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ON THE BOUNDARY CONVERGENCE OF SOLUTIONS TO THE
HERMITE–SCHRÖDINGER EQUATION

BY

PETER SJÖGREN (Göteborg) and J. L. TORREA (Madrid)

Abstract. In the half-space Rd × R+, consider the Hermite–Schrödinger equation
i∂u/∂t = −∆u+ |x|2u, with given boundary values on Rd. We prove a formula that links
the solution of this problem to that of the classical Schrödinger equation. It shows that
mixed norm estimates for the Hermite–Schrödinger equation can be obtained immediately
from those known in the classical case. In one space dimension, we deduce sharp pointwise
convergence results at the boundary by means of this link.

The authors dedicate this paper to the memory of Andrzej Hulanicki.
Both of us knew Andrzej since the 1970’s. Since then he has been like an
invariant for us. We have enjoyed the high quality of his mathematics, his
capacity of work, his ability to organize important mathematical events, his
generosity when sharing ideas and his sympathy. All this, and even his age,
seemed to be invariant during these decades.

1. Introduction and results. The solution of the classical, free Schrö-
dinger equation in the half-space Rd × R+ with variables (x, t), i

∂u

∂t
= −∆u,

u(·, 0) = f,

can be written u(x, t) = eit∆f(x), for f ∈ L2(Rd). For p, q ∈ [1,∞], one
measures the size of u by means of the mixed norm

‖u‖Lq
t (R,Lp

x(Rd)) =
( �

R

( �

Rd

|u(x, t)|p dx
)q/p

dt
)1/q

,

with the obvious interpretation for p or q =∞. The Strichartz estimate

‖u‖Lq
t (R,Lp

x(Rd)) ≤ Cd,p‖f‖L2(Rd)(1)
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is known to hold if and only if

(2)
d

p
+

2
q

=
d

2
and


2 ≤ p ≤ ∞ for d = 1
2 ≤ p <∞ for d = 2
2 ≤ p ≤ 2d/(d− 2) for d ≥ 3.

This is due essentially to J. Ginibre and G. Velo [5]. M. Keel and T. Tao [6]
obtained the endpoint results.

Results about the pointwise convergence of u(x, t) at the boundary are
also known, for f in Sobolev spaces

W s(Rd) = {f ∈ L2(Rd) : (I −∆)s/2f ∈ L2}.
For d = 1, L. Carleson [3] and B. Dahlberg and C. Kenig [4] have proved
that eit∆f → f a.e. as t→ 0+ for all f ∈W s(R) if and only if s ≥ 1/4.

In this paper, we consider the same questions for the Hermite operator

H = −∆+ |x|2, x ∈ Rd.

Thus u will be the solution u(x, t) = e−itHf(x) to the Hermite–Schrödinger
equation in Rd × R+ with given boundary values, i

∂u

∂t
= Hu,

u(·, 0) = f.
(3)

As in the classical case, the Strichartz estimate

‖e−itHf‖Lq
t ((0,2π),Lp

x(Rd)) ≤ Cd,p,q‖f‖L2(Rd)(4)

holds under the assumption (2); see H. Koch and D. Tataru [8]. Moreover,
since the interval of integration in the t variable is now bounded, (4) remains
true if the equality in (2) is replaced by the inequality d/p+ 2/q ≥ d/2.

Our Lemma 1 in Section 2 gives an explicit relation between the two
solution operators e−itH and eit∆. It makes it easy to prove the following
result, which implies that the estimates (1) and (4) are actually equivalent
when the equality in (2) holds.

Theorem 1. Let 1 ≤ p, q ≤ ∞, and assume that d/p+ 2/q = d/2. Then
for f ∈ L2,

‖e−itHf‖Lq
t ((0,π/4),Lp

x(Rd)) = ‖eit∆f‖Lq
t ((0,∞),Lp

x(Rd)).

As we shall see below, it does not matter whether the t interval in (4) is
(0, 2π) or (0, π/4); the two mixed norms obtained are proportional for real
functions f .

In the case d = 1, we shall also consider the almost everywhere conver-
gence as t → 0+ of the solution e−itHf , to the initial data. To state these
results, we use both W s(R) and the Sobolev spaces associated to H, defined
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by
W s
H(R) = {f ∈ L2(R) : Hs/2f ∈ L2}

with the obvious norm. These spaces have been introduced by S. Thangavelu
[10]. We point out that there is a continuous inclusion W s

H ⊂ W s (see
B. Bongioanni and J. L. Torrea [2, Theorem 3(i)]).

Yajima [11] proved the a.e. convergence e−itHf → f as t → 0+ for f in
the intersection W s(R)∩L1, with s > 1/2. Then Bongioanni and Rogers [1]
obtained the same convergence for f ∈W s

H(R), with s > 1/3. The following
result is sharp with respect to both types of Sobolev spaces.

Theorem 2. Let d = 1.

(i) Assume f ∈ W 1/4(R). Then for a.a. x ∈ R the function t 7→
e−itHf(x), 0 < t < π/8, will, after modification on a null set, be
continuous with limit f(x) as t→ 0+.

(ii) If s < 1/4, there exists an f ∈W s(R) such that for all x in a set of
positive measure the function t 7→ e−itHf(x) does not converge as
t→ 0+, even after any modification on a null set.

(iii) The statements in (i) and (ii) also hold if the spaces W s(R) are
replaced by W s

H(R).

Bongioanni and Rogers obtained their convergence result via a sharp
global maximal operator estimate from W s

H into Lp. The relevant maximal
function is

Mf(x) = ess sup
0<t<π/8

|e−itHf(x)|.

The proof of Theorem 2(i) is based on a local L1 estimate for M. The
following result says that there is no global Lp estimate for M from W s

into Lp.

Theorem 3. Let d = 1 and s > 0. The operatorM does not map W s(R)
boundedly into Lp nor into weak Lp for any p < ∞, and M maps W s(R)
boundedly into L∞ if and only if s > 1/2.

By c > 0 and C <∞ we denote many different constants.

2. Some key formulas; proof of Theorem 1. Let hn(x), n ∈ N0,
denote the Hermite functions in R, normalized in L2. By Φµ, µ ∈ Nd

0, we
denote the d-dimensional, normalized Hermite functions, which are simply
the tensor products of the hn. See further Thangavelu [9, Sect. 1.1].

The semigroup e−tH , t > 0, generated by H can be defined also with
a complex parameter z instead of t, for <z > 0. Moreover, for these z the
operator e−zH is given by integration against the kernel

Kz(x, y) =
∑
µ∈Nd

0

e−(2|µ|+d)zΦµ(x)Φµ(y).(5)
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For real and for complex parameter values, this series can be summed. The
sum is the well-known Mehler kernel, which can be found for instance in [9,
equation (4.1.3), p. 85]. For <z > 0 one has

Kz(x, y) =
1

(2π sinh 2z)d/2
exp
(

1
2

(
− coth 2z (|x|2 + |y|2) +

2
sinh 2z

x · y
))

.

This expression is well defined also for z on the imaginary axis, except at
the multiples of iπ/2. Indeed, for t ∈ R \ (π/2)Z we get

Kit(x, y) =
e−iπd/4

(2π sin 2t)d/2
exp
(
i

2

(
cot 2t (|x|2 + |y|2)− 2

sin 2t
x · y

))
(6)

=
e−iπd/4

(2π sin 2t)d/2
exp
(
i

2

(
cot 2t

∣∣∣∣y − x

cos 2t

∣∣∣∣2 − tan 2t |x|2
))

.

By analytic continuation from <z > 0, one sees that the argument of the
quantity (2π sin 2t)d/2 occurring here should be chosen as [2t/π]πd/2. One
can also check that integration against this kernel gives the solution of the
problem (3), at least for test functions f . Since Kit is the kernel of e−itH ,
we shall often write Kitf instead of e−itHf . Clearly, each operator e−itH is
bounded on L2.

The Hermite functions hn are real-valued and have the same parity as
the index n. From (5), it follows that Kz(x, y) = Kz(x, y), and also that
Kz+iπ/2(x, y) = e−iπd/2Kz(−x, y). Here <z > 0, but if t ∈ R is not a multiple
of π/2, we also conclude that

K−it(x, y) = Kit(x, y) and Ki(t+π/2)(x, y) = e−iπd/2Kit(−x, y).

For real functions f , it follows that the Lp(Rn) norm of e−itHf is even
and π/2-periodic as a function of t, and thus determined by its values for
0 < t < π/4.

We shall compare the operators e−itH and eit∆ by finding a link between
their kernels. Observe that eit∆ is given by convolution with the standard
Schrödinger kernel

Lit(x) = e−iπd/4
1

(4πt)d/2
exp
(
i

1
4t
|x|2
)
.

Instead of eit∆f , we shall often write Litf .

Lemma 1. For any f ∈ L2 and any v > 0,

Ki(arctan v)/2f(x) = exp(−iv|x|2/2)(1 + v2)d/4Liv/2f(x
√

1 + v2).
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Proof. For 0 < t < π/4, we let tan 2t = v in (6) and get

Ki(arctan v)/2(x, y)

= e−iπd/4
(√

1 + v2

2πv

)d/2
exp
(
−i v

2
|x|2
)

exp
(
i

1
2v
|y − x

√
1 + v2|2

)
= exp(−iv|x|2/2)(1 + v2)d/4Liv/2(x

√
1 + v2 − y).

Integrating against f(y) dy, we obtain the desired equation when f ∈ C∞0 .
The general case then follows by continuity in L2.

Proof of Theorem 1. Assuming p, q <∞, we get

π/4�

0

( �

Rd

|Kitf(x)|p dx
)q/p

dt

=
∞�

0

( �

Rd

|Ki(arctan v)/2f(x)|p dx
)q/p 1

2
1

1 + v2
dv

=
1
2

∞�

0

( �

Rd

|(1 + v2)d/4Liv/2f(x
√

1 + v2)|p dx
)q/p 1

1 + v2
dv

=
1
2

∞�

0

( �

Rd

|Liv/2f(x)|p dx
)q/p

(1 + v2)−q(d/p+2/q−d/2)/2 dv

=
∞�

0

( �

Rd

|Livf(x)|p dx
)q/p

dv.

The cases when p or q is infinite are similar.

3. Proof of Theorem 2. From now on, d = 1. In this section, we shall
need the following estimate, which is based on Carleson’s lemma in [3, p.
24]. It can also be seen as a limit case of a lemma due to Kenig and A. Ruiz
[7, Lemma 2] (cf. (7) below), but we prefer to give a direct proof.

Lemma 2. Let a and b be real numbers with (a, b) 6= (0, 0). Then for any
interval J , ∣∣∣∣ �

J

ei(at+bt
2) dt

|t|1/2

∣∣∣∣ ≤ C min(|a|−1/2, |b|−1/4),

where C is an absolute constant. If J is unbounded, the integral here is
interpreted as the limit of the integrals over bounded intervals increasing
to J .

Proof. Assume first b = 0. By homogeneity, we need then only consider
the case a = 1, which is easy.
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When b 6= 0, we see by taking the conjugate that we may assume b > 0.
Let u = b1/2t and A = −ab−1/2/2. Then

�

J

ei(at+bt
2) dt

|t|1/2
= b−1/4

�

J ′

ei(−2Au+u2) du

|u|1/2
= e−iA

2
b−1/4

�

J ′

ei(u−A)2 du

|u|1/2

for some interval J ′. The lemma is equivalent to the following claim:

(7)
∣∣∣∣ �
J ′

ei(t−A)2 dt

|t|1/2

∣∣∣∣ ≤ C min(1, |A|−1/2).

Without loss of generality, we may assume A ≥ 0. Consider first the case
0 ≤ A ≤ 2. Then we split the integral in (7) and integrate by parts in the
second term, getting∣∣∣∣ �
J ′

ei(t−A)2 dt

|t|1/2

∣∣∣∣ ≤ ∣∣∣∣ �

|t|<4

χJ ′ei(t−A)2 dt

|t|1/2

∣∣∣∣+
∣∣∣∣ �

|t|>4

χJ ′ei(t−A)2 dt

|t|1/2

∣∣∣∣
≤

�

|t|<4

dt

|t|1/2
+ |integrated terms|+

∣∣∣∣ �

|t|>4

χJ ′ei(t−A)2 d

dt

(
1

2(t−A)|t|1/2

)
dt

∣∣∣∣
≤ C + C + C

�

|t|>4

dt

|t|5/2
≤ C.

Now let A > 2. We begin by observing that∣∣∣∣ �

|t|<1/A

χJ ′ei(t−A)2 dt

|t|1/2

∣∣∣∣ ≤ �

|t|<1/A

dt

|t|1/2
≤ CA−1/2

and
�

|t−A|<1

χJ ′
dt

|t|1/2
≤ CA−1/2.

In the remaining integral, taken over the set

{t ∈ J ′ : |t| > 1/A and |t−A| > 1},

we integrate by parts, as above. The integrated terms will then be controlled
by the values of (t−A)−1|t|−1/2 at a few points in the set

{|t| ≥ 1/A and |t−A| ≥ 1},

and those values are all bounded by CA−1/2. Thus we need only consider
the integral
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{t∈J ′:|t|>1/A and |t−A|>1}

ei(t−A)2 d

dt

(
1

(t−A)|t|1/2

)
dt

∣∣∣∣
≤

�

{|t|>1/A and |t−A|>1}

1
(t−A)2|t|1/2

dt+
�

{|t|>1/A and |t−A|>1}

1
|t−A| |t|3/2

dt

= I + II.

We split each of the integrals I and II thus defined into parts given by
|t| < A/2 and |t| > A/2. For I we get

I =
( �

{1/A<|t|<A/2}

+
�

{|t−A|>1 and |t|>A/2}

) 1
(t−A)2|t|1/2

dt

≤ C
�

|t|<A/2

1
A2|t|1/2

dt+ C
�

|t−A|>1

1
(t−A)2A1/2

dt ≤ CA−1/2,

and similarly

II =
( �

{1/A<|t|<A/2}

+
�

{|t−A|>1 and |t|>A/2}

) 1
|t−A| |t|3/2

dt

≤ C
�

|t|>1/A

1
A|t|3/2

dt+
�

|t|>A/2

1
|t|3/2

dt ≤ CA−1/2.

The claim is verified, and Lemma 2 is proved.

The maximal function estimate in the next lemma will enable us to prove
Theorem 2(i). For f ∈ C∞0 , the function e−itHf(x) = Kitf(x) is continuous
in (x, t) ∈ R × R+ if defined as f(x) for t = 0, as is easily verified with
Fourier transforms. In the definition of Mf , one can for f ∈ C∞0 obviously
replace the essential supremum by an ordinary supremum.

Lemma 3. Let I be a bounded interval. Then for any f ∈ C∞0 (R),

(8)
�

I

Mf(x) dx ≤ C‖f‖W 1/4 , C = C(I).

Before proving this lemma, we use it to prove Theorem 2(i). Given f ∈
W 1/4, we take a sequence fj ∈ C∞0 , j = 1, 2, . . . , with ‖fj − f‖W 1/4 < 2−j .
Applying Lemma 3 to fj − fj+1, whose W 1/4 norm is less than 21−j , we get

(9)
�

I

sup
0<t<π/8

|Kitfj(x)−Kitfj+1(x)| dx ≤ C2−j .

Here the supremum can be taken over 0 ≤ t < π/8, since each function
Kitfj(x) is continuous in R × [0, π/8) with the value fj(x) at (x, 0). The
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integrals in (9) have a finite sum over j, so that
∞∑
j=1

sup
0≤t<π/8

|Kitfj(x)−Kitfj+1(x)|

is finite for a.a. x ∈ I. But for any fixed x with this property, the functions
t 7→ Kitfj(x) will converge, uniformly in 0 ≤ t < π/8, to a continuous
function ux(t). On the other hand, Kitfj(x)→ Kitf(x) in L2(I × (0, π/8)),
and fj → f in L2(R). We conclude that for a.a. x, the function t 7→ Kitf(x)
must coincide with the continuous function ux(t) for a.a. t ∈ (0, π/8) and,
moreover, ux(0) = f(x). This implies Theorem 2(i).

Proof of Lemma 3. Because of Lemma 1, one can replace Mf(x) by

sup
0<v<1

|Liv/2f(x
√

1 + v2)|

when proving (8). It is clearly enough to show that for all f ∈ C∞0 ,

(10)
�

I

sup
0<v<1

<+Liv/2f(x
√

1 + v2) dx ≤ C‖f‖W 1/4 ,

where <+ denotes the positive part of the real part.
We first compare the integrals over I of

sup<+Liv/2f(x
√

1 + v2) and sup<Liv/2f(x
√

1 + v2),

where both suprema are taken over 0 < v < 1. They differ only on the
set M = {x ∈ I : sup<Liv/2f(x

√
1 + v2) < 0}. Since Liv/2f(x

√
1 + v2)

converges pointwise to f as v → 0+, we have sup<Liv/2f(x
√

1 + v2) ≥
<f(x) for all x, and so

�

I

sup<+Liv/2f(x
√

1 + v2) dx

=
�

I

sup<Liv/2f(x
√

1 + v2) dx−
�

M

sup<Liv/2f(x
√

1 + v2) dx

≤
�

I

sup<Liv/2f(x
√

1 + v2) dx+
�

M

(−<f(x)) dx

≤
�

I

sup<Liv/2f(x
√

1 + v2) dx+ C‖f‖W 1/4 ;

here the last step went via an L2 estimate.
This means that we can replace <+ by < when we prove (10) for f ∈

C∞0 . We shall use the method of Kolmogorov–Seliverstov–Plessner, see also
Carleson [3, Theorem, p. 24]. It is enough to let v = v(x) be a measurable
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function of x ∈ I with 0 < v(x) < 1 and to prove that

<
�

I

Liv(x)/2f(x
√

1 + v(x)2) dx ≤ C‖f‖W 1/4 ,

with C = C(I) independent of v(x) and f.

We define the Fourier transform by ĥ(ξ) =
	
R h(x)e−ixξ dx and observe

that L̂it(ξ) = exp(−it|ξ|2). This leads to

2π
∣∣∣ �
I

Liv(x)/2f(x
√

1 + v(x)2) dx
∣∣∣ =

∣∣∣ ∞�
−∞

f̂(ξ)
�

I

eixξ
√

1+v(x)2e−iv(x)ξ
2/2 dx dξ

∣∣∣
≤
( ∞�
−∞
|f̂(ξ)|2|ξ|1/2 dξ

)1/2
( ∞�
−∞

dξ

|ξ|1/2
∣∣∣ �
I

ei(xξ
√

1+v(x)2−v(x)ξ2/2) dx
∣∣∣2)1/2

.

Here the first factor is controlled by the norm of f in W 1/4. Thus Lemma 3
will follow if we prove that the second factor is bounded by some C. To this
end, we write

(11)
∞�

−∞

dξ

|ξ|1/2
∣∣∣ �
I

ei(xξ
√

1+v(x)2−v(x)ξ2/2) dx
∣∣∣2

=
∞�

−∞

dξ

|ξ|1/2
� �

I×I
ei(x ξ
√

1+v(x)2−v(x)ξ2/2)e−i(yξ
√

1+v(y)2−v(y)ξ2/2) dx dy

=
� �

I×I
dx dy

∞�

−∞

eiaξ+ibξ
2

|ξ|1/2
dξ,

where a = x
√

1 + v(x)2 − y
√

1 + v(y)2 and b = (v(y) − v(x))/2. Observe
that

|
√

1 + v(x)2 −
√

1 + v(y)2| = |v(x) + v(y)| |v(x)− v(y)|√
1 + v(x)2 +

√
1 + v(y)2

≤ |v(x)− v(y)|.

In order to bound the last inner integral in (11), we shall distinguish between
two cases.

Case 1: |y| |b| < |x− y|/4. Then we have

|a| = |(x− y)
√

1 + v(x)2 + y(
√

1 + v(x)2 −
√

1 + v(y)2)|
> |x− y| − |y(

√
1 + v(x)2 −

√
1 + v(y)2)|

≥ |x− y| − |y| |v(x)− v(y)| = |x− y| − |y| |2b| ≥ |x− y|/2,
and Lemma 2 implies

∞�

−∞

eiaξ+ibξ
2

|ξ|1/2
dξ ≤ C|a|−1/2 ≤ C 1

|x− y|1/2
.
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Case 2: |y| |b| ≥ |x− y|/4. By using again Lemma 2, we conclude
∞�

−∞
eiaξ+ibξ

2 dξ

|ξ|1/2
≤ Cb−1/4 ≤ C |y|1/4

|x− y|1/4
.

Summing up, for the iterated integral in (11) we get
� �

I×I
dx dy

∞�

−∞

eiaξ+ibξ
2

|ξ|1/2
dξ ≤ C

� �

I×I

(
1

|x− y|1/2
+

|y|1/4

|x− y|1/4

)
dx dy ≤ C(I),

and the proof of Lemma 3 is complete.

Next, we prove Theorem 2(ii). Because of Lemma 1, it is sufficient to fix
s < 1/4 and construct a ϕ ∈ W s for which the functions Liv/2ϕ(x

√
1 + v2)

diverge for x in a set of positive measure, as v → 0 and v avoids any
given null set. The method is taken from [4], though we prefer to make the
construction more explicit.

Choose a nonzero f ∈ C∞0 supported in R− = {x : x < 0} and consider
the functions ft(y) = f(y/t)e2iy/t

2
for small t > 0. Their Fourier transforms

are f̂t(ξ) = tf̂(tξ − 2/t), and one finds that

(12) ‖ft‖W s ≤ Ct1/2−2s

for t < 1. Except for constant factors, (1 + v2)1/4Liv/2ft(x
√

1 + v2) is given
by

(1 + v2)1/4v−1/2
�

R
exp
(
i

1
2v

(x
√

1 + v2 − y)2
)
ft(y) dy.(13)

Here we choose v = v(x, t) = xt2/
√

4− x2t4 for 0 < x < 1, which implies

(14) v(x, t)/
√

1 + v(x, t)2 = xt2/2.

Expanding the square in (13) and using (14), we find that the expression
(13) for this value of v and 0 < x < 1 equals

√
2/x times

1
t

�

R
exp
(
i

2v(x, t)
t4

)
exp
(
−i 2y

t2

)
exp
(
i

y2

2v(x, t)

)
f

(
y

t

)
exp
(

2i
y

t2

)
dy

=
1
t

exp
(
i

2v(x, t)
t4

) �

R
exp
(
i

y2

2v(x, t)

)
f

(
y

t

)
dy

= exp
(
i

2v(x, t)
t4

) �

R
exp
(
iy2

√
1− x2t4/4

x

)
f(y) dy

= exp
(
i

2v(x, t)
t4

)
Φ

(
x√

1− x2t4/4

)
,
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with Φ(z) =
	
R f(y) exp(iy2/z) dy. The function Φ is holomorphic in C \ {0}

and not identically 0. Thus there exists an interval I ⊂ (1/2, 1) such that
|Φ(z)| > c for some constant c > 0 when z ∈ I. We can then find a
subinterval I ′ ⊂ I and an ε > 0 for which x ∈ I ′ and 0 < t < ε imply
x/
√

1− x2t4/4 ∈ I and thus |Φ(x/
√

1− x2t4/4)| > c.

To summarize the above, we have shown that for some c > 0,

(15) |Liv(x,t)/2ft(x
√

1 + v(x, t)2)| > c,

when t < ε and x ∈ I ′. By continuity, one gets a stronger version of this
inequality: it will remain valid if v(x, t) is replaced by any number in a
sufficiently small neighborhood of v(x, t), a neighborhood which may depend
on x and t.

We shall choose ϕ =
∑∞

j=1 jftj , where the numbers tj ∈ (0, ε) will be

defined recursively. In particular, they shall satisfy
∑

j jt
1/2−2s
j <∞, which

implies ϕ ∈W s because of (12). Then

Liv/2ϕ(x
√

1 + v2) =
∞∑
j=1

jLiv/2ftj (x
√

1 + v2).

Now consider x ∈ I ′ and any k = 1, 2, . . . . Our idea is to make sure that
for v close to v(x, tk), the term with j = k is dominating in the above sum.
More precisely, we shall have

|Liv/2ftj (x
√

1 + v2)| < 2−j , j 6= k,(16)

for x ∈ I ′ and 1/2 < v/v(x, tk) < 2. Combining this with (15) and its
stronger version, we see that for x ∈ I ′ and v close to v(x, tk),

|Liv/2ϕ(x
√

1 + v2)| ≥ ck −
∑
j 6=k

j2−j .

The right-hand side here tends to +∞ with k, and divergence will follow
once we have established (16).

In the recursive construction of the tj , we start with any t1 ∈ (0, ε).
Assume now t1, . . . , tJ−1 chosen so that (16) holds when j, k < J. Then we
must find tJ so that, when x ∈ I ′,

(17) |Liv/2ftj (x
√

1 + v2)| < 2−j , j = 1, . . . , J − 1,

for 1/2 < v/v(x, tJ) < 2, and

(18) |Liv/2ftJ (x
√

1 + v2)| < 2−J

for 1/2 < v/v(x, tk) < 2, k = 1, . . . , J − 1. Aiming at (17), we observe that
each ftj is a C∞0 function and so Lisftj → ftj uniformly in R as s → 0+.
Now v(x, t)→ 0 as t→ 0, and I ′ ⊂ (1/2, 1) but the ftj are supported in R−.
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This means that (17) will hold for the indicated values of x and v, if tJ is
chosen small enough.

To obtain (18), we simply estimate Liv/2ftJ by the supremum norm
of the kernel Liv/2 times the L1 norm of ftJ . This product is Cv−1/2tJ ,
and (18) follows if tJ is small. The recursive construction and the proof of
Theorem 2(ii) are complete.

Proof of Theorem 2(iii). The analog of part (i) for W s
H is obvious, since

W s
H ⊂W s; see [2, Theorem 3(i)]. As for part (ii), observe that the function

ϕ constructed above is in W s and has compact support. But then ϕ is also
in W s

H , as proved in [2, Theorem 3(iii)].
Theorem 2 is completely proved.

4. Proof of Theorem 3. Lemma 1 implies that Mf(x) can be esti-
mated from below by a positive constant times

(19) ess sup
0<v<1

|Liv/2f(x
√

1 + v2)|.

We first consider the case p <∞. Fix a large x0 > 0 and choose a function
0 ≤ τ ∈ C∞0 with supp τ ⊂ (−1, 1). Let f be given by f̂(ξ) = 2πe−ix0ξτ(ξ),
and define v(x) ∈ (0, 1) by x

√
1 + v(x)2 = x0 for x0/

√
2 < x < x0. Then

for these x,

Liv(x)/2f(x
√

1 + v(x)2) =
1

2π

�

R
e−iv(x)ξ

2/2eixξ
√

1+v(x)2 f̂(ξ) dξ

=
�

R
e−iv(x)ξ

2/2eix0ξe−ix0ξ τ(ξ) dξ =
�
e−iv(x)ξ

2/2τ(ξ) dξ.

For ξ ∈ supp τ one has 0 < v(x)ξ2/2 < 1/2, and so

(20) <(Liv(x)/2f(x
√

1 + v(x)2)) > cos
1
2

�
τ > 0, x0/

√
2 < x < x0.

By continuity, this holds also if the value of v(x) is slightly modified. Thus
‖Mf‖p ≥ cx1/p

0 for some c > 0, and the weak Lp quasinorm ofMf satisfies
the same inequality. But

‖f‖2W s =
�
|f̂(ξ)|2(1 + |ξ|2)s dξ = 4π2

�
τ(ξ)2(1 + |ξ|2)s dξ

is independent of x0. Finally, let x0 → +∞ to get the desired unboundedness.
For p =∞ we first assume that s > 1/2. Hölder’s inequality then implies

that ‖f̂‖L1 ≤ C‖f‖W s . Thus for any x and any v one can estimate

Liv/2f(x
√

1 + v2) =
1

2π

�

R
e−ivξ

2/2eixξ
√

1+v2 f̂(ξ) dξ

by means of the W s norm of f , as required.
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To find a counterexample for p = ∞ and s ≤ 1/2, we modify the above
construction by taking now 0 ≤ τ ∈ C∞ supported in R+ and such that
τ(ξ) = ξ−1(log ξ)−2/3 for ξ > 2. As before, f̂(ξ) = 2πe−i x0ξτ(ξ), but x0 > 0
is now fixed. One easily verifies that f ∈ W s. The choice of v(x) is again
given by x

√
1 + v(x)2 = x0, but now only when x is in the interval

I =
(

x0√
1 + v2

0

,
x0√

1 + v2
0/4

)
,

for some small v0. Then v0/2 < v(x) < v0, and for almost all x ∈ I we
conclude essentially as before that

Liv(x)/2f(x
√

1 + v(x)2) =
�
e−iv(x)ξ

2/2τ(ξ) dξ.

Notice that since this is now obtained via a truncation of f at +∞ and an
L2 limit, the integral here should be evaluated as limR→+∞

	R
0 . Part of this

integral can be estimated as above: indeed,

<
( 1/
√
v0�

0

e−iv(x)ξ
2/2τ(ξ) dξ

)
> cos

1
2

1/
√
v0�

0

τ(ξ) dξ ≥ c
(

log
1
√
v0

)1/3

.

In the remaining part, we integrate by parts and get∣∣∣ ∞�

1/
√
v0

e−iv(x)ξ
2/2τ(ξ) dξ

∣∣∣ ≤ 1
v(x)

τ(1/
√
v0)

1/
√
v0

+
1

v(x)

∞�

1/
√
v0

∣∣∣∣ ddξ τ(ξ)
ξ

∣∣∣∣ dξ.
The last integral equals τ(1/

√
v0)
√
v0, because the derivative in the inte-

grand is negative here. Since v(x) > v0/2, each term of the above right-hand
side is at most 2 log(1/

√
v0)−2/3.

Summing up, we see that

|Liv(x)/2f(x
√

1 + v(x)2)| ≥ c
(

log
1
v0

)1/3

for a.a. x ∈ I, also after a slight modification of v(x). Letting v0 → 0, we
conclude that the essential supremum in (19) is not in L∞ for this f , which
ends the proof.
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