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Abstract. The aim of this short note is to present in terse style the meaning and
consequences of the “filling scheme” approach for a probability measure preserving trans-
formation. A cohomological equation encapsulates the argument. We complete and sim-
plify Woś’ study (1986) of the reversibility of the ergodic limits when integrability is not
assumed. We give short and unified proofs of well known results about the behaviour of
ergodic averages, like Kesten’s lemma (1975). The strikingly simple proof of the ergodic
theorem in one dimension given by Neveu (1979), without any maximal inequality nor
clever combinatorics, followed this approach and was the starting point of the present
study.

1. Introduction. In the proof of their famous ergodic theorem for pos-
itive L1-contractions Chacon and Ornstein (1960) introduced the “filling
scheme” method. During subsequent years it became fashionable and was
analysed and developed by several authors. Garsia proved in ten lines Hopf’s
maximal inequality [3]. By a remarkable insight into the method, in 1979,
Neveu gave a direct and very simple proof of Chacon–Ornstein’s theorem,
without using any maximal inequality [9]. During the eighties Woś used this
method to specify Birkhoff’s ergodic theorem on several points, giving new
proofs of results of Kesten and Tanny [12].

The aim of this short note is to present in terse style the meaning and
consequences of the “filling scheme” approach in the basic situation of er-
godic theory, that is, for a probability measure preserving transformation.
Motivations to write this note are several. We complete and simplify Woś’
study of the reversibility of the ergodic limits when integrability is not as-
sumed. We give short and unified proofs of well known results about the
behaviour of ergodic averages, which have never been gathered together.
We try to explain the origin of the strikingly simple proof of the ergodic
theorem in one dimension given by Neveu, without any maximal inequality
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or clever combinatorics, following his work on the filling scheme. Since its
appearance in the book [5], this proof has become popular. It shows how
special are one-dimensional actions with respect to the ergodic theorem; for
a view on actions of more general groups we refer to [11].

2. The filling scheme equation. Let T be a measure preserving trans-
formation of a probability space (X,X, µ). The filling scheme idea can be
expressed in a compact form by one cohomological equation that we present
now.

Given a real measurable function f put

Fn = max
1≤k≤n

k−1∑
j=0

f ◦ T j .

Since T commutes with the lattice operations we have Fn+1(x)−Fn◦T (x) =
f(x) if Fn+1(x) > f(x), that is, if Fn ◦ T (x) > 0. Therefore

Fn+1(x)− Fn ◦ T (x) = f(x) + F−n ◦ T (x).

We recall the notations f+ = max(f, 0) and f− = (−f)+. Using the decom-
position of Fn+1 into positive and negative parts, this relation becomes

f = −F−n+1 + F+
n+1 − TF

+
n

where we use the operator notation Tf instead of f ◦T , as we shall do from
now on. The expression F+

n+1−TF+
n can be seen as an approximate cobound-

ary. Since f− ≥ F−n the set where limn→∞ ↑ Fn = +∞ is T -invariant.
Up to now the measure played no role and equalities or inequalities were

valid everywhere. If the invariant measure µ is ergodic, the invariant set
where F = limn→∞ ↑ Fn = +∞ has measure 0 or 1.

Taking the limit in the preceding equation we expect a similar relation
with an exact coboundary (a function of the type g−Tg). That is the crucial
point, but we have to avoid +∞−∞. Thus we define the filling scheme
equation to be

f = −F− + F+ − TF+ µ-a.e.,

which is valid if

F = sup
n≥1

n−1∑
j=0

T jf = lim
n→∞

↑ Fn <∞ µ-a.e.

Let us emphasize that under this condition each of the three terms ap-
pearing in the equation is finite. Moreover, F+

n ↑ F+ and f− ≥ F−n ↓ F−
µ-a.e.
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3. First consequences of the filling scheme argument. To make
ideas transparent we shall assume ergodicity throughout, and we shall use
the notation

An(T, f) =
1
n

n−1∑
j=0

T jf.

For any measurable f, the functions lim supnAn(T, f), lim supn |An(T, f)|,
lim supn

T nf
n are invariant, and therefore constant, finite or not (idem with

lim inf).

(a) (Ergodic theorem) If f ∈ L1 then limnAn(T, f) =
	
f dµ µ-a.e.

Proof. If Fn ↑ +∞ then F−n ↓ 0, hence f+TF−n = Fn+1−TFn ↓ f µ-a.e.
and

0 ≤
�
(Fn+1 − Fn) dµ =

�
(Fn+1 − TFn) dµ −−−→

n→∞

�
f dµ

because the measure is invariant.
Therefore

	
f dµ < 0 implies Fn ↑ F < +∞ µ-a.e., hence

lim sup
n

An(T, f) ≤ lim sup
n

1
n
Fn ≤ 0 µ-a.e.

Now assume
	
f dµ = 0; for any ε > 0,

	
(f − ε) dµ < 0, so it follows that

lim supnAn(T, f) ≤ ε. Reversing signs we get as well lim infnAn(T, f) ≥ −ε,
hence limnAn(T, f) = 0 µ-a.e.

Comment and remark. This very simple proof is due to Neveu; it is a
byproduct of his work on Chacon–Ornstein’s theorem [9] and it was included
in a lecture note of a course given in Paris in 1981 [10].

For a measurable function f that is bounded below (or above) by a con-
stant, limnAn(T, f) exists µ-a.e.; it is finite if and only if f ∈ L1, otherwise
it is equal to +∞ (or −∞). To see this, just apply the ergodic theorem to
the functions min(f, a) and let a→∞.

(b) (Maximal ergodic inequality) If f ∈ L1 then for every n,�

{Fn>0}

f dµ ≥ 0.

Proof. Using the equation given above,

f = −F−n+1 + F+
n+1 − TF

+
n ,

we get�

{Fn+1>0}

f =
�
F+

n+1 −
�

{Fn+1>0}

TF+
n ≥

�
(F+

n+1 − TF
+
n ) =

�
(F+

n+1 − F
+
n ) ≥ 0

because the measure is invariant.



602 Y. DERRIENNIC

Comment. This is essentially Garsia’s proof [3] with the simplification
due to the commutativity of T with lattice operations. The maximal in-
equality was not used above in the proof of the ergodic theorem and will
not be used in what follows.

(c) Let f be measurable, not necessarily integrable. If lim supnAn(T, f)
< ∞ µ-a.e. then there exist two measurable functions u and v such that
f = u+ v − Tv with u bounded above by a constant and v ≥ 0.

Proof. If lim supnAn(T, f) = c ∈ R, put h = f − (c + ε) with ε > 0.
Since lim supnAn(T, h) = −ε < 0 we have

H = sup
n≥1

n−1∑
j=0

T jh <∞,

so the filling scheme equation for h reads

h = −H− +H+ − TH+ or f = (c+ ε)−H− +H+ − TH+.

In other words, f = u+v−Tv with u = (c+ε)−H− ≤ c+ε and v = H+ ≥ 0.
If lim supnAn(T, f) = −∞ µ-a.e., such a decomposition holds as well

since the filling scheme equation applies to f itself and reads f = −F− +
F+ − TF+.

Comment. This decomposition will be a main tool in the following. It is
implicit in the work of Halász [4] and appears in Woś [12].

4. Reversibility and ergodic limits for non-integrable functions.
In this part the transformation T will be assumed to be invertible and er-
godic. We shall see that for a measurable not necessarily integrable function,
the forward and backward ergodic averages converge a.e. simultaneously
when one limit is finite and then both limits are equal. When the a.e. limit
is infinite on one side, the forward and backward ergodic averages may have
different behaviours. Of course, for integrable or one-side-bounded functions,
the forward and backward limits are the same by the ergodic theorem.

(a) Let f be measurable. If lim supnAn(T, f) <∞ µ-a.e. then

lim sup
n

An(T, f) = lim inf
n

An(T−1, f) µ-a.e.,

this value being finite or −∞.

Proof. Write the decomposition f = u + v − Tv with u bounded above
by a constant and v ≥ 0 according to 3(c).

Since u is bounded above, limnAn(T, u) exists µ-a.e. If u ∈ L1, this limit
is

	
u dµ; otherwise it is −∞. For any measurable v ≥ 0, lim infn

T nv
n = 0

µ-a.e. by ergodicity since almost every orbit will infinitely often visit a set
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where v is bounded. Thus, if u ∈ L1, we get

lim sup
n

An(T, f) =
�
u dµ− lim inf

n

Tnv

n
=

�
u dµ µ-a.e.

Taking backward sums with respect to T−1 we have
n−1∑
j=0

T−jf =
n−1∑
j=0

T−ju+ (T−n+1v − Tv).

Since lim infn
T−nv

n = 0 as well, when u ∈ L1 we get

lim inf
n

An(T−1, f) =
�
u dµ+ lim inf

n

T−n+1v

n
=

�
u dµ µ-a.e.

On the other hand, if u /∈ L1 we get lim supnAn(T, f) ≤ limnAn(T, u)
= −∞ and lim infnAn(T−1, f) = −∞.

Remark. Changing signs in (a) we see that lim infnAn(T, f) > −∞
implies lim infnAn(T, f)=lim supnAn(T−1, f), this value being finite or +∞.

(b) If lim supn |An(T, f)| < ∞ µ-a.e. then the forward and backward
ergodic limits exist, are finite and are equal µ-a.e.:

lim
n
An(T, f) = lim

n
An(T−1, f) µ-a.e.

Proof. By application of (a) to f and −f we get

lim sup
n

An(T, f) = lim inf
n

An(T−1, f)

≤ lim sup
n

An(T−1, f) = lim inf
n

An(T, f).

Comment. This result was first proved by Woś in [13] but his argument
was different. He used an analysis of trajectories which excluded infinite
limits.

(c) If lim supnAn(T, f) = c ∈ R and lim infnAn(T, f) = −∞ then

lim inf
n

An(T−1, f) = c and lim sup
n

An(T−1, f) = +∞ µ-a.e.

Proof. Application of 4(a) and 4(b) to T−1.

(d) Let v be measurable and v ≥ 0. Then either limn
T nv
n = 0 µ-a.e. or

lim supn
T nv
n = +∞ µ-a.e. Moreover, the backward and forward limits are

the same:

lim
n

T−nv

n
= 0 µ-a.e. if and only if lim

n

Tnv

n
= 0 µ-a.e.

Proof. Assume lim supn
T nv
n <∞ µ-a.e. Then with f = v− Tv, we have

lim supn |An(T, f)| <∞. By (b),

lim
n

1
n

(v − Tnv) = lim
n

1
n

(T−n+1v − Tv),
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which is finite µ-a.e. Since lim infn
T nv
n = 0, we get limn

T nv
n = limn

T−nv
n = 0

µ-a.e.

(e) (Reversibility for f /∈ L1, the last two cases) If lim supnAn(T, f) =
+∞ and lim infnAn(T, f) = −∞ then two cases are possible: either

lim sup
n

An(T−1, f) = +∞ and lim inf
n

An(T−1, f) = −∞ µ-a.e.

or limnAn(T−1, f) exists µ-a.e. and is infinite (+∞ or −∞).

Proof. By contraposition, using (b) or (c) for T−1 and f or −f , the
sequence An(T−1, f) cannot have a finite limsup or liminf. So we just have
to show that both cases are actually possible.

Taking two non-negative functions u and v with disjoint supports such
that lim supn

T nu
n = lim supn

T nv
n = +∞, examples of which are easy to

build, we get the first case with f = u− Tu+ Tv − v.
The second case requires a little more attention. First we observe that

two non-negative functions u and v with
	
u dµ = +∞, lim supn

T nv
n = +∞

and moreover lim supn(T nv
n − An(T, u)) = +∞, will lead to a function f =

u+ v − Tv that is an example of the second case.
Now consider a sequence of i.i.d. positive random variables (Xn)n≥1

with a stable law of index 0 < α < 1. Put Sn =
∑n

k=1Xk and Mn =
max(X1, . . . , Xn). It is known ([12, Chap. 13, Ex. 20]) that

lim inf
n

Sn

Mn
≤ 1

1− α
a.s. and lim

n

Mn

n
= +∞ a.s.

This implies

lim
n

sup
Mn

n

(
c− Sn

Mn

)
= +∞ a.s. if c >

1
1− α

.

Almost surely there is an increasing sequence of integers ni along which
M(ni) = X(ni); for ni < n < ni+1 we have

Mn

n

(
c− Sn

Mn

)
≤ M(ni)

ni

(
c− S(ni)

M(ni)

)
,

thus

lim
n

sup
Xn

n

(
c− Sn

Xn

)
= +∞ a.s.

Therefore on the Bernoulli scheme built with this i.i.d. sequence the func-
tions u = X1 and v = cX1 achieve the needed conditions.

Comment. In his work about ergodic limits without integrability as-
sumption and reversibility [13], Woś did not treat the case where the limits
are infinite so the existence of these two cases stayed unnoticed.

It is not quite clear how to build an example of the second case on any
ergodic dynamical system with zero entropy. In [1] by a direct method it is
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shown that the preceding example still holds for a set of random variables
including the domain of attraction of a stable law of index 0 < α < 1.

5. Other consequences of the filling scheme argument. In this
part we do not assume the invertibility of the transformation T any more,
but keep ergodicity. We shall use the filling scheme argument to give short
proofs of results which were originally proved by different methods.

(a) (Cohomology class of a measurable function whose ergodic averages
converge) Let f be measurable. If limnAn(T, f) = c ∈ R µ-a.e. then for
every ε > 0 there exist two measurable functions g and h such that

f = g + h− Th, |g − c| ≤ ε, and lim
n

Tnh

n
= 0 µ-a.e.

Proof. Assume c = 0. It follows from the proof of 3(c) that any measur-
able function f for which limnAn(T, f) = 0 µ-a.e. admits a decomposition
f = u+ v − Tv with u = ε−H− ≤ ε, H− ≤ (f − ε)− and v ≥ 0. Moreover,
we necessarily have u ∈ L1 since otherwise the limit would be −∞. Then	
u dµ = 0 and limn

T nv
n = 0 µ-a.e.

Now write the analogous decomposition for the function −u. It reads
−u = (ε − J−) + w − Tw where J− ≤ (−u − ε)− = max(u + ε, 0) ≤ 2ε. It
just remains to put g = −ε+ J− and h = v − w.

Comment. When f ∈ L1 this is a well known result due to Kochergin [7].
When f is only measurable it appears in Woś [13], without the estimate on
the size of g. Note that the sign of the second function h cannot be chosen.

(b) (Sums of stationary sequences cannot grow slower than linearly;
Kesten [6]) Let f be measurable. If on a set of positive measure we have the
strict inequality

∑n−1
j=0 T

jf > 0 for all n large enough, then lim infnAn(T, f)
> 0 µ-a.e. (this liminf is c > 0 or +∞).

Proof. To use the filling scheme equation, we change signs. If
∑n−1

j=0 T
jf

< 0 for all n large enough on a set of positive measure, then on this set

F = sup
n

n−1∑
j=0

T jf <∞.

By ergodicity we get F <∞ µ-a.e. on X. Then we can write

f = −F− + F+ − TF+ and An(T, f) = −An(T, F−) +
1
n

(F+ − TnF+).

If we had lim supnAn(T, f)=0 µ-a.e. we would get F−∈L1 with
	
F− dµ=0,

therefore F− = 0 µ-a.e. and f = F+ − TF+. But it is an easy consequence
of Poincaré’s recurrence theorem that the strict inequality F+ < TnF+

cannot be true for all n large enough on a set of positive measure. So the
assumption on the signs of

∑n−1
j=0 T

jf implies lim supnAn(T, f) < 0 and
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F− 6= 0 µ-a.e. If F− ∈ L1, lim supnAn(T, f) = −
	
F− dµ < 0, otherwise

lim supnAn(T, f) = −∞.

Comment. The L1-version, “if f ∈ L1 and
∑n−1

j=0 T
jf → +∞ µ-a.e. then	

f dµ > 0” is sometimes called the lemma of Guivarc’h and Raugi.

(c) (Infinite oscillations of ergodic averages toward their limit; Halász [4],
Marcus and Petersen [8]) Let f be measurable. If lim supnAn(T, f) = c ∈ R
then almost surely the sequence An(T, f)− c changes sign infinitely often in
the wide sense (that is, it cannot be ultimately strictly positive or negative).

Proof. Corollary of the preceding.

(d) (Another proof of the statement 4(d)) Let v be measurable and
v ≥ 0. If lim supn

T nv
n < ∞ µ-a.e., then there exists a measurable func-

tion w such that w ≥ v and Tw−w ∈ L1. Hence either limn
T nv
n = 0 µ-a.e.

or lim supn
T nv
n = +∞ µ-a.e.

Proof. Using invertibility this conclusion was already obtained in 4(d)
Here we do not assume invertibility.

If lim supn
T nv
n = c ∈ R µ-a.e., put h = Tv − v − (c + ε) with ε > 0.

The filling scheme equation for h reads h = −H− + H+ − TH+ since
lim supnAn(T, h) = −ε implies H = supn≥1

∑n−1
j=0 T

jh < ∞ µ-a.e. More-
over, H− ∈ L1 because otherwise we would get limnAn(T, h) = −∞. There-
fore the function w = v +H+ satisfies Tw − w = −H− + (c+ ε) ∈ L1.

The conclusion is now easy since Tnv ≤ Tnw =
∑n−1

j=0 T
j(Tw − w) + w;

by the ergodic theorem, limnAn(T, Tw − w) exists µ-a.e., and it is zero
because this limit is obviously zero in probability.

Remark. This is due to Woś with essentially the same proof [12].

6. Final comments and remarks. In the preceding study the ergod-
icity assumption is just a convenience. To drop it is an exercise.

The filling scheme method was conceived to deal with positive contrac-
tions of L1 that do not commute with lattice operations; in that general
situation several equalities are replaced by inequalities and the heart of
the method cannot be reduced to just one equation as is the case for a
pointwise transformation. For more details see [9] or [12] and their refer-
ences. For a pointwise transformation the idea to look at supn≥1

∑n−1
j=0 T

jf
is, of course, quite old. For instance the classical theorem of Gottschalk
and Hedlund asserting that if supn≥1 |

∑n−1
j=0 T

jf | is bounded then f is a
coboundary is much older than Chacon–Ornstein’s theorem (see [5, p. 102,
Th. 2.9.3], whose proof is defective, but can be easily fixed by observing that
if L = lim supn

∑n−1
j=0 T

jf satisfies −∞ < L <∞ then f = L−TL). Yet the
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direct proof of Birkhoff’s theorem given above in 3(a) was found by Neveu
as a byproduct of a study of the general filling scheme. Since it appeared in
the book [5] (p. 136) it has been reproduced in several other publications
without proper reference.

Already the famous little book “Lectures on Ergodic Theory” by Halmos
included an example of a measurable non-integrable function whose ergodic
averages converge to a finite limit a.e. (p. 32). Yet it is well known that
L1 gives the best possible assumption for Birkhoff’s theorem, in the sense
of distributions of the functions. The description of the set of measurable
functions whose ergodic averages converge to a finite limit a.e. was found by
Woś (see 5(a)) who also observed that the forward and backward ergodic
averages both converge a.e. and the limits are equal when they are finite.
The approach used above is somewhat simpler than Woś’ and allows the
treatment of infinite limits, thanks to the systematic use of the filling scheme
equation.

Some complementary remarks are in order concerning the convergence
in probability. For any measurable f it is obvious that limn

T nf
n = 0 in

probability. It is also obvious that the forward and backward limits are
the same for this mode of convergence. A direct byproduct of the preceding
study is that An(T, f) may not converge in probability (to a finite or infinite
limit) only when lim supnAn(T, f) = lim supnAn(T−1, f) = +∞ µ-a.e. and
lim infnAn(T, f) = lim infnAn(T−1, f) = −∞ µ-a.e. Yet we do not know
the exact characterization of the set of measurable functions whose ergodic
averages converge in probability.

Acknowledgements. The author thanks M. Boshernitzan, M. Hoch-
man, E. Lesigne and B. Weiss for discussions and comments on the matter
of this note.
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