n) in Cn such
that v(1) is the outward normal vector to the unit sphere. In particular, we
can choose the canonical basis for the point with coordinates (1, 0, . . . , 0). Let
xj + iyj be the coordinates of z− ζ0 in this basis. Then y1, . . . , yn, x2, . . . , xn
can be used as coordinates on Sn in a neighborhood of ζ0, say in the ball
B(ζ0, δ). We can take δ uniformly for all points ζ0. We will speak of the
special coordinates related to ζ0.

Given ζ ∈ Sn we define the admissible approach region Aα(ζ) by

Aα(ζ) = {z = rw ∈ Bn : d(ζ, w) = |1− 〈ζ, w〉| < α(1− r)}.
We then define the admissible maximal function of a holomorphic function
f by

(5) Mα(f)(ζ) = sup
z∈Aα(ζ)

|f(z)|.

1.3. Hardy–Orlicz spaces. Hardy–Orlicz spaces HΦ(Bn) have been
defined in (1). We define on HΦ(Bn) the (quasi-)norms by

‖f‖HΦ(Bn) := sup
0<r<1

�

Sn
Φ(|f(rw)|) dσ(w),

‖f‖lux
HΦ(Bn) = inf

{
λ > 0 : sup

0<r<1

�

Sn
Φ

(
|f(rw)|
λ

)
dσ(w) ≤ 1

}
,

which are finite for f ∈ HΦ(Bn) and define the same topology.
The assumptions on the growth function Φ give the inclusions

(6) H1(Bn) ⊂ HΦ(Bn) ⊂ Hp(Bn).

A basic property of Hardy spaces is that they can be equivalently defined
in terms of maximal functions, which generalizes to our setting.

Theorem 1.3. Let α > 0. There exists a constant C > 0 such that, for
any f ∈ HΦ(Bn),

(7) ‖Φ(Mα(f))‖L1(Sn) ≤ C‖f‖HΦ(Bn).

So the two quantities are equivalent.
Next we define the real Hardy–Orlicz spaces on the unit sphere in terms

of atoms.
For ζ0 ∈ Sn, we denote by PN (ζ0) the set of functions on B(ζ0, δ) which

are polynomials of degree ≤ N in the 2n − 1 special coordinates related
to ζ0. Notice that PN (ζ0) does not depend on the choice of v(2), . . . , v(n).

Definition 1.4. A square integrable function a on Sn is called an atom
of order N ∈ N associated to the ball B := B(ζ0, r0), for some ζ0 ∈ Sn, if
the following conditions are satisfied:
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(A1) supp a ⊆ B;
(A2) when r0 < δ,

	
Sn a(ζ)P (ζ) dσ(ζ) = 0 for every P ∈ PN (ζ0).

The second condition is also called the moment condition.
We can now define the real Hardy–Orlicz spaces. Recall that the term

“real” is related to the fact that the definition makes sense for real func-
tions, and does not require any assumption of holomorphy. Here we consider
complex-valued functions, since in particular we are interested in the fact
that these spaces contain boundary values (in the distribution sense) of
holomorphic functions in HΦ(Bn).

Definition 1.5. The real Hardy–Orlicz space HΦ(Sn) is the space of
distributions f on Sn which can be written as the limit, in the distribution
sense, of series

(8) f =
∑
j

aj ,
∑
j

σ(Bj)Φ(‖aj‖2σ(Bj)−1/2) <∞,

where the aj ’s are atoms of order N , associated to the balls Bj . Here N is
an integer chosen so that N > Np := 2n(1/p− 1)− 1.

The (quasi-)norm on HΦ(Sn) is defined by

(9) ‖f‖HΦ = inf
{∑

j

σ(Bj)Φ(‖aj‖2σ(Bj)−1/2) : f =
∑
j

aj

}
.

It is also subadditive. In particular, with the distance between f and g given
by ‖f−g‖HΦ , HΦ(Sn) is a complete metric space. It is easy to verify that the
series in (8) converges in the metric. Observe that convergence in HΦ(Sn)
implies convergence in the sense of distributions.

We will see that the Szegö projection PS is a bounded operator from
HΦ(Bn) into itself.

Remark 1.6. The condition on N guarantees that the Szegö projec-
tion of the atom a (or its maximal function) is well defined with LΦ norm
uniformly bounded in terms of Φ(‖a‖2σ(B)−1/2)σ(B). It follows from the
theorems below that the space HΦ(Sn) does not depend on N > Np.

We have the following atomic decomposition.

Theorem 1.7. Let N ∈ N be larger than Np. Given any f ∈ HΦ(Bn)
there exist atoms aj of order N such that

∑∞
j=0 aj ∈ HΦ(Sn) and

f = PS

( ∞∑
j=0

aj

)
=
∞∑
j=0

PS(aj).

Moreover,
∞∑
j=0

σ(Bj)Φ(‖aj‖2σ(Bj)−1/2) ' ‖f‖HΦ(Bn).
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As in the atomic decomposition of Hardy spaces on Rn, the order of the
moment conditions on the atoms can be chosen arbitrarily large. Having
optimal values has no importance later on, which allows an easy adaptation
of the proofs to a class of domains including convex domains of finite type
and strictly pseudoconvex domains, for which the optimal values of Np are
different. The fact that atoms may satisfy moment conditions up to an
arbitrarily large order will play a crucial role for the factorization.

Szegö projections of atoms are best described in terms of molecules,
which we introduce now.

Definition 1.8. A holomorphic function A ∈ H2(Bn) is called a mole-
cule of order L, associated to the ball B := B(z0, r0) ⊂ Sn, if it satisfies

(10) ‖A‖mol(B,L) :=
(

sup
r<1

�

Sn

(
1 +

d(z0, rξ)L+n

rL+n
0

)
|A(rξ)|2 dσ(ξ)

σ(B)

)1/2

<∞.

Proposition 1.9. For an atom a of order N associated to a ball B ⊂ Sn,
its Szegö projection PS(a) is a molecule associated to B̃ of double radius, of
any order L < N + 1. It satisfies

‖A‖mol(B,L) . ‖a‖2σ(B)−1/2.

Proposition 1.10. Any molecule A of order L associated to a ball B,
such that L > Lp := 2n(1/p− 1), belongs to HΦ(Bn) with

‖A‖HΦ . Φ(‖A‖mol(B,L))σ(B).

The atomic decomposition and the previous propositions have, as corol-
laries, the molecular decomposition of functions in HΦ(Bn), the continuity
of the Szegö projection, and the identification of the dual space. Let us state
first the molecular decomposition.

Theorem 1.11. For any f ∈ HΦ(Bn), there exist molecules Aj of order
L > Lp, associated to balls Bj, such that f may be written as

f =
∑
j

Aj

with ‖f‖HΦ(Bn) '
∑

j Φ(‖Aj‖mol(Bj ,L))σ(Bj).

The continuity of the Szegö projection is also a direct consequence of the
atomic decomposition and the fact that an atom is projected to a molecule.

Theorem 1.12. The Szegö projection extends to a continuous operator

PS : HΦ(Sn)→ HΦ(Bn).

Before giving the duality statement, let us define generalized BMO(%)-
spaces as follows. We assume that % is a continuous increasing function from
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[0, 1] onto [0, 1], which is of upper type α, that is,

(11) %(st) ≤ sα%(t)

for t ∈ [0, 1] and s > 1 with st ≤ 1. We then define

BMO(%)=
{
f ∈ L2(Sn) : sup

B
inf

P∈PN (B)

1
%(σ(B))2σ(B)

�

B

|f − P |2 dσ<∞
}
.

Here, for B a ball of center ζB, assumed to be of radius r < δ, we denote
by PN (B) the set PN (ζB). The integer N is taken large enough, say N >
2nα− 1. Before going on, let us make some remarks.

Remark 1.13. The definition does not depend on N > 2nα−1. We will
not prove this and refer to [BPS2] for a proof for α < 1/2. It is a consequence
of duality and atomic decomposition.

Remark 1.14. One may prove that, as in the Euclidean case (see [J]),
if % is of upper type less than 1/2n and satisfies the Dini condition

1�

r

%(s)
s2

ds . %(r),

then BMO(%) coincides with the Lipschitz space Λ(%), defined as the space
of bounded functions such that

|f(z)− f(ζ)| ≤ %(d(z, ζ)n).

Spaces BMO(%) have been introduced by Janson [J] in Rn, and proved
to be the dual spaces of maximal Hardy–Orlicz spaces related to the growth
function Φ when %(t) = %Φ(t) := 1/tΦ−1(1/t). With our definition of HΦ(Sn)
in terms of atoms, this duality is straightforward, as pointed out by Vi-
viani [V]. For holomorphic Hardy–Orlicz spaces, we also have

Theorem 1.15. The dual space of HΦ(Bn) is

BMOA(%)=
{
f ∈ H2(Bn) : sup

B
inf

P∈PN (B)

1
%(σ(B))2σ(B)

�

B

|f − P |2 dσ<∞
}

where %(t) = %Φ(t) := 1/tΦ−1(1/t). The duality is given by the limit as r
tends to 1, r < 1, of scalar products on spheres of radius r.

In other terms, BMOA(%) is the space of holomorphic functions in the
Hardy space H2(Bn) whose boundary values belong to BMO(%).

1.4. Products of functions and Hankel operators. We now have
all prerequisites to study the product of a function h ∈ HΦ(Bn) with a
function b ∈ BMOA(Bn). Observe that, using (6), we already know that
the product is well defined as the product of an Hp(Bn)-function and an
Hs(Bn)-function for all 1 < s < ∞. So it is in Hq(Bn) for q < p. We want
to replace this inclusion by a sharp statement.
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Proposition 1.16. The product maps continuouslyHΦ(Bn)×BMOA(Bn)
into HΨ (Bn), where Ψ(t) = Φ(t/log(e+ t)).

Proof. We know that Ψ is also a growth function by Remark 1.2. We
prove more: using the John–Nirenberg inequality, we know that a function
b in BMO is also in the exponential class. More precisely, we only use the
fact that b(r·) is uniformly in the exponential class, and prove that, for such
a function b and for a function h ∈ HΦ(Bn), the product bh is continuously
embedded in HΨ (Bn). We start from the following elementary inequality
(see [BIJZ]): for any u, v > 0,

uv

log(e+ uv)
≤ u+ ev − 1.

It follows that

Ψ(uv) . Φ(u+ ev − 1) . Φ(u) + ev − 1.

When u and v are replaced by measurable positive functions on the measure
space (X, dµ), we have, by homogeneity of the Luxemburg norms,

‖fg‖lux
LΨ . ‖f‖lux

LΦ‖g‖
lux
expL.

We refer to [VT] for a more general Hölder inequality on Orlicz spaces.
Let us come back to Hardy spaces. Applying this inequality on each

sphere of radius less than 1, we conclude that

(12) ‖fg‖lux
HΨ . ‖f‖lux

HΦ‖g‖
lux
expL . ‖f‖lux

HΦ‖g‖BMOA.

We are going to prove converse statements.

Theorem 1.17. Let A be a molecule associated to the ball B. Then
A may be written as fg, where f is a molecule and g is in BMOA(Bn).
Moreover, f and g may be chosen such that

‖g‖BMOA(Bn) . 1, ‖f‖mol(B,L′) .
‖A‖mol(B,L)

log(e+ σ(B)−1)

when L′ < L. In particular, if Ψ(‖A‖mol(B,L))σ(B) ≤ 1, then

Φ(‖f‖mol(B,L′)) . Ψ(‖A‖mol(B,L)).

Theorem 1.18. Given any f ∈ HΨ (Bn) there exist fj ∈ HΦ(Bn), gj ∈
BMOA(Bn), j ∈ N, with the norm of gj bounded by 1, such that

f =
∞∑
j=0

fjgj .

Moreover, we can take for fj a molecule and, if ‖f‖HΨ ≤ 1, then∑
j

Φ(‖fj‖mol(Bj ,L))σ(Bj) . ‖f‖HΨ .
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In particular,
∞∑
j=0

‖fj‖HΦ‖gj‖BMOA . ‖f‖HΨ .

Notice that the quantity
∑

j Φ(‖fj‖mol(Bj ,L))σ(Bj) is not equivalent to
the norm of f . When the dimension is equal to 1, one can proceed as in
[BIJZ], and prove that there is an exact factorization.

As a corollary, we obtain the following characterization of bounded Han-
kel operators. Recall that, for b ∈ H2(Bn), the (small) Hankel operator hb
of symbol b is given, for functions f ∈ H2(Bn), by hb(f) = PS(bf̄).

Corollary 1.19. A Hankel operator hb extends to a continuous opera-
tor from HΦ(Bn) to H1(Bn) if and only if b ∈ (HΨ (Bn))′ = BMOA(%Ψ ).

All these results may be extended to the more general setting of strictly
pseudoconvex domains or of convex domains of finite type in Cn. We give a
sketch of the proofs in Section 6.

2. Maximal characterizations of Hardy–Orlicz spaces. Let us
prove the equivalent characterization of HΦ-spaces, given in Theorem 1.3. In
order to adapt the proofs given for usual Hardy spaces, we need the lemma
below, whereMHL denotes the Hardy–Littlewood maximal operator related
to the distance on the unit sphere. In fact, the statement is valid in the gen-
eral context of spaces of homogeneous type. In particular, we will also use it
for the maximal operator on the sphere related to the Euclidean distance.

Lemma 2.1. Let Φ be a growth function of order p, and β < p. There
exists a constant C > 0 such that, for any measurable function f ,

�

Sn
Φ(MHL(|f |β)1/β) dσ ≤ C

�

Sn
Φ(|f |) dσ.

Proof. Set g := |f |β. We only use the fact that

tσ(MHL(g) ≥ t) .
�

{g≥t/2}

g dσ,

which is a consequence of the weak (1, 1) boundedness of MHL.
Define Ψ(t) := Φ(t1/β), which is a function of lower type p/β > 1. In

particular,

(13)
s�

0

Ψ(t)
t2

dt = s−1
1�

0

Ψ(st)
t2

dt .
Ψ(s)
s

since
	1
0 t
p/β−2 dt is finite. It follows, by splitting this integral into intervals



118 A. BONAMI AND S. GRELLIER

(2k, 2k+1), that

(14)
∑

k; s>2k

2−kΨ(2k) .
Ψ(s)
s

.

Now, we have to estimate�

Sn
Ψ(MHL(g)) dσ ≤

∑
k

Ψ(2k)σ(MHL(g) ≥ 2k−1)

.
∑
k

2−kΨ(2k)
�

{g≥2k−2}

g dσ.

Interchanging the integral and the sum and using (14), we conclude that
the left hand side is bounded by C

	
Sn Ψ(g) dσ, which we wanted to prove.

Proof of Theorem 1.3. We proceed in two steps, as is classical. Let

M0(f)(ζ) = sup
0<r<1

|f(rζ)|

be the radial maximal function. We first prove that

(15) ‖Φ(M0(f))‖L1(Sn) ≤ C‖f‖HΦ(Bn).

Let β < p, Ψ and g = |f |β be as before. The function g is subharmonic, and
satisfies the condition

sup
0<r<1

�

Sn
Ψ(g(rζ)) dσ(ζ) <∞.

We claim that there exists some constant C, independent of g, such that

(16)
�

Sn
Ψ( sup

0<r<1
g(rζ)) dσ(ζ) ≤ C sup

0<r<1

�

Sn
Ψ(g(rζ)) dσ(ζ),

which will immediately imply (15). The proof of (16) follows the same lines
as in the unit disc. Assume first that g extends to a continuous function
on the closed ball and let g̃ be the function on the unit sphere that coin-
cides with this extension. With this assumption, the right hand side is the
integral of Ψ(g̃). Then it follows from the maximum principle that g ≤ G,
where G is the Poisson integral of g̃. Moreover, we know that sup0<r<1 g(rζ)
is bounded by the Hardy–Littlewood maximal function (for the Euclidean
metric on the unit sphere) of g̃. We deduce the inequality (16) by using
the previous lemma, or its proof, in the context of this Hardy–Littlewood
maximal function. To handle general g, it is sufficient to see that inequality
(15) is valid for g once it is valid for all g(r ·) with 0 < r < 1.

Let f̃ be the a.e. boundary values of f , which we know to exist since f
belongs to Hp(Bn) by (6). Observe that once we have done this first step,
we also know, using Fatou’s lemma, that ‖Φ(|f̃ |)‖L1(Sn) ≤ ‖f‖HΦ .
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To deal with Mα, we use the known inequality (see for instance [St])

(17) Mα(f)β ≤ CαMHL(M0(f)β).

We then use Lemma 2.1 to conclude the proof of Theorem 1.3.

We need stronger characterizations of HΦ(Bn) to obtain atomic decom-
position. First, looking at the proof of (17), one observes that the constant
Cα has a polynomial behavior when α tends to ∞. In the Euclidean case,
details are given in [St]. This means in particular, using the fact that Φ is
doubling, that for some large n0 and all α > 0, we have the inequality

(18) ‖Φ(Mα(f))‖L1(Sn) ≤ C(1 + α)n0‖f‖HΦ(Bn).

Let us now consider the tangential variant of admissible maximal oper-
ators, defined by

(19) NM (f)(ζ) = sup
rw∈Bn

(
1− r

(1− r) + d(ζ, w)

)M
|f(rw)|.

Here d(ζ, w) denotes the pseudodistance on Sn, given as before by d(ζ, w) :=
|1− 〈ζ, w〉|. We claim that

(20) ‖Φ(NM (f))‖L1(Sn) ≤ C‖f‖HΦ(Bn).

Using the definition, we have

NM (f)(ζ) = sup
k∈N

sup
rw∈A

2k
(ζ)

(
1− r

(1− r) + d(ζ, w)

)M
|f(rw)|

. sup
k∈N

2−kMM2kf(ζ).

It then follows that

‖Φ(NM (f))‖L1(Sn) ≤
∑
k∈N
‖Φ(2−kMM2kf)‖L1(Sn)

≤
∑
k∈N

2−kMp‖Φ(M2kf)‖L1(Sn).

For Mp > n0 we can conclude the proof by using (18).
Let us now introduce the grand maximal function. Firstly, we define

the set of smooth bump functions at ζ, which we denote by KNα (ζ), as the
set of smooth functions ϕ supported in B(ζ0, r0) for some ζ0 ∈ Aα(ζ) and
normalized in the following way. In the neighborhood of ζ0, when we use
special coordinates related to ζ0, the unit sphere coincides with the graph
<w1 = h(=w1, w

′), with w′ = (w2, . . . , wn) and h a smooth function. We
write wj = xj +yj , and consider all derivatives D(k,l)ϕ, where D(k,l) consists
of k derivatives in x′ or y′, and l derivatives in y1. We assume that bump
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functions ϕ ∈ KNα (ζ) satisfy the inequality∑
k+l≤N,

‖D(k,l)ϕ‖L∞(B(ζ0,r0))r
k/2+l
0 ≤ σ(B)−1.

The grand maximal function is defined as

(21) Kα,N (f)(ζ) = sup
ϕ∈KNα (ζ)

∣∣∣ lim
r→1

�

Sn

f(rζ)ϕ(ζ) dσ(ζ)
∣∣∣.

The limit exists for f ∈ HΦ(Bn) ⊂ Hp(Bn) since holomorphic functions in
Hardy spaces have distributional boundary values.

We use the following inequality (see [GP], and [St] for the Euclidean
case).

Lemma 2.2. With the definitions above, there exist c = c(Bn) and Ñ =
Ñ(α,N) such that

Kα,Nf(ζ) .Mcα(f)(ζ) +NÑ (f)(ζ).

We now turn to atomic decomposition. We first prove in the next section
that holomorphic extensions of HΦ(Sn)-functions are in the Hardy–Orlicz
space.

3. Atoms and molecules: proof of Theorem 1.12. We first consider
the Szegö projection of atoms and prove the following lemma.

Lemma 3.1. Let a be an atom of order N associated to the ball B =
B(ζ0, r0), and let A = PS(a). Then

sup
0<r<1

�

B(ζ0,2r0)

Φ(|A(rw)|) dσ(w)
σ(B)

. Φ(‖a‖2σ(B)−1/2),(22)

|A(rζ)| .
(

r0
d(rζ, ζ0)

)n+(N+1)/2

‖a‖2σ(B)−1/2 for d(ζ, ζ0) ≥ 2r0.(23)

Proof. Let us prove (22). We have assumed that Φ is concave. In partic-
ular, if dµ is a probability measure and f a positive function on the measure
space (X, dµ), then we have the Jensen inequality

�

X

Φ(f) dµ ≤ Φ
( �

X

f dµ
)
≤ Φ(‖f‖L2(X,dµ)).(24)

If we use it for the measure dσ on B(z0, 2r0) after normalization, we find
that

(25) sup
0<r<1

�

B(ζ0,2r0)

Φ(|A(rw)|) dσ(w)
σ(B)

. Φ

(
‖A‖H2

σ(B)1/2

)
.

Since the Szegö projection is bounded in L2, we have the inequality
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‖A‖H2 ≤ ‖a‖L2 ,

and this proves (22).
The inequality (23) is classical and used for classical Hardy spaces. It is

a consequence of the estimates of the Szëgo kernel, which are explicit for the
unit ball. Without loss of generality we can assume that ζ0 = (1, 0, . . . , 0),
so that the coordinates related to ζ0 may be taken as the ordinary ones.
Otherwise we use the action of the unitary group. In the neighborhood
of ζ0, the unit sphere coincides with the graph <w1 = h(=w1, w

′), with w′ =
(w2, . . . , wn). We recall that S(ζ, w) = cn(1−〈ζ, w〉)−n. In the following, we
are interested in estimates on D

(k,l)
w S(rζ, (h(t1, s′ + it′) + it1, w

′)), where
D(k,l) consists of k derivatives in s′ or t′, and l derivatives in t1. It follows
from elementary computations that

|D(k,l)
w S(rζ, (h(t1, s′ + it′) + it1, w

′))| ≤ C(|ζ ′|k + |w′|k)|1− r〈ζ, w〉|−(n+k+l).

For d(w, ζ0) < r0 and ζ /∈ B(ζ0, 2r0), we know that |1 − r〈ζ, w〉| & |1 −
〈ζ, ζ0〉| & r0. In particular, |w′| . |1− r〈ζ, ζ0〉|1/2, and the same for |ζ ′|. So,

(26) |D(k,l)
w S(rζ, (h(t1, s′ + it′) + it1, w

′))| ≤ C|1− r〈ζ, ζ0〉|−(n+k/2+l).

We use the vanishing moment condition, in the computation of

PSa(rζ) =
�
S(rζ, w)a(w) dσ(w),

to replace S(rζ, ·) by S(rζ, ·) − P , where P is its Taylor polynomial of
order N . By Taylor’s formula, the rest may be bounded by the sum, for
k + l = N + 1, of the quantities |t1|l|w′|k|1 − 〈ζ, ζ0〉|−(n+k/2+l). Using the
fact that |t1|l|w′|k . r

k/2+l
0 , we have

|S(rζ, w)− P (w)| ≤ C r
(N+1)/2
0

d(rζ, ζ0)n+(N+1)/2
.

This gives the result, as σ(B) . rn0 .

Proof of Proposition 1.9. The fact that PS(a) is a molecule is classi-
cal. We give the proof for completeness. Coming back to the definition of
‖PS(a)‖2mol(B,L) given in (10), we split the integral involved into two pieces.
We already know that the integral on B(ζ0, 2r0) satisfies the right estimate.
So it is sufficient to show that

�

Sn\B(ζ0,2r0)

(
d(rξ, ζ0)

r0

)L+n

|PSa(rξ)|2 dσ(ξ)
σ(B)

≤ C‖a‖22,

with C independent of r < 1. By (23), this is a consequence of the estimate

(27)
�

Sn\B(ζ0,2r0)

(
r0

d(ξ, ζ0)

)M dσ(ξ)
σ(B)

≤ C
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for some constant C that does not depend on ζ0 and r0, when M > n (see
for instance [R]).

Proof of Proposition 1.10. Let A be a molecule of order L associated
to B := B(z, r). We want to prove that A belongs to HΦ(Bn) for L large
enough, with the estimate

‖A‖HΦ . Φ(‖A‖mol(B,L))σ(B).

Let us denote Bk := B(z, 2kr). It is sufficient to prove that, for g a positive
function on the unit sphere,

�

Sn
Φ(g)

dσ

σ(B)
. Φ

(( �

Sn

(
d(z, ξ)
r

)L+n

g(ξ)2
dσ(ξ)
σ(B)

)1/2)
.

Splitting the integral into pieces, it is sufficient to prove that
�

B

Φ(g)
dσ

σ(B)
. Φ

(( �

B

g(ξ)2
dσ(ξ)
σ(B)

)1/2)
,

which is a direct consequence of the Jensen inequality (24) as before, and,
for k ≥ 1,

�

Bk\Bk−1

Φ(g)
dσ

σ(B)
. 2−kεΦ

((
2k(L+n)

�

Bk\Bk−1

g(ξ)2
dσ(ξ)
σ(B)

)1/2)
for some ε > 0. To prove this last inequality, we use again the Jensen
inequality (24) for the measure dσ on Bk \ Bk−1, divided by its total mass
σ(Bk \Bk−1) ' 2knσ(B). This gives

�

Bk\Bk−1

Φ(g)
dσ

σ(B)
. 2knΦ

((
2−kn

�

Bk\Bk−1

g(ξ)2
dσ(ξ)
σ(B)

)1/2)
.

We conclude by using the fact that Φ is of lower type p, which yields
2knΦ(t) . Φ(2kn/pt). It is sufficient to choose L > 2n(1/p− 1).

4. Proof of the atomic decomposition Theorem 1.7. Let f be a
fixed function in HΦ. As noticed before, f admits boundary values defined
a.e. on Sn, which we still denote by f .

We also fix an integer N larger than Np.
Let k0 be the least integer such that

(28) ‖Φ(Kα,M (f) +Mα(f))‖L1(Sn) ≤ 2k0 .

For a positive integer k, we define

(29) Ok = {z ∈ Sn : Kα,Mf(z) +Mα(f)(z) > 2k0+k}.
For each k, we then fix a Whitney covering {Bk

i } of Ok. As usual, one
can associate to f an atomic decomposition (see [GL] for a proof for Hardy
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spaces in the unit ball; we also refer to [GP] for a proof in the general context
considered in the last section).

Namely, there exist a function h0 and atoms bki corresponding to the
Whitney covering {Bk

i } such that the following equality holds in the distri-
bution sense and almost everywhere:

(30) f = h0 +
∞∑
k=0

∞∑
i=0

bki .

Here, h0 is a so called “junk atom” bounded by c2k0 while the bki ’s are
atoms supported in the Bk

i ’s, bounded by c2k+k0 , with moment conditions
of order N .

Since ‖bki ‖2σ(Bk
i )−1/2 ≤ ‖bki ‖∞, it is sufficient to prove that∑

i,k

σ(Bk
i )Φ(‖bki ‖∞) <∞.

We have
∞∑
k=0

∞∑
i=0

σ(Bk
i )Φ(‖bki ‖∞) ≤

∞∑
k=0

Φ(2k+k0)σ(Ok)

≤ c
∞�

1

Φ(t)
t

σ({ζ ∈ Sn : KM
α f(ζ) +Mα(f)(ζ) ≥ t}) dt

. c

∞�

1

Φ′(t)σ({ζ ∈ Sn : KM
α f(ζ) +Mα(f)(ζ) ≥ t}) dt

≤ ‖Φ(KM
α f)‖L1(Sn) + ‖Φ(Mα(f))‖L1(Sn) ≤ c‖f‖HΦ .

To obtain the converse inequality, we use the decomposition f =
∑
Aj,k

where the Aj,k = P (bj,k)’s are molecules and satisfy, by Proposition 1.9.

‖Aj,k‖HΦ ≤ σ(Bk
i )Φ(‖bki ‖2σ(Bk

i )−1/2) ≤ σ(Bk
i )Φ(‖bki ‖∞)

As pointed out before, atomic decomposition allows us to obtain a lot of
results such as molecular decomposition that we are going to consider now.

5. Factorization theorem and Hankel operators. Now, we prove
the factorization theorem.

Proof of Theorem 1.17. Let A be a molecule associated to the ball B =
B(ζ0, r0) with r0 < 1. We write A = fg with

g(z) := log
(

4
1− 〈z, ζ〉

)
,

where ζ := (1− r0)ζ0. The constant 4 has been chosen in such a way that g,
which is holomorphic on Bn, does not vanish. We first observe that we have
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the required inequality for f , that is,

(31) ‖f‖mol(B,L′) .
‖A‖mol(B,L)

log(e+ σ(B)−1)

for L′ < L. For this, we have the two inequalities

|g(ξ)| & log(e+ r−1
0 ) ' log(e+ σ(B)−1), ξ ∈ B(ζ0, r0) ⊂ Sn,(32)

|g(rξ)| & log(e+ σ(B)−1)
(

r0
d(ζ0, rξ)

)ε
, ξ /∈ B(ζ0, r0),(33)

for all r < 1 and some ε > 0. We have used the fact that, for u > 1 and
v > e,

log(uv) ≤ Cεuε log v.

In view of (31), we can use (33) for the computation of the integral outside B.
Inside B, we observe that it is sufficient to prove that

‖f‖H2 .
‖A‖H2

log(e+ σ(B)−1)
,

which uses the boundary values of f and estimate (32).
We now prove that g belongs uniformly to BMOA(Bn), or equivalently,

that (1 − |z|2)|∇g|2 ' (1− |z|2)/|1− 〈z, ζ〉|2 is a Carleson measure with
uniform bound. Let Bρ = B(x0, ρ) be a ball on the boundary of Bn and
T (Bρ) be the tent over this ball. We have to prove that

�

T (Bρ)

1− |z|2

|1− 〈z, ζ〉|2
dV (z) . σ(Bρ)

with constants that are independent of Bρ, r and ζ0, or, equivalently,
ρ�

0

�

Bρ

t

(d(w, ζ0) + t)2
dt dσ(w) . σ(Bρ).

If d(x0, ζ0) ≥ 2ρ then, for w ∈ Bρ, we have d(w, ζ0) ≥ ρ and the denominator
is bounded below by ρ, which allows us to conclude. If d(x0, ζ0) ≤ 2ρ, then
Bρ is included in B̃ρ := B(ζ0, 3ρ) which has a measure comparable to Bρ.
Integrating first in t, we have to prove that

�

eBρ
log
(

ρ

d(ζ0, w)

)
dσ(w) . σ(B̃ρ).

To prove this last inequality, we cut the ball B̃ρ into dyadic shells. We
conclude by using the inequality∑

j>0

jσ(B(ζ0, 2−jρ)) . σ(Bρ),



HARDY–ORLICZ SPACES 125

which is a consequence of the fact that

σ(B(z, 2−jρ)) . 2−jnσ(B(z, ρ)).

We have recalled this classical inequality in (4).
Assume now that Ψ(‖A‖mol(B,L))σ(B) ≤ 1. We use the fact that log t '

logΨ(t) to get

log(e+ ‖A‖mol(B,L)) . log(e+ σ(B)−1)

and (31) to conclude that

Φ(‖f‖mol(B,L′)) . Ψ(‖A‖mol(B,L)).

Observe that we have as well the following.

Proposition 5.1. There exists a constant C such that every molecule
A can be written as fg with ‖g‖BMOA ≤ 1 and

‖f‖lux
HΦ ≤ C‖A‖mol(B,L)σ(B)%Ψ (σ(B)).

Proof. Indeed, by homogeneity of both sides of the last inequality, it is
sufficient to prove it when the right hand side is equal to 1. Equivalently,
this means that

‖A‖mol(B,L) = Ψ−1(1/σ(B)),

or σ(B)Ψ(‖A‖mol(B,L)) = 1. So we know that we can find f and g such that
‖g‖BMOA ≤ 1 and

‖f‖HΦ ≤ σ(B)Φ(‖f‖mol(B,L′)) . 1.

This means that ‖f‖lux
HΦ . 1, which we wanted to prove.

Weak factorization, that is, Theorem 1.18, follows directly from The-
orem 1.11 (molecular decomposition) and Theorem 1.17 (factorization of
molecules), with the bound below for the quasi-norm of f in the Hardy–
Orlicz space.

Proof of Corollary 1.19. Let hb be a Hankel operator of symbol b. Let
us first assume that b ∈ BMOA(%Ψ ). Then, for any g in BMOA,

|〈hb(f), g〉| = |〈PS(bf̄), g〉| = |〈b, fg〉|
. ‖b‖BMOA(%Ψ )‖fg‖lux

HΨ . ‖b‖BMOA(%Ψ )‖f‖lux
HΦ‖g‖BMOA.

It follows that hb is bounded from HΦ(Bn) to H1(Bn), which we wanted to
prove.

Conversely, assume that hb is bounded fromHΦ(Bn) toH1(Bn). To prove
that b ∈ BMOA(%Ψ ), it is sufficient to show that there exists a positive
constant C such that for each ball B we can find a polynomial R ∈ PN (B)
such that �

B

|b−R|2dσ ≤ C%Ψ (σ(B))2σ(B).
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We take for R the orthogonal projection of b onto PN (B), so that the func-
tion a := χB(b−R) on Sn is an atom. We know that A := Pa is a molecule
associated to B, with ‖A‖mol(B,L) . ‖a‖2σ(B)−1/2. From Proposition 5.1,
we know that A may be written as fg with

‖g‖BMOA ≤ 1, ‖f‖lux
HΦ . ‖A‖mol(B,L)σ(B)%Ψ (σ(B)).

Next, we write �

B

|b−R|2 dσ = 〈b, a〉 = 〈b, Pa〉 = 〈hb(f), g〉,

so that�

B

|b−R|2 dσ ≤ ‖hb‖ ‖f‖lux
HΦ‖g‖BMOA . ‖hb‖ ‖a‖2σ(B)1/2%Ψ (σ(B)).

We divide both sides by ‖a‖2 = (
	
B |b−R|

2dσ)1/2 to conclude the proof.

We will give some complements to the characterization of symbols of
bounded Hankel operators. If expH denotes the class of holomorphic func-
tions f such that f(r ·) is uniformly in the exponential class expL, then
Proposition 1.16 is still valid with BMOA replaced by expH. Let us point
out that expH is the dual of PS(L logL), the space of functions that may
be written as PSg with g ∈ L logL, equipped with the norm

‖h‖PS(L logL) := inf{‖g‖L logL : h = PSg}.
Then, looking at the proof of Corollary 1.19, we see that we have as well
the following improvement, since PS(L logL) is contained in H1.

Proposition 5.2. If b belongs to BMOA(%Ψ ), then hb extends to a con-
tinuous operator from HΦ(Bn) to PS(L logL).

This has been proven by different methods in [BM].
The same reasoning allows us to characterize as well the Hankel operators

which map HΦ(Bn) to H1
weak.

Proposition 5.3. hb extends to a continuous operator from HΦ(Bn) to
H1

weak if and only if b belongs to BMOA(%Φ).

The necessity of the condition follows from the fact that

|〈b, f〉| = |hb(f)(0)| . ‖hb‖ ‖f‖HΦ ,
so that b defines a continuous linear form on HΦ. We have used the fact that
H1

weak is continuously contained in H1/2, and evaluation at 0 is bounded on
this space. For the sufficiency, we prove that hb maps HΦ(Bn) to PS(L1)
when b ∈ BMOA(%Φ). But the dual of PS(L1) identifies with H∞. So, using
duality, it is sufficient to prove that multiplication by an element of the dual,
that is, H∞, maps HΦ into itself. This is straightforward.
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6. Extension of the results to a general setting. We are now going
to give the main points which allow extending our results to a larger class
of domains including strictly pseudoconvex domains and convex domains of
finite type. Let Ω be a smooth bounded domain in Cn. Define the Hardy–
Orlicz space on Ω as the space of holomorphic functions f such that

sup
0<ε<ε0

�

δ(w)=ε

Φ(|f |)(w) dσε(w) <∞

where Φ is as before of lower type p, δ(w) is the distance from w to ∂Ω, and
dσε the Euclidean measure on the level set δ(w) = ε. Recall that the usual
Hardy space Hp(Ω) of holomorphic functions on Ω corresponds to the case
Φ(t) = tp.

6.1. Geometry of H-domains

Definition 6.1. We say that Ω is an H-domain if it is a smoothly
bounded pseudoconvex domain of finite type and if, moreover, for each ζ ∈
∂Ω there exist a neighborhood Vζ and a biholomorphic map Φζ defined on
Vζ such that Φζ(Ω ∩ Vζ) is geometrically convex.

We recall that a point ζ ∈ ∂Ω is said to be of finite type if the (nor-
malized) order of contact with ∂Ω of complex varieties at ζ is finite. By
[BS] and our assumption it suffices to consider the order of contact of ∂Ω at
ζ with 1-dimensional complex manifolds (see [BS] and references therein).
The domain Ω is said to be of finite type if every point on ∂Ω is of finite
type. We denote by MΩ the maximum of the types of points on ∂Ω. Notice
that the class of H-domains contains both the convex domains of finite type
and the strictly pseudoconvex domains.

We describe the geometry of an H-domain Ω. This is done locally, using
a partition of unity. Moreover, in a neighborhood of a point ζ ∈ ∂Ω, using
local coordinates, we may assume that Ω is geometrically convex. Thus, we
do not lose generality if we assume that it is globally convex. Then, there
exist an ε0 > 0 and a defining function % for Ω such that for −ε0 < ε < ε0 the
sets Ωε := {z ∈ Cn : %(z) < ε} are all convex. Moreover, denote by U = Uε0
the tubular neighborhood of ∂Ω given by {z ∈ Cn : −ε0 < %(z) < ε0}.
By taking ε0 > 0 sufficiently small, we may assume that on U the normal
projection π of U onto ∂Ω is uniquely defined. Let z ∈ U and let v be a
unit vector in Cn. We denote by τ(z, v, r) the distance from z to the surface
{z′ : %(z′) = %(z) + r} along the complex line determined by v. One of the
basic relations among the quantities defined above is the following. There
exists a constant C depending only on the geometry of the domain such
that, given z ∈ U , any unit vector v ∈ Cn orthogonal to the level set of the
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function %, and r ≤ r0 and η < 1, we have

(34) C−1η1/2τ(z, v, r) ≤ τ(z, v, ηr) ≤ Cη1/MΩτ(z, v, r).

We next define the r-extremal orthonormal basis {v(1), . . . , v(n)} at z, which
generalizes the choices that we have made for the unit ball. The first vector is
given by the direction transversal to the level set of % containing z, pointing
outward. Among the complex directions orthogonal to v(1) we choose v(2)

in such a way that τ(z, v(2), r) is maximum. We repeat the same procedure
to determine the remaining elements of the basis. We set

τj(z, r) = τ(z, v(j), r).

By definition, τ1(z, r) ' r. The polydisc Q(z, r) is now given as

Q(z, r) = {w : |wk| ≤ τk(z, r), k = 1, . . . , n}.
Here (w1, . . . , wn) are the coordinates determined by the r-extremal or-
thonormal basis {v(1), . . . , v(n)} at z. Note that these coordinates (w1, . . . , wn)
= (wz,r1 , . . . , wz,rn ) depend on z and r. They are called special coordinates at
the point z and at scale r. A quasi-distance is defined by setting

(35) db(z, w) = inf{r : w ∈ Q(z, r)}.

Notice that by the above properties the sets Q(z, r) are in fact equivalent
to balls in the quasi-distance db. We also consider balls on the boundary ∂Ω
defined in terms of db. For ζ ∈ ∂Ω and r > 0 we set

B(ζ, r) = {z ∈ ∂Ω : db(z, ζ) < r}.
These balls are equivalent to the sets Q(ζ, r) ∩ ∂Ω: there exist c, C > 0 so
that

Q(ζ, cr) ∩ ∂Ω ⊂ B(ζ, r) ⊂ Q(ζ, Cr) ∩ ∂Ω.
We define the function d on Ω ×Ω by setting

(36) d(z, w) = δ(z) + δ(w) + db(π(z), π(w)),

where π is the normal projection of a point z onto the boundary. We set

τ(z, r) = (τ1(z, r), . . . , τn(z, r)).

and, for α a multiindex,

τα(z, r) =
n∏
j=1

τ
αj
j (z, r).

When Ω is strictly pseudoconvex, we have simply τα(z, r) ' r(|α|+α1)/2. Let
σ denote the surface measure on ∂Ω. Then

σ(B(w, r)) ' τ (1,2,...,2)(w, r).

Moreover, the property (4) is replaced by the double inequality
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(37) λnσ(ζ0, r) . σ(B(ζ0, λr)) . λ1+(2n−2)/MΩσ(B(ζ0, λr)),

As we said before, all these definitions are local, and may be given in the
context of H-domains.

As in the case of the unit ball, if wj are the coordinates on w− z in the
basis {v(1), . . . , v(n)} and if wj = sj + itj , then sj for j ≥ 2 and tj for j ≥ 1
define 2n− 1 local coordinates on ∂Ω in a neighborhood of z. We will still
speak of special coordinates at the point z and at scale r.

In the neighborhood of z ∈ ∂Ω, the hypersurface ∂Ω coincides with the
graph <w1 = h(=w1, w

′), with w′ = (w2, . . . , wn). As in the case of the
unit ball, we are interested in estimates on D(α,β)

w S( (h(t1, s′+ it′)+ it1, w
′)),

where α is an n − 1-index of derivation in the variable s′, while β is an
n-index of derivation in t. The equivalent of (26) is given by the estimates
of McNeal and Stein [McS1] and [McS2] (see also [BPS1, Lemma 4.7] for an
analogous context). For d(w, z) < r and ζ /∈ B(z, Cr), we have

(38) |D(α,β)
w S(ζ, (h(t1, s′ + it′) + it1, w

′))|
. τ−(1+β1,2+α2+β2,...,2+αn+βn)(z, d(w, z)).

As in [BPS1], we will also use the existence of a support function given
by Diederich and Fornæss [DFo].

Theorem 6.2. Let Ω be a smoothly bounded pseudoconvex H-domain of
finite type in Cn. Then there exist a neighborhood U of the boundary ∂Ω
and a function H ∈ C∞(Cn × U) such that the following conditions hold:

(i) H(·, w) is holomorphic on Ω for all ζ ∈ U ;
(ii) there exists a constant c1 > 1 such that

1
c1
d(z, w) ≤ |H(z, w)| ≤ c1d(z, w).

With all these definitions, we claim the following.

Statement of results for H-domains. The analogues of Theorems
1.3 to Corollary 1.19 are valid for the H-domain Ω with the following modi-
fications: Np := (1/p−1)(MΩ +2n−2)−1 in Definition 1.5; in Proposition
1.9, the condition is L < (2N + 2)/MΩ, while in Proposition 1.10, we have
Lp := 2(1/p− 1)(1 + (2n− 2)/MΩ). Finally, for the definition of BMO(%),
we have to take N + 1 > α(MΩ + 2n− 2).

Let us sketch the modifications. Atoms adapted to a ball B := B(ζ0, r0)
are defined as before, using special coordinates at ζ0 and at scale r0 to define
the vanishing moment conditions. Notice that the coordinates depend on r0,
but the space PN (ζ0) does not.
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Then, in Lemma 3.1, the second estimate has to be replaced by

(39) |A(ζ)| .
(

r0
d(ζ, ζ0)

)(N+1)/MΩ ‖a‖2σ(B)1/2

σ(ζ0, d(ζ, ζ0))
for d(ζ, ζ0) ≥ Cr0.

The proof is the same, using the estimates (38) in place of (26).
Next, molecules are defined as follows.

Definition 6.3. A holomorphic function A ∈ H2(Ω) is called a molecule
of order L, associated to the ball B := B(z0, r0) ⊂ ∂Ω, if it satisfies

(40)

sup
ε<ε0

�

∂Ω

(
1 +

(ε+ d(z0, ξ))L

rL0

σ(B(z0, d(z0, ξ)))
σ(B(z0, r0))

)
|A(ξ − εν(ξ))|2 dσ(ξ)

σ(B)
<∞,

with ν the outward normal vector. In this case, the left side is ‖A‖2mol(B,L).
It follows from (39), by splitting the integral into dyadic balls, that the

projection of an atom associated to the ball B := B(z0, r0) ⊂ ∂Ω is a
molecule of order L < (2N + 2)/MΩ.

Finally, to see that a molecule of order L is in the Hardy space HΦ, we
prove that, with Bk := B(z0, 2kr0),

�

Bk\Bk−1

Φ(g)
dσ

σ(B)
. 2−kεΦ

((
2kL

σ(Bk)
σ(B)

�

Bk\Bk−1

g(ξ)2
dσ(ξ)
σ(B)

)1/2)
for some ε > 0. To do this, we use again the Jensen inequality (24) for the
measure dσ on Bk, divided by its total mass σ(Bk). This gives

�

Bk\Bk−1

Φ(g)
dσ

σ(B)
.
σ(Bk)
σ(B)

Φ

(( �

Bk\Bk−1

g(ξ)2
dσ(ξ)
σ(Bk)

)1/2)
.

We conclude by using the fact that Φ is of lower type p, which yields

σ(Bk)
σ(B)

Φ(t) . Φ

((
σ(Bk)
σ(B)

)1/p

t

)
.

Using (37) shows that it is sufficient to choose L > Lp := 2(1/p − 1)(1 +
(2n− 2)/MΩ).

Up to now, we have given the modifications to obtain atomic decom-
position, the continuity of the Szegö projection, and duality. It remains to
indicate the modifications in the proof of the factorization theorem. As at
the beginning of Section 5, we factorize each molecule A associated to a ball
B := B(ζ0, r) as B = fg, with f a molecule and g a BMOA-function.

For this factorization, we use the support function given in Theorem 6.2.
We set H0 = H(·, ζ̃0), where ζ̃0 = ζ0 − rν(ζ0). We choose g = log(cH−1

0 )
with c such that g does not vanish in Ω.
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We have, as before, the inequality

(41) ‖f‖mol(B,L′) .
‖A‖mol(B,L)

log(e+ σ(B)−1)
for L′ < L (just use Theorem 6.2(ii)).

We now prove that log(cH−1
0 ) belongs to BMOA with bounds indepen-

dent of ζ0 and r. The proof follows the same lines as the one in the unit
ball, using that |H0| and |∇H0| are uniformly bounded in Ω.

These are the principal points to modify in the proofs.
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