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Abstract. The aim of this paper is to show that, in various situations, the only
continuous linear (or not) map that transforms a convolution product into a pointwise
product is a Fourier transform. We focus on the cyclic groups Z/nZ, the integers Z, the
torus T and the real line. We also ask a related question for the twisted convolution.

1. Introduction. The aim of this paper is to characterize the Fourier
transform by some of its properties. Indeed, the Fourier transform is well
known to change a translation into a modulation (multiplication by a char-
acter) and vice-versa and to change a convolution into a pointwise product.
Moreover, these are some of its main features and are fundamental proper-
ties in many of its applications. The aim of this paper is to show that the
Fourier transform is, to some extent, uniquely determined by some of these
properties.

Before going on, let us introduce some notation. Let G be a locally com-
pact Abelian group with Haar measure ν and let Ĝ be the dual group. Op-
erations on G will be denoted additively. Let us recall that the convolution
on G is defined for f, g ∈ L1(G) by

f ∗ g(x) =
�

G

f(t)g(x− t) dν(t)

(and f ∗ g ∈ L1(G)) while the Fourier transform is defined by

F(f)(γ) = f̂(γ) =
�

G

f(t) γ(t) dν(t).

We will here mainly focus on the following four cases, G = Ĝ = Z/nZ,
G = Z and Ĝ = T and vice versa or G = Ĝ = R; our results will then easily
extend to products to such groups.

We will here focus on two types of results. The first ones concerns the
characterization of the Fourier transform as being essentially the only con-
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tinuous linear transform that changes a convolution product into a pointwise
product. To our knowledge the first results in that direction appear in the
work of Lukacs [Lu1, Lu2], pursued in [Em], and an essentially complete
result appeared in [Fi] for all LCA groups, under the mild additional con-
straint that the transform has a reasonable kernel. We will show here that
this hypothesis can be removed. Further, a striking result, recently proved
by Alekser, Artstein-Avidan, and Milman [AM1, AM2], is that, to some ex-
tent, continuity and linearity may be removed as well. More precisely, let us
denote by S(Rd) the Schwartz functions on Rd and by S ′(Rd) the Schwartz
(tempered) distributions.

Theorem (Alekser, Artstein-Avidan, Milman). Let T : S(Rd)→ S(Rd)
be a mapping that extends to a mapping T : S ′(Rd)→ S ′(Rd) that is bijective
and such that

(i) for every f ∈ S(Rd) and g ∈ S ′(Rd), T (f ∗ g) = T (f) · T (g);
(ii) for every f ∈ S(Rd) and g ∈ S ′(Rd), T (f · g) = T (f) ∗ T (g).

Then there exists B ∈Mn(R) with detB = 1 such that T (f) = F(f) ◦B.

Note that T is not assumed to be linear or continuous. We will adapt
the proof of this theorem to obtain an analogous result on the cyclic group.
This has the advantage of highlighting the main features which come into
the proof. The main difference is that in the above theorem, we assume
that T sends smooth functions into smooth functions. In the case of the
cyclic group, we do not have such functions at hand and are therefore led
to assume some mild continuity; see Theorem 2.2 for a precise statement.

A second set of results has its origin in the work of Cooper [Co1, Co2].
Here one considers the Fourier transform as an intertwining operator be-
tween two groups of transforms acting on Lp-spaces. In order to state the pre-
cise result, let us define, for α ∈ R and f a function on R, ταf(t) = f(t+α).
Further, if ϕ : R → R, let M (ϕ)

α f(t) = eiαϕ(t)f(t). It is easy to see that
Fτα = M

(t)
α F and FM (−t)

α = ταF , i.e. the Fourier transform intertwines
translations and modulations. The converse is also true. More precisely:

Theorem (Cooper). Let T : L2(R) → L2(R) be a continuous linear
transformation such that there exist two measurable functions ϕ,ψ : R→ R
for which

Tτα = M (ϕ)
α T and TM (ψ)

α = ταT.

Then ϕ(t) = bt+ c, ψ(t) = bt+ d with b, c, d ∈ R and T = F .

We will extend this theorem to Z/nZ and Z.
The article is organized as follows. In the next section, we will prove the

results for the groups G = Z and G = Z/nZ, while Section 3 is devoted
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to the cases of G = Td and G = Rd. We conclude with some questions
concerning the twisted convolution.

Before going on, let us introduce some more notation. If E ⊂ G, we will
denote by χE the function on G given by χE(k) = 1 if k ∈ E and χE(k) = 0
otherwise. The Kronecker symbol is denoted by δj,k.

2. The cyclic group and the integers. In this section, we consider
G = Z/nZ or G = Z. We will write C(Ĝ) for the set of n-periodic sequences
when G = Ĝ = Z/nZ or of continuous functions on Ĝ = T if G = Z. Our
first result is the following:

Theorem 2.1. Let G = Z/nZ or G = Z. Let T be a continuous linear
map T : L1(G) → C(Ĝ) such that T (f ∗ g) = T (f).T (g). Then there exists
E ⊂ Ĝ and a map σ : Ĝ → Ĝ such that, for f ∈ L1(G) and almost every
η ∈ Ĝ, T (f)(η) = χE(η)f̂(σ(η)). Moreover, σ is measurable if G = Z.

Proof. Let δk = (δj,k)j∈G ∈ L1(G). Then δk ∗ δl = δk+l, so that

(2.1) T (δk+l) = T (δk ∗ δl) = T (δk)T (δl).

In particular, for each η ∈ Ĝ, the map πη : k 7→ T (δk)(η) is a group homo-
morphism from G to C.

First note πη(0) = πη(k)πη(−k) so that if πη vanishes somewhere, it
vanishes at 0. Conversely πη(k) = πη(k)πη(0) so that if πη vanishes at 0, it
vanishes everywhere. Further, πη(0) = πη(0)2 so that πη(0) = 0 or 1.

We will now assume that πη(0) = 1 and exploit πη(k + 1) = πη(k)πη(1)
which implies that πη(k) = πη(1)k. We now need to distinguish two cases:

• If G = Z/nZ, then 1 = πη(0) = πη(n) = πη(1)n, πη(1) is an nth root
of unity, i.e. T (δ1)(η) = e2iπσ(η)/n for some σ(η) ∈ {0, 1 . . . , n − 1} =
Z/nZ. It follows that T (δk)(η) = e2iπkσ(η)/n.
• If G = Z, as T was assumed to be continuous L1(G)→ G(Ĝ), there is

a constant C > 0 such that, for every f ∈ L1(G), ‖Tf‖∞ ≤ C‖f‖1. In
particular, for every k ∈ Z and every m ∈ Ĝ = T,

|πη(1)k| = |[T (δ1)(η)]k| = |T (δk)(η)| ≤ C‖δk‖1 = C,

thus, by letting k → ±∞, we see that πη(1) is a complex number of
modulus 1 (it is not 0 since πη(0) 6= 0). We may thus write T (δ1)(η) =
e2iπσ(η) for some σ(η) ∈ [0, 1] ' T = Ĝ. Moreover, as η → T (δ1)(η) is
measurable, we may assume that σ is measurable as well.

Let us now define E = {η ∈ Ĝ : T (δk)(η) = 0 ∀k ∈ G}. Then, by
linearity and continuity of T , for f ∈ L1(G),
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Tf(η) = T
(∑
k∈G

f(k)δk
)

(η) =
∑
k∈G

f(k)T (δk)(η)

=


∑
k∈G

f(k)χE(η)e2iπkσ(η)/n if G = Z/nZ∑
k∈G

f(k)χE(η)e2iπkσ(η) if G = Z

= χE(η)f̂(σ(η)),

which completes the proof.

Remark. Using tensorization, we may extend the result with no diffi-
culty to G =

∏
i∈I Z/niZ× Zd.

We will now adapt the proof of [AM1, AM2] to show that on Zn, a
bijective transform that maps a product into a convolution is essentially a
Fourier transform. We will need some notation. We will consider the elements
0 = (0, . . . , 0) and 1 = (1, . . . , 1) of L1(Z/nZ). Further, if a ∈ L1(Z/nZ) we
will write

E[a] =
n−1∑
j=0

a(j).

We can now state the main theorem:

Theorem 2.2. Let T : L1(Z/nZ) → L1(Z/nZ) be a bijective transfor-
mation (not necessarily linear) such that the map C → L1(Z/nZ), c 7→
T (c1), is continuous. Assume that

(i) for every a, b ∈ L1(Z/nZ), T (a · b) = T (a) · T (b);
(ii) for every a, b ∈ L1(Z/nZ), T (a ∗ b) = T (a) ∗ T (b).

Then there exists η ∈ {1, . . . , n−1} that has no common divisor with n such
that either

• for every j ∈ Z/nZ and every a ∈ L1(Z/nZ), T (a)(ηj) = a(j), or
• for every j ∈ Z/nZ and every a ∈ L1(Z/nZ), T (a)(ηj) = a(j).

Remark. The fact that η has no common divisor with n implies that
the map j 7→ jη is a permutation of {0, . . . , n − 1} so that the map T is
actually fully determined.

Corollary 2.3. Let T : L1(Z/nZ) → L1(Z/nZ) be a bijective trans-
formation (not necessarily linear) such that the map C → L1(Z/nZ), c 7→
T (c1), is continuous. Assume that

(i) for every a, b ∈ L1(Z/nZ), T (a · b) = T (a) ∗ T (b);
(ii) for every a, b ∈ L1(Z/nZ), T (a ∗ b) = T (a) · T (b).
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Then there exists η ∈ {1, . . . , n−1} that has no common divisor with n such
that either T (a)(ηj) = â(j) for every j ∈ Z/nZ and every a ∈ L1(Z/nZ),
or T (a)(ηj) = â(j) for every j ∈ Z/nZ and every a ∈ L1(Z/nZ).

Proof of Corollary 2.3. Apply Theorem 2.2 to T̃ = F−1T .

Corollary 2.4. Let T : L1(Z/nZ) → L1(Z/nZ) be a bijective trans-
formation (not necessarily linear) such that the map C → L1(Z/nZ), c 7→
T (c1), is continuous. Assume that for every a ∈ L1(Z/nZ), T 2a(k) = a(−k)
and that one of the following two identities holds:

(i) for every a, b ∈ L1(Z/nZ), T (a.b) = T (a) ∗ T (b);
(ii) for every a, b ∈ L1(Z/nZ), T (a ∗ b) = T (a) · T (b).

Then there exists η ∈ {1, . . . , n−1} that has no common divisor with n such
that either T (a)(ηj) = â(j) for every j ∈ Z/nZ and every a ∈ L1(Z/nZ),
or T (a)(ηj) = â(j) for every j ∈ Z/nZ and every a ∈ L1(Z/nZ).

Proof of Corollary 2.4. If T 2a(k) = a(−k) then if one of the identities
holds, so does the other, so that Corollary 2.3 gives the result.

Proof of Theorem 2.2. The proof is in several steps that are similar to
those in [AM2]. The first one consists in identifying the image under T of
some particular elements of L1(Z/nZ):

Step 1. We have T (δ0) = δ0, T (0) = 0 and T (1) = T (1). Moreover,
there is a k ∈ {−1, 1} and an α ∈ C with Reα > 0 such that, if we define
β : C → C by β(0) = 0 and β(c) = (c/|c|)k|c|α for c 6= 0, then T (c1) =
β(c)1.

Indeed, as T (a · b) = T (a) · T (b), we immediately get the following:

T (c1c21) = T (c11) · T (c21) and T (c1δj) = T (c11) · T (δj)

while from T (a ∗ b) = T (a) ∗ T (b) we deduce that

T (δj+k) = T (δj)T (δk) and T (a) = T (δ0 ∗ a) = T (δ0) ∗ T (a).

Applying this last identity to a = T −1(δ0) we get δ0 = T (δ0) ∗ δ0 = T (δ0).
Further, a = a · 1, thus T (a) = T (a) · T (1), and applying this again to

a = T −1(b), we have b = b · T (1) for all b ∈ `2n, thus T (1) = 1. Similarly,
0 = a · 0, thus T (0) = T (a) · T (0), and applying this to a = T −1(0) we get
T (0) = 0 · T (0) = 0.

Finally, E[a]1 = a ∗ 1, thus T (E[a]1) = T (a ∗ 1) = T (a) ∗ 1 = E[T (a)]1.
As every c ∈ C may be written c = E[(c/n)1], we may define β(c) =
E[T ((c/n)1)] so that T (c1) = β(c)1. Note that β is continuous since we
have assumed that T acts continuously on constants and as T is one-to-one,
so is β. Moreover, β is multiplicative:

β(c1c2)1 = T (c1c21) = T (c11) · T (c21) = β(c1)β(c2)1.
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It is then easy to check that there is a k ∈ {−1, 1} and an α ∈ C with
Reα > 0 such that β(0) = 0 and β(c) = (c/|c|)k|c|α.

We will now take care of the image of δj , j = 0, . . . , n− 1.

Step 2. There is an η ∈ {1, . . . , n− 1} with no common divisor with n
such that T (δj) = δηj.

Assume that k 6= l ∈ supp T (δj), thus δk · T (δj) 6= 0 and δl · T (δj) 6= 0.
Let a = T −1(δk), b = T −1(δl). Then

a · δj = T −1(δk) · T −1(T (δj)) = T −1(δk · T (δj)) 6= T −1(0)

since T is one-to-one. From Step 1, we know that T −1(0) = 0, therefore
a · δj 6= 0. For the same reason, b · δj 6= 0. In particular, a · b 6= 0, thus
T (a · b) 6= 0. But this contradicts T (a · b) = δk · δl with k 6= l.

It follows that, for each j ∈ {1, . . . , n− 1}, there exist cj ∈ C \ {0} and
σ(j) ∈ {0, . . . , n− 1} such that T (δj) = cjδσ(j). But then

1 = T (1) = T (1 ∗ δj) = T (1) ∗ T δj = cj1 ∗ δj = cj1,

thus cj = 1. As T is one-to-one, it follows that σ(j) ∈ {1, . . . , n − 1} and
that σ is a permutation.

Next,

δσ(j+k) = T (δj+k) = T (δj ∗ δk) = T (δj) ∗ T (δk) = δσ(j) ∗ δσ(k) = δσ(j)+σ(k).

Thus σ(j + k) = σ(j) + σ(k) and therefore σ(j) = jσ(1). Further, the fact
that σ is a permutation implies that σ(1) has no common divisor with n
(Bézout’s Theorem).

Step 3. Conclusion.
We can now prove that T is of the expected form. Fix j ∈ {0, . . . , n− 1}

and a ∈ `2n. Let k = σ−1(j) so that T (δk) = δj . Then

T (a)(j)δj = T (a) · δj = T (a) · T (δk) = T (a · δk)
= T (a(k)1 · δk) = β(a(k))1 · T (δk) = β(a(k))δj .

It follows that

T (a)(j) = β(a ◦ σ−1(j)) =
(
a ◦ σ−1(j)
|a ◦ σ−1(j)|

)k
|a ◦ σ−1(j)|α.

We want to prove that α = 1. But

E[T (a)]1 = T (a) ∗ 1 = T (a) ∗ T (1) = T (a ∗ 1) = T (E[a]1)
= (E[a]/E[a])k|E[a]|α1
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so that E[T (a)] = (E[a]/|E[a]|)k|E[a]|α or, in other words,
n−1∑
l=0

(
a(l)
|a(l)|

)k
|a(l)|α =

n−1∑
j=0

(
a(σ−1(j))
|a(σ−1(j))|

)k
|a(σ−1(j))|α

=
( ∑n−1

j=0 aj∑n−1
j=0 |aj |

)k∣∣∣n−1∑
j=0

aj

∣∣∣α.
If we take a(0) = 1, a(1) = t > 0 and a(j) = 0 for j = 2, . . . , n − 1, this
reduces to 1 + tα = (1 + t)α. This implies that α = 1 (which is most easily
seen by differentiating and letting t → 0). It follows that β(c) = c or c̄
according to k = 1 or −1.

Remark. The proof adapts with no difficulty to any finite Abelian
group. To prove the same result on Z, it is best to first compose T with
a Fourier transform and then to adapt the proof in [AM2] from the real line
to the torus. We refrain from giving the details here.

The proof given here follows the lines of those given in [AM2] (up to
the ordering and the removal of technicalities that are useless in the finite
group setting). The main difference is that we need to assume that T acts
continuously on constants. In [AM2] this hypothesis is replaced by the fact
that T sends smooth functions to smooth functions.

Finally, it should also be noted that hypotheses (i) and (ii) are only used
when either a or b is either a constant c1 or a Dirac δj .

We will conclude this section with a Cooper like theorem. Let us first
introduce some notation. For ϕ : Z/nZ → C and k ∈ Z/nZ, we define the
following two linear operators L1(Z/nZ)→ L1(Z/nZ) :

τka(j) = a(j + k) and M
(ϕ)
k a(j) = ekϕ(j)a(j).

Note that actually ϕ : Z/nZ→ C/2iπZ. As is well known, if ϕ(j) = 2iπj/n
for some k ∈ Z/nZ, then Fτ−k = M

(ϕ)
k F and FM (ϕ)

k = τkF .
We can now state the following:

Theorem 2.5. Let T : L1(Z/nZ) → L1(Z/nZ) be a continuous linear
operator such that there exist two maps ϕ,ψ : Z/nZ→ C for which

T τk = M
(ϕ)
k T and TM (ψ)

k = τkT .

Then there exist k0,m0,m1 ∈ Z/nZ, c ∈ C such that

ϕ(j) =
2iπ
n

(k0j +m0), ψ(j) =
2iπ
n

(−k0j +m1),

T (a)(l) = ce2iπlm1/nâ(k0l +m0).
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Proof. Without loss of generality, we may assume that T 6= 0. First note
that the conditions are equivalent to

(2.2) (a) T (δk ∗ a)(l) = e−kϕ(l)T (a)(l) and (b) T (e−kψ(·)a) = δk ∗ T (a).

Note that these two expressions are n-periodic in k so that ϕ and ψ take
their values in {0, 2iπ/n, . . . , 2iπ(n− 1)/n}.

First, (2.2)(a) implies that

T (δj)(l) = T (δj ∗ δ0)(l) = e−jϕ(l)T (δ0)(l).

Next, (2.2)(b) implies that

e−kψ(j)T (δj)(l) = T (e−kψ(j)δj)(l) = T (e−kψ(·)δj)(l)
= δk ∗ T (δj)(l) = T (δj)(l − k).

In particular, T (δj)(l) = elψ(j)T (δj)(0), thus

T (δj)(l) = elψ(j)−jϕ(0)T (δ0)(0).

From linearity, we thus infer that for a ∈ `2n,

T (a)(l) =
n−1∑
j=0

a(j)T (δj)(l) =
(n−1∑
j=0

a(j)elψ(j)−jϕ(0)
)
T (δ0)(0).

As we assumed that T 6= 0, we thus have T (δ0)(0) 6= 0. Then (2.2) reads
n−1∑
j=0

a(j)elψ(j+k)−(j+k)ϕ(0) =
n−1∑
j=0

a(j)elψ(j)−jϕ(0)−kϕ(l),

thus lψ(j + k) − (j + k)ϕ(0) = lψ(j) − jϕ(0) − kϕ(l) for all j, k, l ∈ Z/nZ
(modulo 2iπ/n). Taking k = 1, we get

ϕ(l)− ϕ(0) = (ψ(j)− ψ(j + 1))l

so that ϕ and ψ are “affine”. More precisely, ϕ(l) = (ψ(0) − ψ(1))l + ϕ(0)
modulo 2iπ/n and, as ϕ takes its values in 2iπ

n Z/nZ, ϕ(l) = 2iπ
n (k0l + m0)

(modulo 2iπ/n) with k0,m0 ∈ {0, . . . , n−1} and b ∈ C. Further, ψ(j+ 1) =
ψ(j) + ϕ(0) − ϕ(1), thus ψ(j) = ψ(0) + j(ϕ(0) − ϕ(1)) = 2iπ

n (−k0j + m1)
(again modulo 2iπ/n).

We thus conclude that

T (a)(l) = e2iπ
lm1
n

n−1∑
j=0

a(j)e−2iπ
k0l+m0

n
j ,

as expected.

3. The real line and the torus. We now consider the case G = Rd

resp. G = Td so that Ĝ = Rd resp. Ĝ = Zd. To simplify notation, we write
C(Zd) = L∞(Zd).
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Theorem 3.1. Let d ≥ 1 be an integer and G = Rd or G = Td. Let
T be a continuous linear operator L1(G) → C(Ĝ) such that T (f ∗ g) =
T (f)T (g). Then there exists a set E ⊂ G and a function ϕ : Ĝ → Ĝ such
that T (f)(ξ) = χE(ξ)f̂(ϕ(ξ)).

Proof. Let us fix ξ ∈ Ĝ and consider the continuous linear functional Tξ
on L1(G) given by Tξ(f) = T (f)(ξ). Then there exists a bounded function
hξ on G such that Tξ(f) =

	
G f(t)hξ(t) dt. There is no loss of generality in

assuming that hξ 6= 0.
Let now A,B be sets of finite measure. Then Fubini’s Theorem implies

that �

A×B
hξ(s+ t) ds dt =

�

Rd
χA ∗ χB(t)hξ(t) dt = T (χA ∗ χB)(ξ)(3.3)

= T (χA)(ξ)T (χB)(ξ) =
�

A

hξ(t) dt
�

B

hξ(t) dt.

Now let ϕn be defined on G2 by

ϕn(x, y) =
{

(hξ(x+ y)− hξ(x)hξ(y))χ[−n,n](x)χ[−n,n](y) if G = R,
hξ(x+ y)− hξ(x)hξ(y) if G = T.

As ϕn is bounded (since hξ is) and has compact support, ϕn ∈ L1(G2) and
(3.3) implies that �

A×B
ϕn(x, y) dx dy = 0

for any sets A,B of finite measure, so that ϕn = 0 for every n. That is,

(3.4) hξ(x+ y) = hξ(x)hξ(y) for almost every x, y ∈ G.

If hξ were continuous, this would imply that hξ(x) = ei〈aξ,x〉 and, by bound-
edness of hξ, that aξ ∈ Rd. We will now overcome this difficulty by intro-
ducing

Hξ,j(x) =
x�

0

hξ(tej) dt

where j = 1, . . . , d and ej = (δj,k)k=1,...,d is the jth vector in the standard
basis. Clearly Hξ,j is continuous and satisfies

Hξ,j(x)Hξ,j(y) =
x�

0

(Hξ,j(y + t)−Hξ,j(t)) dt.

From this, we immediately deduce that Hξ,j is smooth, that H ′ξ,j(t) =
hξ(tej) almost everywhere and that H ′ξ,j(x + y) = H ′ξ,j(x)H ′ξ,j(y) every-
where. Thus, for almost every x ∈ R or T, hξ(xej) = eiaξ,jx with aξ,j real.
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Finally, for x ∈ G,

hξ(x) = hξ(x1e1 + · · ·+ xded) = hξ(x1e1) · · ·hξ(xded) = ei〈aξ,x〉

where aξ = (aξ,1, . . . , aξ,d).
We have thus proved that there exists a map from ϕ : G→ G and a set

E such that

(3.5) Tf(ξ) = χE(ξ)f̂(ϕ(ξ)),

which completes the proof.

Remark. If T extends to a unitary operator from L2(Rd) onto L2(Rd)
then E = Rd and ϕ : G → G is a bijection and is measure preserving, i.e.
|ϕ−1(E)| = |E| for every set E ⊂ G of finite measure. This last fact is a
corollary of [Si] (see also [No]).

Note that in this theorem, we have only used the L1-L∞ duality to show
that the operator is a kernel operator. This can be obtained directly. More
precisely, it is a consequence of the following theorem that dates back at
least to Gelfand [Ge] and Kantorovich–Vullich [KV] (see also [DP, Theorem
2.2.5] or [AT, Theorem 1.3]):

Theorem 3.2. Let (Ω1, µ1) and (Ω2, µ2) be two σ-finite measure spaces.
There is a one-to-one correspondence between bounded linear operators T :
L1(Ω1) → L∞(Ω2) and kernels k ∈ L∞(Ω1 × Ω2). This correspondence is
given by T = Tk where Tk is defined by

Tkf(ω) =
�

Ω1

k(ζ, ω)f(ζ) dµ1(ζ), f ∈ L1(Ω1).

It follows that Theorem 3.1 then essentially reduces to the results in
[Lu1, Lu2]. However, a non-explicit condition in those papers is that k should
be defined everywhere as it is applied to Dirac masses.

4. The twisted convolution. In this section, we consider the case
of twisted convolution (for background on this transform we refer to [Fo]).
Recall that it is defined for f, g ∈ L1(R2d) by

f\ g(x, y) =
�

Rd

�

Rd
f(x− s, y − t)g(s, t)eiπ(〈x,t〉−〈y,s〉) ds dt.

This defines a new L1(R2d) function. Note also that this operation is non-
commutative.

Next, for p, q ∈ Rd, let us define the following operator that acts on
functions on Rd:

ρ(p, q)ϕ(x) = e2iπ〈q,x〉+iπ〈p,q〉ϕ(x+ p).
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For f ∈ L1(Rd×Rd) we define a (bounded linear) operator L1(Rd)→ L1(Rd)
by

ρ(f)ϕ(x) =
�

Rd

�

Rd
f(p, q)ρ(p, q)ϕ(x) dp dq =

�

Rd
Kf (x, y)ϕ(y) dy

where

Kf (x, y) =
�

Rd
f(y − x, q)eiπ〈q,x+y〉 dq = F−1

2 [f ]
(
y − x, x+ y

2

)
and F2 stands for the Fourier transform in the second variable.

One then checks through a cumbersome computation that ρ(f\ g) =
ρ(f)ρ(g) (here the product stands for composition of operators) or, for the
kernels,

Kf\ g(x, y) =
�

Rd
Kf (x, z)Kg(z, y) dz.

Question. To what extent does this characterize the transform f 7→
ρ(f)?
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