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Abstract. We give sharp estimates for the transition density of the isotropic stable
Lévy process killed when leaving a right circular cone.

1. Introduction. Explicit sharp estimates for the Green function of the
Laplacian in C1,1 domains were given in 1986 by Zhao [64] (see also [38, 31]).
Sharp estimates of the Green function of Lipschitz domains were given in
2000 by Bogdan [11]. Explicit qualitatively sharp estimates for the classical
heat kernel in C1,1 domains were established in 2002 by Zhang [62] (see also
[63, 32], and [30, 54] for further extensions). Qualitatively sharp heat kernel
estimates in Lipschitz domains were given in 2003 by Varopoulos [59].

The development of the boundary potential theory of the fractional
Laplacian follows an analogous path. Green function estimates were ob-
tained in 1997 and 1998 by Kulczycki and Chen and Song for C1,1 domains
[46, 29] (see [26, Corollary 1.8] for the case of dimension one, see also [14]),
and in 2002 by Jakubowski for Lipschitz domains [45] (see also [51, 17]). In
2008 Chen, Kim and Song gave a sharp and explicit estimate for the heat
kernel of the fractional Laplacian on C1,1 domains [26] (see (9) below).

In this note we give an extension of the estimate to the right circular
cones. We also conjecture, in agreement with the results of [59], a likely form
of the estimate for a more general class of domains:

(1) pDt (x, y) ≈ Px(τD > t)Py(τD > t)pt(x, y).

Here pt(x, y) is the heat kernel of the fractional Laplacian on the whole
space Rd, and Px(τD > t) =

	
Rd p

D
t (x, y) dy is the survival probability of the

corresponding isotropic α-stable Lévy process.
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The main result of this paper, Theorem 1, asserts that (1) holds indeed
for the right circular cones for all t > 0, x, y ∈ Rd (see also (23) for a more
explicit statement). It is noteworthy that all the above-mentioned estimates
for bounded C1,1 domains have the same form as for the ball (in this connec-
tion compare [26, Corollary 1.2] with [14, Corollary 3]; see also (9) below).
We also remark that the right circular cones are merely special Lipschitz
domains, but a number of techniques and explicit formulas make them an
interesting and important test case (see [5, 33, 34, 23, 22]). We hope to
encourage a further study of Lipschitz and more general domains for stable
and other jump-type processes [25, 41, 36, 12]. We should emphasize that
generally the estimates for Lipschitz domains cannot be as explicit as those
for C1,1 domains. For instance, the decay rate of harmonic and parabolic
functions in the vertex of a cone delicately depends on the aperture of the
cone (see [2, 51], and also [11]). Nevertheless, Lipschitz domains offer a
natural setting for studying the boundary behavior of the Green function
and the heat kernel of the Brownian motion and α-stable Lévy processes
(0 < α < 2). This is so because of scaling, the rich range of asymptotic
behaviors depending on the local geometry of the domain’s boundary, con-
nections to the boundary Harnack principle, approximate factorization of
the Green function, and applications in the perturbation theory of genera-
tors, in particular via the 3G Theorem [11, 2, 64, 1, 19, 42, 43, 13, 18, 16], and
3P Theorem [18]. It is noteworthy that (1) is an approximate factorization
of the heat kernel (see [11, 19] in this connection).

Cones are also examples of unbounded domains, which are only partially
resolved by the results of [26, 27] (note that (9) is valid only for bounded
times). We should note that the upper bound in (9) was proved in 2006
by Siudeja for semibounded convex domains [57, Theorem 1.6] (stated for
general convex domains in [57, Remark 1.7]). It appears that the impulse for
the proof of (9) was given by Siudeja and Kulczycki in [48, Theorem 4.2]; see
also [4, Proposition 2.9] by Kulczycki and Bañuelos. A similar but weaker
upper bound was earlier given in [2, (26)] (see also [50, 49, 52]). We also
remark that [40, Theorem 4.4] gives a sharp explicit estimate for the survival
probability of the relativistic process on a half-line. Generally, the subject is
far from exhausted—and it seems manageable with the existing techniques.

For completeness we mention recent estimates [28, 21, 53, 60, 56, 37, 6]
for transition density and potential kernel of jump-type processes. We need
to point out that generally these are estimates for processes without killing.
Killing is a dramatic “perturbation” analogous to Schrödinger perturbations
with singular negative potentials [14, 16, 10, 12], and it strongly influences
the asymptotics of the transition density and Green function. The asymp-
totics is crucial for solving the Dirichlet problem for the corresponding op-
erators (see also [39, 40]). As we shall see, the heat kernel of the fractional
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Laplacian in the right circular cones has a power-type asymptotics at infin-
ity, and it decays like the distance to the boundary to the power α/2 except
at the vertex, where it decays with the rate of β ∈ (0, α).

The paper is composed as follows. Below in this section we recall basic
facts about the transition density of the α-stable Lévy processes killed when
first leaving a domain. In Section 2 we give a sharp explicit estimate for the
survival probability Px(τD > t) for C1,1 domains D. In Section 3 we prove
our main estimates, Theorem 1 and (23), by using the ideas and results of
[26] and [2]. Our general references on the boundary potential theory of the
fractional Laplacian are [13] and [19]. We also refer the reader to [15] for a
broad non-technical overview of the goals and methods of the theory.

In what follows, Rd denotes the Euclidean space of dimension d ≥ 1,
dx is the Lebesgue measure on Rd, and 0 < α < 2. For t > 0 we let pt be the
smooth real-valued function on Rd with the following Fourier transform:

(2)
�

Rd
pt(x)eix·ξ dx = e−t|ξ|

α
, ξ ∈ Rd.

For instance, α = 1 yields

pt(x) = Γ ((d+ 1)/2)π−(d+1)/2 t

(|x|2 + t2)(d+1)/2
,

the Cauchy convolution semigroup of functions [58]. We generally have

(3) pt(x) = t−d/αp1(t−1/αx), x ∈ Rd, t > 0.

This follows from (2). The semigroup Ptf(x) =
	
Rd f(y)pt(y−x) dy has ∆α/2

as infinitesimal generator [7, 61, 13, 44], where

∆α/2ϕ(x) =
2αΓ ((d+ α)/2)
πd/2|Γ (−α/2)|

lim
ε↓0

�

{|y|>ε}

ϕ(x+ y)− ϕ(x)
|y|d+α

dy, x ∈ Rd.

Here φ ∈ C∞c (Rd), i.e. φ : Rd → R is smooth and compactly supported
on Rd. Put differently,

∞�

s

�

Rd
pu−s(z − x)[∂uφ(u, z) +∆α/2

z φ(u, z)] dz du = −φ(s, x),

where s ∈ R, x ∈ Rd, and φ ∈ C∞c (R× Rd) ([16]). We denote by

ν(y) =
2αΓ ((d+ α)/2)
πd/2|Γ (−α/2)|

|y|−d−α

the density function of the Lévy measure of the semigroup {Pt} [55, 20, 15].
There is a constant c such that (see [20] or [9])

(4) c−1

(
t

|x|d+α
∧ t−d/α

)
≤ pt(x) ≤ c

(
t

|x|d+α
∧ t−d/α

)
, x ∈ Rd, t > 0.
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Inequality (4) and similar sharp estimates (i.e. such that the lower and upper
bounds are comparable) will be abbreviated as follows:

(5) pt(x) ≈ t−d/α ∧ t

|x|d+α
, x ∈ Rd, t > 0.

The standard isotropic α-stable Lévy process (Xt, Px) on Rd may be con-
structed by specifying the following time-homogeneous transition probabil-
ity:

Pt(x,A) =
�

A

pt(y − x) dy, t > 0, x ∈ Rd, A ⊂ Rd,

and stipulating that Px(X(0) = x) = 1. Thus, Px, Ex denote the distribution
and expectation for the process starting from x. The distribution of the
process is concentrated on right continuous functions [0,∞)→ Rd with left
limits, and for all s ≥ 0 and x ∈ Rd we have Px(Xs = Xs−) = 1. It is well-
known that (Xt, Px) is strong Markov with respect to the so-called standard
filtration [8, 10]. The Lévy system (see [35, VII.68], [28, Appendix A], also
[57, Theorem 2.4], [48, Corollary 2.8] and [3, Lemma 1]) for (Xt, P

x) amounts
to the equality

(6) Ex

[∑
s≤T

f(s,Xs−, Xs)
]

= Ex

[ T�
0

( �

Rd
f(s,Xs, y)ν(w −Xs) dw

)
ds
]
,

where x∈Rd, f ≥ 0 is a Borel function on R×Rd×Rd such that f(s, z, w) = 0
if z = w, and T is a stopping time with respect to the filtration of X.

For open D ⊂ Rd we let τD = inf{t > 0 : Xt /∈ D}, and we define

pDt (x, y) = pt(x, y)− Ex[τD < t; pt−τD(XτD , y)], x, y ∈ Rd, t > 0

(see, e.g., [26, 13]). Clearly,

(7) 0 ≤ pDt (x, y) ≤ pt(y − x).

By the strong Markov property, pDt is the transition density of the isotropic
stable process killed on leaving D, meaning that pD satisfies the Chapman–
Kolmogorov equation�

Rd
pDs (x, z)pDt (z, y) dz = pDs+t(x, y), x, y ∈ Rd, s, t > 0,

and for every x ∈ Rd, t > 0 and bounded Borel function f ,�

Rd
f(y)pDt (x, y) dy = Ex[τD < t; f(Xt)].

Furthermore, for s ∈ R, x ∈ Rd, and φ ∈ C∞c (R×D), we have
∞�

s

�

D

pDu−s(x, z)[∂uφ(u, z) +∆α/2
z φ(u, z)] dz du = −φ(s, x),
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which justifies calling pD the heat kernel of the fractional Laplacian on D.
In analogy with (3) we have the following scaling property:

(8) pDt (x, y) = t−d/αpt
−1/αD

1 (t−1/αx, t−1/αy), x, y ∈ Rd, t > 0.

2. C1,1 domains. LetD ⊂ Rd be a C1,1 domain, meaning thatD is open
and there is r0 > 0 such that for every z ∈ ∂D there exist balls Bz(r0) ⊂ D
and B′z(r0) ⊂ Dc of radius r0, tangent at z. Set δD(x) = dist(x,Dc), the
distance to Dc. The transition density of the stable Lévy process killed off D
satisfies ([26])

(9) pDt (x, y)≈
(

1∧
δ
α/2
D (x)√

t

)(
1∧
δ
α/2
D (y)√

t

)
pt(x, y), 0 < t ≤ 1, x, y ∈ Rd.

Corollary 1. If D is a C1,1 domain then

(10) Px(τD > t) ≈ 1 ∧
δ
α/2
D (x)√

t
, 0 < t ≤ 1, x, y ∈ Rd.

Proof. We have

Px(τD > t) =
�

Rd
pDt (x, y) dy.

By (9),

Px(τD > t) =
�

D

pDt (x, y) dy ≈
(

1 ∧
δ
α/2
D (x)√

t

)
It(x), 0 < t ≤ 1, x, y ∈ Rd,

where

It(x) =
�

D

(
1 ∧

δ
α/2
D (y)√

t

)
pt(x, y) dy.

Clearly, It(x) ≤
	
Rd pt(x, y) dy = 1. This yields the upper bound in (10). To

prove the lower bound we consider 0 < t ≤ 1 and we will first assume that
δD(x) > t1/α. If |y − x| < t1/α/2, then pt(x, y) ≈ t−d/α, and we get

It(x) ≥ c
�

|y−x|<t1/α/2

t−d/α dy = c > 0.

If δD(x) ≤ t1/α, then let z ∈ ∂D be such that |x− z| = δD(x), and consider
the inner tangent ball Bz(t1/α ∧ r0) for D at z, with center at, say, w. We
have

It(x) ≥
�

Bz(t1/α∧r0)

(t1/α − |y − w|)α/2√
t

pt(x, y) dy.

Since

pt(x, y) = t−d/αp1

(
x− w
t1/α

,
y − w
t1/α

)
,
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by changing variable v = (y − w)/t1/α, we get

It(x) ≥
�

B(0,1∧r0)

(1− |v|)α/2p1(u, v) dv,

where u = t−1/α(x − w) ∈ B(0, 1). The latter integral is continuous and
strictly positive for u ∈ B(0, 1). Thus, infx∈D It(x) > 0. The proof of (10) is
complete.

Corollary 2. If D is a C1,1 domain then

pDt (x, y) ≈ Px(τD > t)Py(τD > t)pt(x, y), 0 < t ≤ 1, x, y ∈ Rd.

3. Cones. For x ∈ Rd \ {0} we denote by θ(x) the angle between x
and the point (0, . . . , 0, 1) ∈ Rd. We fix 0 < Θ < π and consider the right
circular cone Γ = {x ∈ Rd \ {0} : θ(x) < Θ}. Clearly, rΓ = Γ for every
r > 0. By (8),

(11) pΓt (x, y) = t−d/αpΓ1 (t−1/αx, t−1/αy), x, y ∈ Rd, t > 0.

We fix x0 ∈ Γ and consider the Martin kernel M for Γ with the pole at
infinity, so normalized that M(x0) = 1. It is known that there is 0 ≤ β < α
such that

M(x) = |x|βM(x/|x|), x 6= 0

(see [2, 51, 17]). Since the boundary of Γ is smooth except at the origin, by
[51, Lemma 3.3],

(12) M(x) ≈ δα/2Γ (x)|x|β−α/2, x ∈ Rd.

The following result strengthens [2, Lemma 4.2].

Lemma 3. If Γ is a right circular cone then

(13) Px(τΓ > t) ≈ (δα/2Γ (t−1/αx)∧1)(|t−1/αx| ∧1)β−α/2, x ∈ Rd, t > 0.

Proof. Since Px(τΓ > t) = Pt−1/αx(τΓ > 1), we only need to prove that

(14) Px(τΓ > 1) ≈ (δα/2Γ (x) ∧ 1)(|x| ∧ 1)β−α/2, x ∈ Rd.

If |x| < 1 then (14) is a consequence of (12) and [2, Lemma 4.2]. If |x| ≥ 1
then Px(τΓ > 1) ≈ δ

α/2
Γ (x) ∧ 1. Indeed, considering C1,1 domains Γ ′ and

Γ ′′ such that Γ ′ ⊂ Γ ⊂ Γ ′′ and Γ ′′ \ Γ ′ ⊂ B(0, 1/2), we see that δΓ ′(x) ≤
δΓ (x) ≤ δΓ ′′(x) ≤ 2δΓ ′(x) for such x. Since Px(τΓ ′ > 1) ≤ Px(τΓ > 1) ≤
Px(τΓ ′′ > 1), by using (10) we obtain (14).

An interesting, if trivial, consequence of (13) is that

(15) Px(τΓ > t) ≈ Px(τΓ > t/2), t > 0, x ∈ Rd.

Theorem 1.

(16) pΓt (x, y) ≈ Px(τΓ > t)Py(τΓ > t)pt(x, y), x, y ∈ Rd, t > 0.
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Proof. We note that the right hand side, say Rt(x, y), of (16) satisfies

Rt(x, y) = t−d/αR1(t−1/αx, t−1/αy).

Thus, in view of (11), we only need to prove (16) for t = 1.
Let Γ ′ and Γ ′′ be as in the proof of Lemma 3. Then

pΓ
′

1 (x, y) ≤ pΓ1 (x, y) ≤ pΓ ′′1 (x, y).

By (9) we have, for |x|, |y| ≥ 1,

pΓ
′

1 (x, y) ≈ (1 ∧ δα/2Γ (x))(1 ∧ δα/2Γ (y))p1(x, y) ≈ pΓ ′′1 (x, y).

Hence by Lemma 3 we obtain

(17) pΓ1 (x, y) ≈ Px(τΓ > 1)Py(τΓ > 1)p1(x, y), |x|, |y| ≥ 1.

In particular, there is a constant c such that

(18) pΓ1 (x, y) ≤ cPx(τΓ > 1)p1(x, y), |x|, |y| ≥ 1.

If |x|< 1 and |y| ≤ 4, then |x−y|< 5 and p1(x, y)≥ c(1 ∧ |x− y|−d−α)≥ c.
By the semigroup property (7) and (15),

pΓ1 (x, y) =
�

Γ

pΓ1/2(x,w)pΓ1/2(w, y) dw ≤ c
�

Γ

pΓ1/2(x,w) dw(19)

= cPx(τΓ > 1/2) ≤ cPx(τΓ > 1)
≤ cPx(τΓ > 1)p1(x, y), |x| < 1, |y| ≤ 4.

We next assume that |x| < 1 and |y| > 4. Then |x−y| > 3 and p1(x, y) ≈
|x− y|−d−α. Define Γ1 = Γ ∩B(0, 2), Γ2 = (Γ \ Γ1) ∩B(0, (|y|+ 1)/2) and
Γ3 = Γ \B(0, (|y|+ 1)/2). Using the strong Markov property and the Lévy
system (6) with f(s, z, w) = 1Γ1(z)1Γ c1 (w)pΓ1−s(w, y) and T = 1 ∧ τΓ1 , we
obtain

pΓ1 (x, y) = Ex[τΓ1 < 1; pΓ1−τΓ1
(XτΓ1

, y)]

=
1�

0

�

Γ1

pΓ1
s (x, z)

�

Γ\Γ1

ν(w − z)pΓ1−s(w, y) dw dz ds

=
1�

0

�

Γ1

pΓ1
s (x, z)

�

Γ2

ν(w − z)pΓ1−s(w, y) dw dz ds

+
1�

0

�

Γ1

pΓ1
s (x, z)

�

Γ3

ν(w − z)pΓ1−s(w, y) dw dz ds

= I + II.

We note that for w ∈ Γ2,

|w − y| ≥ |y| − |w| ≥ |y|/4 ≥ |x− y|/8.
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Since pΓ1
1−s(w − y) ≤ p1−s(w − y) ≤ c(1− s)|w − y|−d−α, we obtain

I ≤
1�

0

�

Γ1

pΓ1
s (x, z)

�

Γ2

ν(w − z)c 1− s
|w − y|d+α

dw dz ds

≤ c|x− y|−d−α
1�

0

�

Γ1

pΓ1
s (x, z)

�

Γ\Γ1

ν(w − z) dw dz ds

= c|x− y|−d−αPx(XτΓ1
∈ Γ \ Γ1, τΓ1 ≤ 1)

≤ c|x− y|−d−αPx(XτΓ1
∈ Γ \ Γ1) ≈M(x)p1(x, y).

In the last line we used BHP ([2]). For z ∈ Γ1 and w ∈ Γ3, we have

|w − z| ≥ |w| − |z| ≥ |y|/2− 3/2 ≥ |y|/8 ≥ |x− y|/16,

hence ν(w − z) ≤ c|x− y|−d−α, and so

II ≤ c|x− y|−d−α
1�

0

�

Γ1

pΓ1
s (x, z)

�

Γ3

pΓ1−s(w, y) dw dz ds

≤ c|x− y|−d−α
1�

0

�

Γ1

pΓ1
s (x, z) dz ds ≤ c|x− y|−d−αExτΓ1 ≤ cp1(x, y)M(x),

where the last inequality follows from (5) and [2, Lemma 4.6]. By Lemma 3,

(20) pΓ1 (x, y) ≤ cPx(τΓ > 1)p1(x, y), |x| < 1, |y| > 4.

Combining (18), (19) and (20), we get

pΓ1 (x, y) ≤ cPx(τΓ > 1)p1(x, y), x, y ∈ Rd.

By the symmetry, semigroup property and (15) we obtain

pΓ1 (x, y) =
�

Γ

pΓ1/2(x,w)pΓ1/2(w, y) dw

=
�

Γ

22d/αpΓ1 (x21/α, w21/α)pΓ1 (w21/α, y21/α) dw

≤ cPx21/α(τΓ > 1)Py21/α(τΓ > 1)
�

Rd
p1/2(x,w)p1/2(w, y) dw

≤ cPx(τΓ > 1)Py(τΓ > 1)p1(x, y).

We will now prove the lower bound in (16). We first assume that |x| < 1
and |y| ≤ 2, and we let Γ4 = Γ ∩B(0, 4). Since Γ4 is bounded, the semigroup
pΓ4
t is intrinsically ultracontractive ([47]). In particular,

pΓ1/2(x, y) ≥ pΓ4

1/2(x, y) ≥ cExτΓ4E
yτΓ4 .

Furthermore, by [2, Lemma 4.6] and Lemma 3 we obtain

EyτΓ4 ≥ cM(y) ≥ cPy(τΓ > 1).
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We see that

(21) pΓ1/2(x, y) ≥ cPx(τΓ > 1)Py(τΓ > 1)p1(x, y), |x| < 1, |y| ≤ 2.

If |x| < 1 and |y| > 2, then by the semigroup property, (17) and (21),

pΓ1 (x, y) =
�

Γ

pΓ1/2(x, z)pΓ1/2(z, y) dz

≥ c Px(τΓ > 1)Py(τΓ > 1)
�

Γ1\B(0,1)

Pz(τΓ > 1)2p1(x, z)p1(z, y) dz

≥ c Px(τΓ > 1)Py(τΓ > 1)p1(x, y)
�

Γ1\B(0,1)

Pz(τΓ > 1)2 dz.

Hence

(22) pΓ1 (x, y) ≥ cPx(τΓ > 1)Py(τΓ > 1)p1(x, y), |x| < 1, |y| > 2.

By (17), (21), (22), symmetry (and scaling), we get the lower bound in (16).

We note that Theorem 1 strengthens [2, Corollary 4.8]. Also,

pΓt (x, y) ≈ pΓt/2(x, y), x, y ∈ Rd, t > 0.

In view of Lemma 3, for the right circular cone Γ , (16) is equivalent to

(23) pΓt (x, y)

≈ (δα/2Γ (t−1/αx) ∧ 1)(|t−1/αx| ∧ 1)β−α/2
(
t−d/α ∧ t

|x− y|d+α

)
× (δα/2Γ (t−1/αy) ∧ 1)(|t−1/αy| ∧ 1)β−α/2, t > 0, x, y ∈ Rd.

This is explicit except for the exponent β (see [2] in this connection). Recall
that

	∞
0 pΓt (x, y) dt = GΓ (x, y), the Green function of Γ . By integrating (23)

one can obtain sharp estimates for the Green function of the right circular
cone. For d ≥ 2 the estimates—first given in [51, Theorem 3.10]—are the
following:

(24)
GΓ (x, y)
|x− y|α−d

≈ 1 ∧
{
δ
α/2
Γ (x)δα/2Γ (y)
|y − x|α

(
|x| ∧ |y|
|x| ∨ |y|

)β−α/2}
, x, y ∈ Rd.

We skip the details of the integration (similar calculations are given in [57]
and [26]). It is noteworthy that β = α/2 if Γ is a half-space [2]. For the case
of dimension d = 1, and Γ = (0,∞), we refer the reader to [24], see also
[26, Corollary 1.2].

As stated in the Introduction, we expect (1) to be true quite generally.
In particular, the approximation should hold for domains above the graph of
a Lipschitz function for all times t > 0. Corollary 2 confirms this conjecture
for C1,1 domains and small times, while Theorem 1 proves it for the right
circular cones and all times. By inspecting the relevant proofs in [51], the
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reader may also verify without difficulty that Theorem 1 and (24) hold as
well for all those generalized cones ([2]) in Rd, d ≥ 2, which are C1,1 except
at the origin.

On the other hand, if D is a bounded C1,1 domain, and if we denote
by −λ1 the first eigenvalue of ∆α/2 on D (i.e. when acting on functions
vanishing off D), then by the intrinsic ultracontractivity (see, e.g., [26, The-
orem 1.1]),

pDt (x, y) ≈ δα/2D (x)δα/2(y)e−λ1t, t > 1, x, y ∈ Rd,

and so
Px(τD > t) ≈ δα/2D (x)e−λ1t, t > 1, x ∈ Rd.

Therefore (1) fails for large times t if D is bounded (see also [47]).
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