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Abstract. We give sharp estimates for the transition density of the isotropic stable
Lévy process killed when leaving a right circular cone.

1. Introduction. Explicit sharp estimates for the Green function of the
Laplacian in C! domains were given in 1986 by Zhao [64] (see also [38, [31]).
Sharp estimates of the Green function of Lipschitz domains were given in
2000 by Bogdan [I1]. Explicit qualitatively sharp estimates for the classical
heat kernel in C''! domains were established in 2002 by Zhang [62] (see also
[63 32], and [30, [54] for further extensions). Qualitatively sharp heat kernel
estimates in Lipschitz domains were given in 2003 by Varopoulos [59)].

The development of the boundary potential theory of the fractional
Laplacian follows an analogous path. Green function estimates were ob-
tained in 1997 and 1998 by Kulczycki and Chen and Song for C1'! domains
146, 29] (see [26], Corollary 1.8] for the case of dimension one, see also [14]),
and in 2002 by Jakubowski for Lipschitz domains [45] (see also [51 [17]). In
2008 Chen, Kim and Song gave a sharp and explicit estimate for the heat
kernel of the fractional Laplacian on C*! domains [26] (see (9) below).

In this note we give an extension of the estimate to the right circular
cones. We also conjecture, in agreement with the results of [59], a likely form
of the estimate for a more general class of domains:

(1) P (2,y) = Pu(tp > t)Py(7p > O)pi(z, y).

Here pi(x,y) is the heat kernel of the fractional Laplacian on the whole
space R, and Py (1p > t) = {pa pf (z,y) dy is the survival probability of the
corresponding isotropic a-stable Lévy process.
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The main result of this paper, Theorem [1} asserts that (1) holds indeed
for the right circular cones for all ¢ > 0, z,y € R? (see also for a more
explicit statement). It is noteworthy that all the above-mentioned estimates
for bounded C'! domains have the same form as for the ball (in this connec-
tion compare [26, Corollary 1.2] with [I4, Corollary 3]; see also (9) below).
We also remark that the right circular cones are merely special Lipschitz
domains, but a number of techniques and explicit formulas make them an
interesting and important test case (see [5], 33, B4, 23] 22]). We hope to
encourage a further study of Lipschitz and more general domains for stable
and other jump-type processes [25] [41} [36, [12]. We should emphasize that
generally the estimates for Lipschitz domains cannot be as explicit as those
for C™! domains. For instance, the decay rate of harmonic and parabolic
functions in the vertex of a cone delicately depends on the aperture of the
cone (see [2, [51], and also [II]). Nevertheless, Lipschitz domains offer a
natural setting for studying the boundary behavior of the Green function
and the heat kernel of the Brownian motion and a-stable Lévy processes
(0 < a < 2). This is so because of scaling, the rich range of asymptotic
behaviors depending on the local geometry of the domain’s boundary, con-
nections to the boundary Harnack principle, approximate factorization of
the Green function, and applications in the perturbation theory of genera-
tors, in particular via the 3G Theorem [T} 2} [64] [11, 19}, [42] 43}, 13|, 18, [16], and
3P Theorem [I8]. It is noteworthy that is an approximate factorization
of the heat kernel (see [IT} [I9] in this connection).

Cones are also examples of unbounded domains, which are only partially
resolved by the results of [26] 27] (note that (9) is valid only for bounded
times). We should note that the upper bound in @ was proved in 2006
by Siudeja for semibounded convex domains [57, Theorem 1.6] (stated for
general convex domains in [57, Remark 1.7]). It appears that the impulse for
the proof of @ was given by Siudeja and Kulczycki in [48, Theorem 4.2]; see
also [4, Proposition 2.9] by Kulczycki and Banuelos. A similar but weaker
upper bound was earlier given in [2, (26)] (see also [50l 49l 52]). We also
remark that [40, Theorem 4.4] gives a sharp explicit estimate for the survival
probability of the relativistic process on a half-line. Generally, the subject is
far from exhausted—and it seems manageable with the existing techniques.

For completeness we mention recent estimates [28) 21}, 53, [60], 56, B7, [6]
for transition density and potential kernel of jump-type processes. We need
to point out that generally these are estimates for processes without killing.
Killing is a dramatic “perturbation” analogous to Schrédinger perturbations
with singular negative potentials [14) [16, 10, 12], and it strongly influences
the asymptotics of the transition density and Green function. The asymp-
totics is crucial for solving the Dirichlet problem for the corresponding op-
erators (see also [39, [40]). As we shall see, the heat kernel of the fractional
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Laplacian in the right circular cones has a power-type asymptotics at infin-
ity, and it decays like the distance to the boundary to the power a//2 except
at the vertex, where it decays with the rate of g € (0, «).

The paper is composed as follows. Below in this section we recall basic
facts about the transition density of the a-stable Lévy processes killed when
first leaving a domain. In Section [2| we give a sharp explicit estimate for the
survival probability P,(rp > t) for C*! domains D. In Section [3{ we prove
our main estimates, Theorem |1| and , by using the ideas and results of
[26] and [2]. Our general references on the boundary potential theory of the
fractional Laplacian are [I3] and [19]. We also refer the reader to [15] for a
broad non-technical overview of the goals and methods of the theory.

In what follows, R% denotes the Euclidean space of dimension d > 1,
dx is the Lebesgue measure on R%, and 0 < a < 2. For t > 0 we let p; be the
smooth real-valued function on R¢ with the following Fourier transform:

2) | pe(@)e™dn =", e RY
Rd
For instance, a = 1 yields

pe(z) = D((d + 1)/2)x@dH1/2 t

(|z]2 + £2)(d+D)/2

the Cauchy convolution semigroup of functions [58]. We generally have
(3) pe(z) =t Yop V), zeRY t>0.

This follows from . The semigroup P, f(2) = {za f(y)pe(y—z) dy has A%/2
as infinitesimal generator [7, 61} 13} [44], where

v PT(+0)/D) ol ty) - o)
AT = Car e B ) T e TEE

{lyl>e}

Here ¢ € C°(R?), i.e. ¢ : R — R is smooth and compactly supported
on R?. Put differently,

e¢]
[ ] puss(z = )[0ub(u, 2) + A2 20(u, 2)] dz du = —d(s, ),
s Rd

where s € R, z € RY, and ¢ € C(R x R?) ([16]). We denote by

29T ((d+ @) /2)
V(y) = a2\ 9
T2 (—a/2)]
the density function of the Lévy measure of the semigroup {F;} [55, 20, 15].
There is a constant ¢ such that (see [20] or [9])

_ t _ t _
4) ¢ 1<‘$|d+a/\t d/o‘> §pt(aj)§c< ’d+a/\t d/a>, zeRY t>0.

|

ly| 4




368 K. BOGDAN AND T. GRZYWNY

Inequality and similar sharp estimates (i.e. such that the lower and upper
bounds are comparable) will be abbreviated as follows:

(5) pe(z) =t A zeRY t>0.

|x|d+a’

The standard isotropic a-stable Lévy process (Xy, P;) on R? may be con-
structed by specifying the following time-homogeneous transition probabil-
ity:
Pz, A) = Spt(y—x)dy, t>0,zeR? AcCRY,
A

and stipulating that P,(X(0) = z) = 1. Thus, P,, F, denote the distribution
and expectation for the process starting from x. The distribution of the
process is concentrated on right continuous functions [0, 00) — R? with left
limits, and for all s > 0 and z € R? we have P,(X, = X,_) = 1. It is well-
known that (X, P;) is strong Markov with respect to the so-called standard
filtration [8, 10]. The Lévy system (see [35, VII.68], [28, Appendix A], also
[57, Theorem 2.4], [48, Corollary 2.8] and [3, Lemma 1]) for (X;, P*) amounts
to the equality

(6)  Eo| Y flsi X X)| = Ex[f( } £s. Xeyv(w = X,) dw) ds|
0 Rd

s<T

where z € R%, f > 0 is a Borel function on R x R? x R? such that f(s, z,w) =0
if z=w, and T is a stopping time with respect to the filtration of X.

For open D C R? we let 7p = inf{t > 0: X; ¢ D}, and we define

ptD($7y) = pt(l‘,y) - Ex[TD < ta ptf‘l‘D(XTpay)]a T,y € Rd) t>0
(see, e.g., [26] [13]). Clearly,
(7) 0 <p(w,y) < pily — ).
By the strong Markov property, p” is the transition density of the isotropic

stable process killed on leaving D, meaning that p satisfies the Chapman—
Kolmogorov equation

| o2 (2,200 (2,9) dz = pP(,y), @y €RY, s8> 0,
R4
and for every z € R? ¢ > 0 and bounded Borel function f,
\ f)pP (z,y) dy = Eo[rp < t; £(Xy)].
R4
Furthermore, for s € R, € R%, and ¢ € C°(R x D), we have

o0

S S PP (z,2)[0ud(u, 2) + AY2¢(u, 2)] dz du = — (s, z),
s D
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which justifies calling p” the heat kernel of the fractional Laplacian on D.
In analogy with we have the following scaling property:

8)  pPla,y) =t~ Yop P o i ey z iy e RY £ >0,

2. CY! domains. Let D C R? be a C™! domain, meaning that D is open
and there is ro > 0 such that for every z € 9D there exist balls B,(rg) C D
and B.(rg) C D¢ of radius rg, tangent at z. Set dp(x) = dist(x, D), the
distance to D¢. The transition density of the stable Lévy process killed off D
satisfies ([26])

/2 /2
9)  pP(z,y)~ (MW) (1/\5D (y))pt(m,y), 0<t<1, z,ycRe

Vi Vi
COROLLARY 1. If D is a CY' domain then
604/2
(10) PZ(TD>t)%1/\D7(x), 0<t<l1,zyeR

Vit
Proof. We have

Pu(mp > t) = | p(x,y) dy.

R4
By (@),
Py(tp >t) = Spt (x,y)dy ~ (1 A D\/% )It(x), 0<t<l1,z,yeR?

D
where 1
55 (y
i) = | (10222 Yty
D

Clearly, I;(x) < \pape(x,y) dy = 1. This yields the upper bound in . To
prove the lower bound we consider 0 < ¢ < 1 and we will first assume that
Sp(x) >t/ If |y — x| < t1/%/2, then py(z,y) ~ t~9*, and we get
Ii(z) > ¢ S =Y dy = ¢ > 0.
ly—x|<tl/o/2
If 6p(z) <t/ then let z € D be such that |z — z| = 6p(z), and consider

the inner tangent ball Bz(tl/o‘ A1) for D at z, with center at, say, w. We
have

[l

Ii(x) > NG pe(z,y) dy.

Bz(tl/a/\ro)

Since
—d rT—w y—w
pt(J:?y):t /ap1<t1/a’tl/a)a
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by changing variable v = (y — w)/t'/®, we get
L(z)> | (1=[o))*?pi(u,v)dv,
B(0,1Arg)
where u = t~1/%(z — w) € B(0,1). The latter integral is continuous and

strictly positive for u € B(0,1). Thus, infyep It(z) > 0. The proof of is
complete. m

COROLLARY 2. If D is a CY! domain then
ptD(x,y) ~ Py(tp > t)Py(p > t)pe(x,y), 0<t<1,z,y€ R,

3. Cones. For x € R?\ {0} we denote by #(x) the angle between
and the point (0,...,0,1) € R% We fix 0 < © < 7 and consider the right
circular cone I' = {z € R?\ {0} : 6(x) < O}. Clearly, rI" = I for every

r > 0. By ,
(11) pl(x,y) =t~ Yopl ¢V ox 7 VoY), 2y e RY > 0.

We fix xp € I' and consider the Martin kernel M for I'" with the pole at
infinity, so normalized that M (xg) = 1. It is known that there is 0 < § < «
such that

M(z) = || M (z/|z]), x#0

(see [2, 51} [17]). Since the boundary of I" is smooth except at the origin, by
[51, Lemma 3.3],

(12) M(z) =~ 622 () |2P~%, & eR%
The following result strengthens [2, Lemma 4.2].
LEmMMA 3. If I' is a right circular cone then
(13)  Po(rr > t) ~ (052 Vem) AL ([ oz| A1)P2 e R > 0.
Proof. Since Py(1p > t) = P,-1/a,(Tr > 1), we only need to prove that
(14) Po(rp > 1) = (632 (@) A1) (|2 A1)P2, 2 e R
If |x| < 1 then is a consequence of and [2, Lemma 4.2]. If |z| > 1
then P(tp > 1) = 5?/2(33) A 1. Indeed, considering C*! domains I"” and
I' such that I ¢ I' € I'" and I\ I"" C B(0,1/2), we see that o (x) <
or(z) < orn(x) < 20p(x) for such z. Since Py(rpr > 1) < Pp(rp > 1) <
P.(tp» > 1), by using we obtain (14)). =
An interesting, if trivial, consequence of is that
(15) Py(tr > t) ~ Py(tr > t/2), t>0,z¢€R%
THEOREM 1.
(16) ol (x,y) ~ Pu(tr > )P,(tr > t)pi(2,y), 2,y €RY t>0.
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Proof. We note that the right hand side, say R:(x,y), of satisfies
Ri(w,y) = =Y Ryt~ 17 y).

Thus, in view of , we only need to prove for t = 1.
Let I'" and I'” be as in the proof of Lemma [3] Then

pi (z,y) <pi (z,y) <pi (z,9).
By (9) we have, for |z|, |y| > 1,

i (z,y) = (LA 62 (@) (1A 82 ()i (2, ) ~ pl " ().

Hence by Lemma [3] we obtain
(17) pi(2,y) = Po(rr > D) Py(rr > Dpi(z,y), el Jyl > 1.

In particular, there is a constant ¢ such that

(18) pi(z,y) < cPu(rr > Upi(z,y),  |z],|y| > 1.

If || < 1 and |y| <4, then |[z—y| <5 and py(z,y) > c(1 A |z —y|~+) >c.
By the semigroup property and ,

(19) Plp(fcay) = Splp/2(x,w)plp/2(w,y) dw < ¢ S P1F/2($7’w) dw
r r
= CP;U(TF > 1/2) < CPQ;(TF > 1)
< CPx(TF > 1)p1($,y), ‘£U| < 17 |y| <4

We next assume that [z| < 1 and |y| > 4. Then [z —y| > 3 and pi(z,y) =
|z — y|~97. Define I = I'N B(0,2), Iy = (I'\ I1) N B(0, (Jy| +1)/2) and
I's =I'\ B(0, (Jy| +1)/2). Using the strong Markov property and the Lévy
system EED with f(s,z,w) = 1p1(z)1p1c(w)p{_s(w,y) and T' = 1 A 1y, we
obtain

r _ s
p1 (. y) = By [TFI < 17p1—7'['1 (XTF1 )]
1
=\ {plt(@.2) | vlw—2)p{_ (w,y)dwdzds
0y IAVAT
1
= S S pl (2, 2) S v(w— 2)pl_(w,y) dwdzds
0r I
1
+) ) pi @, 2) §vw — 2t (w,y) dw dz ds
0r Iy
=1+1L

We note that for w € I,
lw—y| > |y| — lw| > [y[/4 > |z —y[/8.
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Since plt, (w— y) < pi_s(w — y) < o1 — 5)Jw — y| =4, we obtain

1
1—
ISS S pspl(x“z) S V(w_z)cmdwdzds

(\AY Iy
1

< clx — y]_d_o‘x S pli(z, 2) S v(w— z)dwdzds
0r; I

=clx — y|7d*°‘Pac(XTF1 er\n,m <1)

<clr - y|_d_an(erl €'\ In) = M(z)pi(z,y).
In the last line we used BHP ([2]). For z € I} and w € I3, we have

jw—z| = w| — |2 = |y[/2 = 3/2 > [yl/8 > |z — y| /16,
hence v(w — z) < c|lz — y|~%%, and so
1

< clz—y|~ 7 | plt(x,2) | pi_(w,y) dwdz ds

0 I3
1

< C‘JZ - ylidias S pgl (I‘,Z) dzds < C‘LE - y‘idiaEa:Tf'l < Cpl(xay)M(x)’

0r;
where the last inequality follows from (f]) and [2, Lemma 4.6]. By Lemmal3]
(20) pi(2,y) < cPolrr > Upi(z,y), o] <1, Jy| > 4.

Combining , and , we get
p{(xay) < CPw(TF > 1)p1(x7y)7 T,y € Rd‘
By the symmetry, semigroup property and we obtain

r

— S 22d/ap{(x21/a’ w21/a)p{(w21/a7y21/a) dw
r
< cPpor/a(Tr > 1)Pp1/a(tr > 1) S p1/2(z, w)pyj2(w,y) dw

d

< cPy(tr > 1)Py(tr > 1)p1(x,y).

We will now prove the lower bound in ([L6]). We first assume that |z < 1
and |y| < 2, and we let I’y = I'NB(0,4). Since Iy is bounded, the semigroup
pl* is intrinsically ultracontractive ([47]). In particular,

P1ya(,y) = Pyl (2,y) = cEyr, BV,
Furthermore, by [2, Lemma 4.6] and Lemma [3| we obtain

EYTr, > e¢M(y) > cPy(tr > 1).
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We see that
(21)  Ply(@,y) > cPolrr > D)Py(rr > Dpi(z,y), |z <1, [y < 2.
/
If |z| <1 and |y| > 2, then by the semigroup property, and ,

i (2,y) = \ bl o, 2)p] (2, y) dz
r
> cPy(tr > 1)Py(mr > 1) S P.(tr > 1)2p1(x, 2)p1(2, y) dz
In\B(0,1)
> cPy(tp > 1)Py(mr > 1)pi(z,y) S P.(tp > 1)?dz.
\B(0,1)
Hence
(22)  pi(2,9) > cPulrr > DPy(rr > Dpa(a,y), o <1, [y > 2.
By , , , symmetry (and scaling), we get the lower bound in . "
We note that Theorem [1] strengthens [2, Corollary 4.8]. Also,

pi (2,9) = plyy(x,y), @y eRE>0.
In view of Lemma |3} for the right circular cone I, is equivalent to
(23)  pi (z,y)

~ a/2,-1/a 1 -1/« B—a/2 [ 1—d/a t
(O (/) NL)(|t Y| A1) <t A ]w—y|d+a>

x (372 oy) A (VoY AP, >0, 2,y € RY

This is explicit except for the exponent (3 (see [2] in this connection). Recall
that SSO pl(z,y) dt = Gr(z,y), the Green function of I'. By integrating
one can obtain sharp estimates for the Green function of the right circular
cone. For d > 2 the estimates—first given in [51, Theorem 3.10]—are the
following;:

/2 /2 B—a/2
(24) Gr(x,y_)d ~ A {5p (z)o " (y) (!w\ A \y!> } .y € RY
|z — yl|o ly — x|* z| V |y

We skip the details of the integration (similar calculations are given in [57]
and [20]). It is noteworthy that 8 = a/2 if I is a half-space [2]. For the case
of dimension d = 1, and I = (0,00), we refer the reader to [24], see also
[26, Corollary 1.2].

As stated in the Introduction, we expect to be true quite generally.
In particular, the approximation should hold for domains above the graph of
a Lipschitz function for all times ¢ > 0. Corollary [2] confirms this conjecture
for C™! domains and small times, while Theorem |1| proves it for the right
circular cones and all times. By inspecting the relevant proofs in [51], the
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reader may also verify without difficulty that Theorem 1| and hold as
well for all those generalized cones ([2]) in RY, d > 2, which are C1! except
at the origin.

On the other hand, if D is a bounded C'!' domain, and if we denote
by —\; the first eigenvalue of A%2 on D (i.e. when acting on functions
vanishing off D), then by the intrinsic ultracontractivity (see, e.g., [26, The-
orem 1.1]),

pP(z,y) ~ 632 (2)6 2 (y)e ™, t>1, 2,y € RY,

and so
Pu(rp > 1) = 69 (x)e ™, t>1,2eR%

Therefore fails for large times ¢ if D is bounded (see also [47]).
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