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Abstract. For a class of infinite lattices of interacting anharmonic oscillators, we
study the existence of the dynamics, together with Lieb—Robinson bounds, in a suitable
algebra of observables.

1. Introduction. Statement of results. Infinite lattices of nearest-
neighbors interacting harmonic oscillators are a usual model in quantum
statistical mechanics. Among the objects associated to this model, an im-
portant one is the dynamics describing the time evolution of some algebra
of observables, related to the lattice. Such dynamics on a lattice was defined
by Malyshev—Minlos [M-M| and by Thirring [TH], when the potential is a
quadratic form.

We also note that, for bounded Hamiltonian models, Lieb and Robinson
have established in [L-R] an estimate, concerning the propagation speed for
the correlation between two local observables. These inequalities have been
improved more recently, with bounds that are uniform with respect to the
dimension of the Hilbert space defined at each site, allowing this dimension
to go to infinity. See [N-O-S], where the existence of the dynamics is also
proven in some algebra (not the same as in [M-M]| or [TH]). See also [H-K],
IN-S] for applications of these inequalities, and [R-S] for an analogue in
classical mechanics.

More recently, Nachtergaele, Raz, Schlein and Sims [N-R-S-S| have de-
rived Lieb—Robinson type inequalities for lattices of unbounded operators.
More precisely, they consider a lattice of harmonic oscillators with quadratic
interactions with, moreover, on each site of the lattice, a self-interaction po-
tential in a more general class. More precisely, Lieb-Robinson type inequal-
ities are proved ([N-R-S-S]) for Hamiltonians associated to a finite subset
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A of the lattice, and hold uniformly in |A|. However, to the best of our
knowledge, the existence of dynamics as |A| — oo is established when the
potential is a quadratic form, but not with smaller perturbations.

The aim of this article is twofold. First, we shall take the limit when
|A| goes to infinity. For that, we define a C*-algebra W, which seems to be
more convenient, when the perturbation is turned on, than the Weyl algebra
defined in [M-M] or in [TH], or than the quasilocal algebra used in [N-O-5].
We prove the existence of a dynamics (defined as a limit when the number
of sites goes to infinity) for local and non-local observables in this algebra.
Secondly, we are able to perturb the quadratic potential of interaction in a
more general way than in [N-R-S-S], with not only self-interacting terms. We
allow interactions between sites at arbitrary distance, with an exponential
decay of this interaction. In this framework, we also obtain Lieb—Robinson
type inequalities, with a bound for the propagation speed of the correlations
which is perhaps different from the estimation given in [N-R-S-S] (see the
remark after (1.20)).

We consider a one-dimensional lattice Z in order to simplify the no-
tations. For each subset A, = {-n,...,4n} (n > 1) in Z, we define a
Hamiltonian H,, in R4» by

1 o2
(1.1) Hp,=—5 Y ==+ Va,, Vi, = ViR vEe

where the potential V/?:ad is a positive definite quadratic form on R4», and

V}f:rt is viewed as a perturbation of V/?uad.

The quadratic potential is defined for all n by

n—1
(1.2) V@) = Sl —b Y aawan
A=—n
where a and b are real numbers satisfying a > 2b > 0.
Precise hypotheses on the perturbation potential are stated in (H1) and
(H2) below. These assumptions imply that V}f:rt is the multiplication op-

erator by a real-valued function vﬁirt belonging to C3(RA"), and satisfying

Vi (@) = o(|z|?) near infinity.

By Kato—Rellich’s theorem, the operator H,, defined in (1.1), with the
hypotheses (H1) and (H2), is self-adjoint with the same domain as the har-
monic oscillator on R4». Hence, we can define the unitary operator e®4n
(t eR).

Thus, the following operator is well-defined:

(1.3) a%l(A) = etHan g~ tHa,
for all A € L(Ha,) (where H4, = L?(RA7)) and all ¢ € R. It is then natural
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to ask whether this sequence of operators has a limit when n tends to 400,
and for which class of operators A. More precisely, we are looking for a
Banach algebra A satisfying the following conditions:

e The space L£(L?*(R%)) (where A is a finite subset of Z) is isometri-
cally immersed in the algebra (the elements of £(H4) are, under this
identification, called local observables supported in A).

e For all local observables A, the limit as n tends to infinity of a%ZL(A),
denoted by aY)(A), exists in A.

e The operator a'?), defined in this procedure for local observables A,

may be extended by density to the whole algebra A, and acts in a
continuous way.

Several works, related to this issue, have considered the C*-algebra A of
quasi-local observables. Let us recall its definition (cf. [S]). For each finite
subset A in Z set Hy = L?*(R?A). One notes that if A C A’ then L£(H,)
is isometrically immersed in L£(H /). Therefore, one may define A as the
completion of the inductive limit of the spaces L(H,):

(1.4) A= LH).
ACZ

This algebra is well-adapted in the case of bounded potentials, or when
the first order derivatives are bounded (cf. e.g. [N-O-5] for the existence of
a dynamics, or [A-C-L-N] for estimates on the decay of the correlations),
whereas it might not be suitable for the perturbed quadratic case studied
here.

Another algebra, the Weyl algebra, is considered by Malyshev—Minlos
IM-M] and Thirring [TH]. This algebra fits the unperturbed quadratic case
(V/{)frt =0), and is defined using the Fock space formalism.

The space ‘H denotes the symmetrized Fock space H = Fy(¢*(Z)), asso-
ciated to the Hilbert space ¢?(Z). For all A € Z, one defines two self-adjoint
operators Py and () in the Fock space, satisfying the same commutation
relations as the position and momentum operators in L?(R"). (Note that
there are an infinite number of these operators.) For each finite subset A
of Z, the space L(H) (where H, = L*(R4)) is isometrically immersed in
L(H). This identification extends also to unbounded operators. Thus, the
multiplication operator by x) and the operator %% (A € A) become the

two operators @ and Py, sometimes denoted by Q(AO) and Qg\l):

1 0
(1.5) QV ===z, Q=P =--"

i oz
The Fock space formalism allows us to properly define, for all real se-
quences u and v in ¢*(Z), an unbounded self-adjoint operator (the Segal
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operator), formally defined by
(1.6) I (u,v) =Y (urPx+ 02Q).

AEZ

The operators P, and @) are not generally defined by (1.5) anymore, but
instead, II(u,v) is defined starting from the creation and annihilation opera-
tors associated to £2(Z) (see Section 2). The corresponding unitary operator
W (u,v) = 1) is called a Weyl operator.

The Weyl algebra introduced by Malyshev—Minlos [M-M] and Thirring
ITH] is the closure in L£(H) of the subspace generated by the operators
W (u,v) (u and v being real sequences in ¢?(Z)).

In the purely quadradic case (V}f:rt =0), for all A in this Weyl algebra,
(t)

an explicit analysis allows us to define )y’ (A) properly (even if A is not

supported in A,) and to define the limit operator a(t)(A) such that, for all
feH,

Jim (o) (4) = a®(A)] fl2 = 0.

In order to derive the latter limit, uniform estimates, such as those estab-
lished in [N-R-S-S], are needed.

Using the Weyl algebra defined above, it is probably difficult to obtain
these results when the perturbation potential is turned on. The purpose of
this work is then to extend the above results to the quadratic case with
perturbations by involving another algebra W, included in £(H). Further-
more, the Lieb—Robinson estimates in [N-R-S-S] are also extended to that
framework.

Before giving the definition of Wh, let us mention that the works of
Calderén—Vaillancourt |[C-V| and Beals [BE] (see also Hérmander [HOI)
give an important role to a particular subalgebra of £(L?(R™)) or here, of
L(L*(RA)), for all finite subsets A in Z. This subalgebra is the set OPS°(R4)
of pseudo-differential operators on R, associated to symbols that are
bounded together with all their derivatives. From Beals [BE], these op-
erators are characterized by the following property, involving the oper-
ators QE\O) and Qg\l) defined in (1.5) for all A € A. An operator A in
£(L2&RA)) is in OPSO(R4) if, and only if, all the iterated commutators
(ad )\11) . (adQlf\:i)A, (with Aq,..., Ay, in A, m >0, and k; € {0,1}), are
bounded in L?(R4). (The commutators are known, a priori, to map S(R")
into S'(R4).)

Replacing A by Z, one may analogously define a decreasing sequence of
subalgebras Wy, in L(H) (k > 0). Set Wy = L(H). We denote by W; the set
of all A in W)y such that, for all A € Z, the commutators [A4, @] and [A, P)]
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are bounded in H, and the sum in the following norm is finite:

k
(1.7) 1A, = 14w, + > 114 QM Tl
el

Note that the above commutators are properly defined in Section 2. From
now on, the operators Q(AO) = @) and Qg\l) = P\ are defined through the
Fock space formalism, and not by (1.5) anymore.

Let us denote by W, the set of all operators A € W; such that the
commutators [Qf\k), A] belong to W for all X in Z, and the sum in the norm
below is finite:

1 .

(18) A, = Al + 5 32 1IIAQF1 QP
(A\p)ez?
0<4,k<1

An example. For all v and v in ¢(Z), the Weyl operator W (u,v) =
eTw) s in Wy (0 < k < 2).

One might similarly define a sequence of algebras W, using iterated com-
mutators. In particular, the intersection of these algebras could correspond
to an analogue of OPSY in infinite dimensions. Other particular classes of
pseudo-differential operators in infinite dimensions are studied by B. Lascar
(see [L1], [L2]), or more recently by Ammari-Nier [A-N].

Among all these algebras, from our point of view, it is W, that appears
to be the most suitable for our study. If A is not supposed to be in W,
but only in £(H) and supported on a finite subset E of Z, it appears to be

possible to show that, for all f in H, the sequence Oz%i (A) f weakly converges

in H. If this limit is denoted by aY)(A)f, it is not clear whether the map
t — a® is continuous, neither whether a® may be extended to a suitable
Banach algebra.

More precise estimates are obtained when the local observable A belongs
to Wh. First, let us describe the perturbation potential.

Hypotheses on the perturbation potentials. The operator V/ﬁ’frt is
written as the following sum:

(1.9) V="Vt > Vi

AF

where the operators V) and V), are defined for all A and y in Z, and satisfy
the assumptions below:

(H1) For each pair (A, u) € Z? with A\ # pu, V), is multiplication by
a C3 real-valued function vy, depending only on the variables x) and x,.
Moreover, denote by & — v,,(£) the Fourier transform of vy, (on R? and
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in the sense of distributions). Then & — £A£kvm(§) belongs to L'(R?) for
2 < j+ k < 3. Furthermore, there exist Cp,v > 0 (not depending on A
and ) such that

(1.10) > ol gey < Coe 0 H,
2<j+k<3
(1.11) |V (0)] < Coe 0=,

(H2) For each \ in Z, Vy is multiplication by a C® real-valued function vy
depending only on the variable x. If we denote by v} the Fourier transform
of vy, then & — &03(€) is in LY(R) for 2 < j < 3, and

(1.12) S €GBl @ < Co,  [VOA(0)] < Co.
2<5<3

In particular, in the case of interactions between nearest neighbors, one
has V), = 0 whenever |\ — p| > 2. It is then sufficient that the integrals on
the Lh.s. of (1.10) and (1.12) are uniformly bounded in A. In that case, the
hypotheses (H1) and (H2) are satisfied for any 7 > 0, and in all the results
below, the phrase “for all v € (0,79)” has to be replaced by “for all v > 0”.

For each integer n, the perturbation potential Vpert and the Hamiltonian
H,, are defined by (1 9) and (1.1) respectively. In [N-R-S-S], the authors
have only considered the V)’s. We shall say that an element A of Wy has
finite support if there exists a finite subset E in Z such that A identifies
with an element of £(Hg). The smallest such set is called the support of A
and is denoted by o(A).

THEOREM 1.1. Under the above hypotheses, for all A € Ws with finite

support, allt € R, and all n such that A, contains the support of A, the op-

erator 0‘51) (A) belongs to Wa. Moreover, there exist C, M > 0 not depending

on n and t such that
(1.13) o) (A)lw, < CeM| Al

Furthermore, for each f € H, the sequence oz%) (A)f strongly converges in H.

Denoting the limit by oY (A) f, the map t — a(t)( ) f is strongly continuous,
the operator oY (A) is in Wy, and

(1.14) 1ot (A) I, < CeMM||A] .

In the first part of this theorem (where n is fixed), one may think that

a%}l acts in the algebra W, defined similarly to W; and Ws,, but with

iterated commutators of length k, and for operators supported in A,. (The

hypotheses (H1) and (H2) naturally need to be strengthened.) From Beals’
()

characterization, one would deduce a group action of « A, on the operators
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in OPS°(RA). An alternative approach may be found in the works of Bony
(see [BO1] and [BO2|).

Moreover, under the hypotheses of Theorem 1.1, the automorphism o)
(initially defined for local observables) extends uniquely to the whole algebra
Wy (see below). To this end, we introduce Sobolev-type spaces.

Let H? be the subspace of f € H such that the following norm is finite:

(115)  |flse = I+ sup 1QV i+ sup [1QPQE fllx.
0sj<l 0<j,k<1

Since convergence in norm is needed, Theorem 1.1 is now completed with
the result below:

THEOREM 1.2. There exist C,v, M > 0 with the following properties.
For all A in Wy with finite support o(A), all n such that A, contains o(A),
and allt € R,

(1.16) 1ol (4) — a®(A)]| pppag < CeMe DA 4]y,
Moreover,
(1.17) 10 () 7y < CMMNAll e 20

The set of all observables with finite support is not dense in W,. To
extend oY), we shall use, instead of density, the following two results.

THEOREM 1.3. Let A be in Wa. Then there is a sequence (Ay) in Wa
such that each A, has finite support, and

(1.18) [Anllw, < [[Albwy,  lim [|An = Allz2,) = O-

THEOREM 1.4. Let (Ay,) be a sequence in Ws. Suppose that || Ap|lw, <1
and there exists A € L(H?, H) such that | Ay — Al g(342,30) — 0. Then A may
be extended to an element of L(H) which belongs to Wa and ||Aljw, < 1.
Moreover, Anf — Af inH for all f € H.

Consequently, we easily deduce from Theorems 1.1-1.4 that a® can be
extended, in a unique way, to the whole algebra Ws, without any conditions
on the finiteness of the supports (see Section 7). The map a® is not a Wy
norm preserving map, but it is £(H) norm preserving. Using this fact, a(®)
can be extended to the closure W5 of W, in L(H). Thus, a® acts in Wy in
a continuous way (for the simple topology) and is norm preserving.

Lieb—Robinson’s inequalities. These inequalities, established in [L-R]
for bounded Hamiltonians and, more recently, in [N-R-S-S|] for quadratic
Hamiltonians, express the propagation of the correlation between two ob-
servables with separated supports, as a function of time and of distance
between the supports.
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For all h in Z, let T}, be the map in £2(Z) defined by (Thu)x = ursn
for all u € ¢2(Z) and A € Z. With T}, we define a map in the Fock space
H = F(£*(Z)), still denoted Tj,. For A in L(H) we set 75,(A) = T), L AT},

In our framework, Lieb—Robinson type inequalities have the following
form:

THEOREM 1.5. There exists a real number vy with the following property.
For any A and B in Wy with finite supports, any sequence (hy,ty,) tending
to infinity in Z x R with |hy| > volt,|, and any f € H,

(1.19) lim [o*)(A), 7, (B)]f = 0.

n—oo

The infimum Vj of all the vy with the above property defines a kind of
propagation speed, which is different from the usual definitions of phase and
group velocities (cf. Cohen-Tannoudji [C-T]). In the case of cyclic quadratic
potentials (that is, without any perturbation, but obtained by adding to
V/?:ad of (1.2) an end point interaction potential —bz,x_,), one finds in
IN-R-S-S] an estimate of this propagation speed. (In [N-R-S-S| this is written
for a multidimensional lattice model.) We shall provide here an alternative
estimate of the same type, with an elementary proof, given in Section 4. The
analysis of chains of harmonic oscillators with cyclic interactions usually
involves the dispersion relation w(f) = va — 2bcosf (cf. [C-T]). It is then
natural to define a complex version of this relation,

2(z) =+\a—bz+z71), zeC\{0}.
For any v > 0, set
M) = s [ln ()|
z|=eY

The propagation speed satisfies, in the cyclic quadratic case,

M
Vo < inf ﬂ
v>0 Y
In a more general case, this estimate is less precise. For all 7y in (0, ) (with
~o as in the hypotheses (H1) and (H2)), we shall define in Proposition 3.4
a positive number S, and we shall prove in Section 8 that the propagation

speed satisfies

(1.20) Vo < inf @
0<v<v0 Y
The constant Vj depends only on a and b, together with the norms in
FLY(R) or FL'(R?) of the second derivatives of the potentials of perturba-
tion. We then note that if we multiply a, b and the potentials of perturbation
by a constant g > 0, our estimate on the propagation speed is multiplied
by \/g. It seems that the estimate in [N-R-S-S] did not have this property. It
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is also possible to give a norm estimate, instead of (1.19). Then we need the
Sobolev spaces of Section 2. We shall prove in Section 8 that for M > 2,/5

1[0 (A), Blllcgrz ) < C(M,7) | Allw, [ Bllw, eMle =70 E))

where 0(A) and o(B) are the supports of the local observables A and B.

Section 2 concerns the subalgebra Wy. In Section 3, properties of Vj,
under the hypotheses (H1) and (H2) are established. Evolution operators,
for finite systems on the lattice, are studied in Sections 4—6. Sections 7 and
8 are respectively devoted to perform the limit as n (the number of sites)
goes to infinity, and to derive Lieb—Robinson’s inequalities.

2. Algebras of operators in the Fock space

Notations on Fock spaces (cf. [R-S]). For any subset E of Z, the sym-
metrized Fock space associated to the Hilbert space £2(E) will be denoted
Hp. When F = Z, this space is still denoted H. The ground state of Hg is
denoted by g or {2 when E =Z.

If Fy and E5 are two disjoint subsets of Z one may identify Hg,ug, and
HE, ® HE, (the completed tensor product). One may also identify 25, Uz,
with -QEl () .QEQ.

For all real sequences u in ¢2(Z) we define two unbounded operators
a(u) (annihilation operator) and a*(u) (creation operator), formal adjoints
of each other, and satisfying the following commutation relations:

[a(u), a(v)] = [a"(u),a”(v)] = 0, [a(u),a”(v)] = (u, v),
for all u and v in ¢?(Z).

We denote by (ex)rez the canonical basis of £2(Z). Starting from the
ground state £2, and applying successively the creation operators, one defines
a*(ey,)...a*(er,, )2, which are orthogonal elements of H. Let D be the
subspace of ‘H generated by these vectors. It is known that D is dense in H.
The space D is included in the domain of all a(u) and a*(u) (u € £%(Z)).
For all f in D there exists a finite subset S C Z such that f can be written
as f = g ® {25 with g € Hg. We then say that f is supported in S.

Next we define the Segal operator II(u,v) by

a(u) + a*(u) n a(v) —a*(v)
V2 iv?2

for all real elements v and v in £2(Z). An element f € H is in the domain of
II(u,v) if there exists a sequence (f,,) in D such that f,, converges to f in H,
and [T (u,v) f, has a limit in H. Thus, IT(u,v) is a self-adjoint operator. The
associated Weyl operator is W (u,v) = e(wv),

In particular, for each element e in the canonical basis of £2(Z) the Segal

operators are denoted

(2.1) (u,v) =
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_ A0 _ a(ex) +a*(ex) _ A _alen) —a*(e)
(22) Q)\ - Q)\ - \/5 ) P/\ - A Z\/i .
Let us write down an orthonormal basis. We shall limit ourselves to the
Hilbert space Hyy, associated to a subset of Z reduced to one element A. In
this space we again use the construction of D and obtain the basis (hy)n>0,

now normalized by setting
(2.3) ho= 2y, hjs1 = (G +1)72a*(e\)h; (5 > 0).

The space Hyyy may be identified with L?(R) in an isometric way. Then the

basis (hj) becomes the Hermite functions basis, and the operators @ and

P, respectively become multiplication by x, and the operator %%. Effec-

tuating the completed tensor product, the space H 4 is similarly identified
with L?(R4) for each finite subset A of Z.

For any £ C F C Z, and any operator T' € L(E), we define igr(T") by
(2.4) ZEF(T) :T®IF\E7
where Ip\p is the identity in Hp\g. In particular, if F' = Z the operator
igz(T) is said to be supported in E.

Sobolev spaces. Let us denote by H' the set of all f € H that belong

to the domains of the Segal operators Q) = Qg\o) and Py, = Qg\l) for all
A € Z, and the following norm is finite:

(2.5) £l = £l + sup QS £l
0§§§1

The space H? is the set of all f € H' such that Qg\o)f and Qg\l)f belong to
H! for all A in Z, and with the following norm finite:

(2.6) 1flhe = £l + sup QY QWP flls.
(A p)ez?
0<5,k<1

These spaces are dense in H since they contain D. If E is a subset of Z
then the subspace HkE is defined analogously in the corresponding Hilbert
space HEg.

Commutators, and spaces with negative orders. For all A in
L(H), f € H! and X € Z the map

(2.7) H'5 g (407 f,9) — (Af. Qg), 0<j<1,

is a continuous antilinear map on H'. We denote by H~* the anti-dual of H*
(0 <k <2). For any A in £(H) the map (2.7) is linear and continuous from
H! to H~L. It is denoted [A, QE\j)]. One may identify H with a subspace

of H~', and the latter with a subspace of H~2. Thus, the operators Qf\j)
are bounded from H™ to H™ ! (-1 < m < 2), and this allows us to
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define the iterated commutators | E\j)7 [Qgc),A]] (\p)€Z? 0< 5,k <1)
as continuous linear maps from H? to H 2. This map is also denoted by

(ad QF)(ad Qf) A.
If there is a C' > 0 satisfying

1(AQY £, 9) — (AF, QP g)| < C| fllllglln

for all f and ¢ in H' we shall say that the commutators [A,Qf\j)] are in

L(H). Then for all f in H' there exists an element of H, denoted [A, Qg\j)}f,
such that

(APf, g) — (A£,QVg) = ([4,Qf, g)

for all g in H', and the previously defined operator [A,Qf\j)] cHY - H
extends to an element of L(H). Proceeding similarly, one gives a precise

meaning to the statement “the commutator [[A, Qg\j)], Ql(f)] isin L(H)”.

Weyl algebra. We denote by W; the set of all A in £(H) having the

commutators [A,Qf\j)] (0 <j<1)in L(H) for all \ in Z, and having the
following norm finite:

(2.8) 1Al = 1Al + Y A, Q-
AEZ
0<j<1

We denote by W the set of elements A belonging to Wi, having the commu-

tators [[A4, Qg\j)], Lk)] in L(H) for all A\ and p in Z, and having the following
norm finite:
1

(2.9) [AlIwe = 14wy + 5 > 114, Q51 @ eoo.
(A p)€ez?
0<5,k<1

We easily verify the next proposition.

PROPOSITION 2.1. For all k < 2 the algebra Wy is a Banach algebra.
For all A and B in W,

(2.10) IABlw, < Al 1 Bllw,-
Each A € Wy is bounded in the Sobolev space H? and
(2.11) ANl £rz 2y < 3l Allw-

Proof of Theorem 1.4. Let (A,) be a sequence in Wy and let A in
L(H?,H) satisfy
[l 1, Tim [[4 = Allzge 2 = 0.

For each f in M2, one deduces that ||Af]| < ||f|| and A thus extends by
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density to an element of £(H) with
IAllery < Timinf [|Anl| £z

For all Ain Z, all f and g in D and any n > 1 we see that
1(AQY £, 9) — (AL, QD g) < 11A4n, QVIII 113191l + &n

where the sequence ¢, tends to 0. As a consequence,
(4QF 1, 9) = (A£,QV )| < I lnllgllr lim in [[[ A, QT

Since D is dense in H! this inequality is still Vahd for all f and g in H'.
With the above definition the commutator [A, Q X ] is thus in £(H) and

114.QP ey < limin {40, Qo).
From Fatou’s lemma one deduces

> 114, QP Mlleeo < Timinf 7 114w, Q1o

AEZ ANEZL
0<j<1 0<j<1

It is similarly derived that the commutator [[A, Qf\j)], Q,(f)] is in L(H) for all
Aand pin Z, and

S A QL QPlcpy <liminf > I[T4n QY1 Qe

(\p)ez? A1) EZ?
0<j k<1 b

Theorem 1.4 is then an easy consequence of these facts. m
To derive Theorem 1.3, we shall construct, for any subsets F and F' such
that £ C F C Z, an almost right inverse of the operator igr defined in

(2.4). Let 25\ be the ground state of '\ E. Let mgr : Hp — Hp be the
map

(2.12) f=mer(f)=f®2mng,

and let 7% : Hp — Hp be the adjoint operator. Note that n%mepr = I.
For all A in L(HFr) one defines ppgr(A) in L(HE) by

(2.13) pFE(A) :WEFOAOTFEF.
One can easily see that, for each A € W,
(2.14) lore(A)w, < [Allw,-

Also, if E C F C G then

(2.15) PGE = PFE © PGF-

We shall study how an operator A € L(Hp) may be approximated by
igr o pre(A) when F is a subset of F, both finite.
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PROPOSITION 2.2. There exists C > 0 such that, for all finite subsets £
and F of Z with E C F, and all A in Wy supported in F,

(26)  [[A—igropre(Alcaern <C Y (adPy) (ad Q) Al p.

AeF\E
1<j+k<2

This proposition is proven in Appendix A. Let us show how it implies
Theorem 1.3.

Proof of Theorem 1.3. Let A € Wh. Set A,, = ia,z0pz4, (A). The A, are
in Ws with finite supports and || A, ||w, < ||Alw,. If m < n then Proposition
2.5 yields

[Am = Anll vz 1) < 1P AR (An) = Anll 2z )

<C Z [(ad Py)? (ad Q)" All £ (2)-

AEZ\Am
1<j+k<2

The latter sequence goes to 0 as m — oo if A € Ws. Consequently, the
sequence A, converges, in L£(H?,’H), to an element B € L(H? H). From
Theorem 1.4, B is in W» and A, f strongly converges to Bf for all f € H.
Let us check that B = A. To this end, let f,g € D. If A, contains the
support of f then A,f = ma,z7m) 7 Af. Therefore, if A, also contains the
support of g then

(Anf,9) = (T4, 270, 2AS T4, 2T B0, 0) = (T, 2AS, TE 1, 0) = (Af, g).
Since A, f strongly converges to Bf we have (Af,g) = (Bf,g) for all f
and g in D. Since D is dense in H the equality B = A is indeed true. As a
consequence, A, converges to A in £(H?,H) and the proof is finished. =

Proposition 2.5 also implies the following result.
COROLLARY 2.3. For all A and B in Wy with finite supports,

(217) A Bllegeer < ClBlw, Y I(ad P (ad Q) All )

A€o (B)
1<j+k<2

where C' does not depend on any of the parameters.

Proof. We make use of the operator ppp for F' = o(A) U o(B) and
E = F\ o(B). It is known that ppp(A) commutes with B since its support
does not intersect o(B). Hence

I[A; Blll 2 1) = [I[A = pre(A), Blllciez,m)
< [IBllzge) + 11BlleaolllA = pre(A)ll coem)-
From Proposition 2.1,
1Bl 212y + 1Bl 2y < ClIBlIws-
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Using Proposition 2.5, we find a constant C' > 0, which does not depend on
any of the parameters, such that (2.17) is satisfied. =

3. Perturbation potentials and commutators. We have to express
the perturbation potentials V) and V), satisfying hypotheses (H1) and (H2)
of Section 1, as integrals of Weyl operators, and to verify precisely that,
under (H1) and (H2), these integrals are convergent and define operators
in Sobolev spaces. We shall do the same for the commutators of V), with
elements of Wi, or with Segal operators, and for iterated commutators.
These norm estimates will be used in the following sections.

Partial Sobolev spaces. The Sobolev spaces defined in Section 2 are
not Hilbert spaces. Nevertheless, for any finite subset like A,, the space
H’jln can be endowed with a Hilbert space norm which is equivalent, for
each fixed n, to the norm of Section 2. As an example, for £ = 1, one may
set ‘

17150, = D 10T f15,,-

N,
3=0,1

For all n, these norms and those of Section 2 are equivalent but the constant
involved in the inequality depends on n.

Let us choose an orthonormal basis (¢q)a>0 in the Hilbert space Hae -
We define a map ¥, from H,,, into H by ¥, (f) = f ® pq. The adjoint map
from H to H,, is denoted by ¥}. For all f in ‘H we have

AP = 1w £z,
a>0

Then we define the space H¥(A,,) as the set of all f such that the following
norm is finite:
(3.1) 17 By = D2 Iy

a>0
Thus, H* C H*(A,) € H if k > 0. When k = 1, an element f of H is in
H! if it belongs to H!(A,) and if, for all A € AS, one has Qg\j)f € 'H, and
the sequence ||Q(Aj) |l (A € Z, j =0,1) are bounded. This property may be
used only for fixed n.

Partial Sobolev spaces with negative order. Let H~*(A,) be the
anti-dual of H*(A,,) (k = 1,2). Thus

H2(A,) € HY(A,) € H € H Y (A,) € H2(Ay).

If an operator @ € E(H}ln,H) satisfies (@f,g) = (f,®g) for all f and g
in H}ln, where (-,-) is the scalar product in H, then, for all f € H, the
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map g — (f,®Pg) is an element of H~!(A,) denoted here by @f. Thus,
the operator Q) is bounded from H*(A,) into H¥"1(A,) (-1 < k < 2,
A € Ay). We shall check that similar considerations are also valid for the
operators i[Py, Vy,]. The commutator of these two types of operators is in

LHY(A), H™Y(AR)).

Perturbation potentials and Weyl operators. If £ is a real sequence
in /2(Z) with finite support then the Segal operator IT(¢,0) defined in (2.1) is
also written as | £,@x. Since the hypotheses on the perturbation potentials
involve only the derivatives of order 2 and 3, the following function will
appear below:

1
(3.2) r— Fz)=¢e% —1—iz = iQ:UQS (1—6)e' dp.

0
Let Vi, (A1 # A2) be multiplication by a real function vy, on R% Tt is
an unbounded operator in L?(R?) or, under the identification of these two
spaces, in Hyy x,}- If vy, satisfes the hypothesis (H1), then

(3'3) V)\1)\2 - U>\1/\2(O)I+ Z (8>\jv>\1>\2)(0)Q)\j
1<5<2

+(2m) 7% | O (O F(€,Qx +€,Q0,) dE.
R2
Under the hypothesis (H1) the integral is convergent and defines a bounded
operator from H? to H.

Commutators. In order to study the commutators of V},, with other
operators, we shall use the following relations, valid for any operators X and
A in a Banach space, and for the function F' of (3.2):

1
(3.4) €%, A] = i | X[ X, Ale’0 =0 X ap,
0
1

(35)  [F(X), Al =i[X,Al(e™ - I) +i*| (1 - 0)e"¥[X, [X, AJ]e' =D X ap.
0
Equality (3.5) is first applied with X = &, Qx, + ,,Q\, and A = Py,
(7 = 1,2). Using equality (3.3) for V),\, we obtain

. jk
[P)\ja V)\l)\z] = _Z(a)\jv)\l)Q)(O)I + Z Ag\l)\QQ)\IH
1<k<2

Al =02m)7 | G (96,6, e T @) de dp.
R2x[0,1]
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Under the assumption (H1), this integral converges and defines an operator
Af\k/\z in L£(H), with O(e~0*1=%2l) norm. Each single site operator is sim-
ilarly treated. Note that the integrals are then integrals on R. We deduce

the following proposition concerning the potential V,,, defined in (1.1) and
(1.9):

PROPOSITION 3.1. Under the hypotheses (H1) and (H2), one may write

(3.6) [Py, Va4, = WA )+ Z W,\u Qu

HEAR
where ag\n) 1s a real constant and Win) s a bounded operator in H. Moreover,
there exists C; > 0, independent of \, i and n, such that

(3.7) a1 < C1, (WAl ey < Crem Rl

We can also apply the commutation formula (3.5), still setting X =
Ex @, +E0,Qn,, but with A € Wh. Inserting the expression (3.3) for Vy,a,
and using hypothesis (H1), we obtain the following proposition.

PRrROPOSITION 3.2. For all A in Wh, and all X and p in 7Z, the com-
mutator [A,Vy,] is in L(HY,H). There is C > 0, independent of all the
parameters, such that

(3.8) II[A, Vaulll e 3y < Ce 0wl Z I(ad Q1) (ad Q)" Alll £ (24
1<j+k<2

Double commutators. If A, B and X are three operators such that
[X, B] is the identity operator up to a multiplicative factor, and if F' is the
function given by (3.2), then (3.4) and (3.5) imply that

1
(3.9) [[F(X),B],A] = %X, B]SewX[X, Al 1=0X gp.
0

This formula is applied with X = &, Qx, +&,,Q,, B = Py; (j = 1,2) and
A € L(H) (in particular A € W). Inserting the expression (3. ) or Vi, x,
and using (H1), one gets

(3.10) [Vare: Py Al = > S (14,Q0,])
1<k<2
where we have set, for all @ in L(H?(A,), H 2(Ay)),
(3.11) S{F, @) = 2m) 2 | Gn() 6,6 @ odoe=NXE) de g
R2x0,1]

with the notation X (&) = &\, Qx, + &, Q-
Next we shall deduce the following proposition.
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PROPOSITION 3.3. For all A\ and pu in A, (n > 1), there exists a con-
tinuous linear map Ky, from L(H*(Ay), H™%(Ay)) into itself, leaving the
subspaces L(HY(Ay), H™1)(A,) and L(H) invariant, such that, for all A in
L(H),

(3.12) [A [Py, Va ]l = > EKau([A, Qu)).

HEAR,
Moreover, when restricted to L(H), Ky, is in L(L(H)), and there exists
Co > 0, independent of n, A and p, such that

(3.13) I Kl £z < Coem 0w,

Proof. The operator @’_)Sg\]ng (®) maps L(H*(Ay), H™%(A,)) into itself.
It also maps L£(H) into itself, with norm < Cpoe A=l For one site poten-
tials V), we define similar operators Sy such that [[Vy, Py], A]=S\([4, QA])
for all A € W;. We then set, for all A and p in A, such that A # p,
K@) - { @+ SA@) -2
—b® + S\ (D) + SN (P) i [A—p[=1,

and if A = p,

KD(®) = ad + S\ (D) + S (SIL(@) + TR (D).
HEAR
)

The equality (3.12) and the estimate (3.13) follow. m

In the next proposition, we shall define a constant S, which gives, in
(1.20), an upper bound for the Lieb-Robinson group velocity. This will be
proved in Section 8.

PROPOSITION 3.4. Under the hypotheses (H1) and (H2), for all v in
(0,70) (orin (0,00) in the case of interaction with nearest neighbors), there
exists Sy > 0 such that, for all n, and all X\ and v in A,

Koullzir e vl < g e—vI/\—V\,
BIL(L(H)) v
HEA,

S AWl gge M < 8pe A
BEA,

where the Ky, are the operators constructed in Proposition 3.3 and where
the Wy, are those of Proposition 3.1.

Triple commutators. If X, A, B, C are operators such that [X, B|
and [X, C] are equal to the identity operator up to a multiplicative factor,
and if F' is the function defined by (3.2), then we deduce from (3.9) and
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(3.4) that
1
[[[F(X), B], A],C] = *[X, B] | "X [[X, 4], C]e' =X dp
0
1 . .
+4%[X, B][X, C] | X [X, Ale’ 0¥ ap.
0
We shall apply this formula with X = &£y, Qx, +80,Q\,, B= Py, (j = 1,2),
A € Wy and C being a Segal operator. Inserting the expression of V),
given in (3.3) and using (H1), we obtain

[[[VMAQﬂP)\j]vA]vC] = Z (Silf)q([[Aa QA/@LC]) —‘y-T)];f)\z([[A,Q,\k],C]))

1<k<2
where S{*, (®) is defined in (3.11) and T3", (&, C) is defined by
Tif)\Q (dsv C) = S v>\1)\2 (5)5)\] é-)\k [X(é-)v C]e 9X(£)¢e (1 0)X(£) W

R2x[0,1]

If C is a Segal operator (a linear combination of Py and @)y) then [X (), C]
is a constant and the above integral converges by (H1). It is at this point
that the hypothesis “|¢[?v,(£) belongs to L'(R?)” is involved. We proceed
similarly for all single site operators V). Summing up as in Proposition 3.3,
one obtains the next result:

PROPOSITION 3.5. For all A\ and p in Ay, (n > 1), and every Segal
operator W, there exists a map @ — Ry, (D,¥) from L(H'(An), H™1(Ay))
into itself such that, for all A € L(H) supported in Ay,

A [P VAl ] = > (K u([[A, Q) 7)) + Ra (4, Qul, 9))
HEAR

where @ — K ,,(®) is the map of Proposition 3.3. If @ is in L(H) then
Ry, (®,¥) is in L(H). One has Ry, (®,Q,) = 0 for all p. Also, Ry, (¥, P,)
= 0 except when the set {\, u, p} has only two distinct elements (A = u, or
A =p, or uw=p). In the latter case,

IR2u(P, By)ll ey < Coe PP D)l pzgy  if X # 1,

IRAu(®, Bp)llcrgy < Coe™ PP Al gy if A= o

4. Evolution of the position and momentum operators. Using
the Fock space notations, the Hamiltonian H,, in (1.1) is written as

n—1
a er
(4.1) Hp, = > [Pf + 2@%] —b Y QaQag1 + VET

AeA, A=—n
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where the operator V}fsrt is expressed as the sum (1.9). The terms in the
sum satisfy (H1) and (H2); recall that these two hypotheses are analyzed in
Section 3. Let us start by giving the domain of self-adjointness of Hy,, .

PROPOSITION 4.1. In the Hilbert space H,, , the operator H,, is self-
adjoint with domain H%ln. The operator e an s bounded in H’fln (k =
0,1,2). The operator e"Han @I se is bounded in H*(A,) defined in Section 3
(—2<k<2).

Proof. We know that H,, is naturally identified with L2(R“»)
L?(R?"*1) in such a way that the operators Py and Q) become

The spaces H’jln are then identified with the usual spaces B* of the the-

ory of globally elliptic operators (cf. Helffer [HE]). When V}ffrt = 0, the
operator H,, is a Schrodinger operator, where the potential is a positive
definite quadratic form (if @ > 2b > 0). In this case, it is well-known that
Hy,, is self-adjoint with domain B? = Hin. Let us show that the addition

of V/{’:rt does not affect this result. With the preceding identification and
under our hypotheses, V\ and V), are multiplications by functions vy and
vy, with second-order derivatives going to 0 at infinity. (These functions are
the Fourier transforms of functions in L'(R) or in L'(R?).) Consequently,
the functions vy(zy)/|za|* and va,(za, z,)/[[2A]2 4 |24|%] go to 0 at infinity.
The above proposition thus follows from Kato—Rellich’s theorem. As a con-
sequence, efan is a well-defined bounded operator in H and in the domain
of Hy,,, that is, in H2 By interpolation it is also bounded in H! A, The last
statement of the propos1t10n comes from (3.1) if 0 < k < 2 and is deduced
by duality if £ <0. =

Consequently, if A € £L(H*(A,), H* (A,)), then the operator
(4.2) o) (A) = (€ @ I) 0 Ao (e7Han @ 1)
is also in L(HF(A,), H¥ (4,)). In particular, o) (QY)) € £(H'(A,),H)
(A e Ay).

ProPOSITION 4.2. For all )\ and woin Ay, there exist C' maps t —

Agj;) (t), t — B;Z)( ), and t — R ( ) from R into L(H) such that (omitting

the superscript n in the expressions)

(4.3) o (@) = 3 (A(6)Qu + Bau(t)Pu) + Ra(t),
HEAR
(4.4) ol (P = N (A4, (0)Qu + By, (H)P) + Ry (D).

MeAn



628 L. AMOUR ET AL.

Moreover, for all v in (0,70), and all M > /S, (where S, is the constant
of Proposition 3.4), there exists C' > 0 such that

(45) A @I+ I Bra@) + A5, @) + [ BA (1) < CeMltlemrA=rl)
(4.6) IR + | RA(®)]| < CeM.
Proof. First step. We shall study the differential system satisfied by
A1) =a (@), Pt)=al (P

One observes that t — Q\(t) and t — Py (t) are C! functions from R into
L(HY(A,), H) satisfying

Q\(t) = P(t),  Pi(t) = —ia' ([P, Vi, ).

With the operators Wf\z) and the constant af\ ") of Proposition 3.1, it follows
that

F{(t) = —ai” =i > o)) (W, Q).
HEAR

We define an operator in £(H) by setting

17 t n
(4.7) Waa(t) = aly) (W}3).
With these notations, the preceding systern is written as
(48) QM =Pt), Pt =—al" —i > Wiu(t) o Qult).
HEAR

Thus, t +— (Qx(t), Py(t)) is the unique C' map from R into L(H'(A,), H)
which solves (4.8) and satisfies @,(0) = @ and Py(0) = P.

Second step. We shall now construct matrices Ay, (t),... such that the
right-hand side of (4.3) is also a solution to the same system (4.8) and
satisfies the same initial data. First, we can find an operator-valued matrix
(A())\u(t), A%\u(t)) in £(H) which solves

d d
vEA,

AR,(0) = 6xud,  A3,(0) =0
Indeed, from Propositions 3.1 and 3.4 one sees that the hypotheses in Propo-

sition B.1 (Appendix B) are satisfied for all v € (0,7p). Thus, there exists a
solution of (4.9) satisfying the above initial condition, and also, if M > /S,

(4.10) 143, (Dl 2y < (M, y)eMMlem7AH,

Analogously, we construct an operator-valued matrix (B L8 B; ,.(t)) which
solves the same system (4.9), satisfies the same estimates (4.10) and the
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following initial conditions:
B(0) =0, A},(0) = b5l
From Remark 2 in Appendix B, one may find operators (RS (t), Ri(¢)) in
L(H) which solve
d

SRA(1) = RA(®)

d > n
SRt = —i > Wi, ()RY(1) +ial”,

dt veA
R3(0) = R}(0) =0,

IR ()l 2y < CM, )M N " e Pllq, | j=0,1.
HEA,

We define operators in £(H'(A,),H) by

QL) = D [AL,(0Qu + B, ()P + Ri(t), j=0,1.
HEAR

These functions satisfy the same system (4.8) as Qg\ (t), with the same initial
conditions Qvg(O) = Q) Ci)vi(O) = P). Uniqueness shows Qvg)\(t) = Q@ (t) and
@}\(t) = Py (t), thus the equalities (4.3) and (4.4) hold and the estimates
(4.5) and (4.6) are valid. =

ExAMPLE (The cyclic quadratic case). In the case of a positive definite
quadratic form potential (without perturbation potentials), it is well-known
that the equalities (4.3) and (4.4) are valid with Ry(¢) = 0 and with the
operators Ay,(t) and By,(t) being real numbers. The following classical
proposition summarizes this situation:

PROPOSITION 4.3. In the case where the potentials Vy and V), (perturba-
tion potentials) vanish, the operators aga (Qx) and oszT)L(P,\) satisfy equalities
(4.2) and (4.3) where RE\n) (t) = 0 and the AE\TL) (t) and Bg\z) (t) are real num-
bers. The matrices A (t) and B™ (t) are related to the matriz W, of the

quadratic form V/?:ad in the canonical basis by the equalities

AM(8) = cos(t/Wr),  BM(H) = —n(ij

One may estimate the matrix elements A, (t) and A, (t) using Proposi-
tion 4.2. However, in some cases, the inequalities of Proposition 4.2 together
with the Lieb—Robinson inequalities can be strongly improved and explic-
itly written down. This is precisely the case if the perturbation potential
vanishes, and if the quadratic potential takes the following form (with an
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interaction between the two ends of the linear chain):
a n—1
V/({Zd(x) =3 |z|? — b Z TATAL1 — DTpT .
A=—n
In that case, we can make the estimates of Proposition 4.2 more precise
if the distance d(A, ) = |A — p| is replaced by the cyclic distance on A,,
dp(\ p) =d(N—p, (2n+ 1)Z).

These improved estimates follow on from [N-R-S-§] in the cyclic quadratic
case. Let us give here a simplified proof of a perhaps less precise type of
estimates.

In the cyclic quadratic case, the analysis of chains of oscillators involves
the dispersion relations w(f) = v/a — 2bcos# (cf. Cohen-Tannoudji [C-T)).
It is natural to give a corresponding complex expression by setting

(4.11) 2(z) =va—-blz+z71).

This function is analytic in C \ {(—o0, z1] U [22,0]} where z; and z2 are the
roots of bz? — az + b = 0. Note, however, that the function [Im £2(z)| is well
defined on C\ {0}. Set, for all v > 0,

(4.12) M(7y) = sup |[Im £2(z)|.

|z|=e7
This function is well defined on C\ {0}.
PROPOSITION 4.4. Under the above hypotheses, for all v > 0 there exists
C(v) > 0, independent of n, such that the matrices A" (t) and B™(t) of
Proposition 4.3 satisfy

AT (O] + [BI (0)] +

p A (1)

% + %BE\Z) (t)‘ < C(7)elIM) g=rdn(Ap)

where M () is defined in (4.12) and d,(\, ) = d(X — p, (2n + 1)Z).

Proof. The matrix W,, of the quadratic form VECI, and therefore all the

matrices A (t) and B™(t), are functions of the cyclic shift operator S,
defined in R4» by

€j+1 if —n Sj <n,
Snej = e
e, ifj=n.
More precisely, W,, = al + bS,, + bS;;! and
A (t) = f(Sn,t), B (t) = g(Sn:t), c® (t) = h(Sn, 1),
where we have set, using the function 2(z) defined in (4.11),
sin(t£2(z))
= Q = =
(4.13) f(z,t) = cos(t2(z)), g(z,1) 0z
h(z,t) = —sin(t£2(z))2(z).
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These functions are analytic on C\ {0}. The proof uses the following ele-
mentary lemma;:

LEMMA 4.5. Let S be a unitary operator in a Hilbert space H. Let f(z,t)
be the function defined in (4.11) and (4.13) where a > 2|b| > 0. Then one
can write, for allt € R,

F(S.t) = cr(t)S*.
keZ
Moreover, for ally >0,t € R and k € Z,
27
1 .
—lkl 0
ex(t)] < e — é |£(e7e” )| db.

The same result holds for the functions g and h defined in (4.13).

End of proof of Proposition 4.4. Since S2"*! = I, the sum in Lemma
4.5 can be written as a finite sum, and

2n
A(n) (t) = f(Sn7 t) = Z ak(t)sgv ak(t) = Z Chk+p(2n+1) (t),
k=0 PEZ

where the c¢;(t) are the coefficients of Lemma 4.5. Consequently, if —n <
A< u<nand vy >0 then

AS ()] = 1(F (S t)exs )] = laua (] < 3 epmnipznrn (t)]

PEZL
1 2
< [Ze—vlu—kw(?nﬂ)l} — S |F(e7e t)] db.
PEZ 2 0

There exist C(y) and Ca(7y), independent of n, such that

Z e MH=24pCnA D] < 0 (4) eI AR

PEL

2

1 .

5= ) (e, 0)]db < Co(y)e MO,
0

where M (7) is defined in (4.12). As a consequence,
’AE\Z) ()] < CL(7)Ca(7)el M) g=rdnAm)

Similar estimates for the matrix elements Bgz) (t) together with their deriva-
tives can be obtained. The conclusion of Proposition 4.4 follows. =

5. Evolution of the commutators. From Proposition 4.1, the com-
mutators [A, aﬁa (Qx)] and [A,agi)z (Py)] are defined as operators mapping
H1(A,) into H~1(A,) for all A in £(H) supported in A, and all t € R.
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PROPOSITION 5.1. For all A € Wy supported in A, and all t € R the
commutators [A, agle (Qg\]))] are bounded in H (A € A,, 0 < j <1). For all

v in (0,70) and all M > /S, there exists C(M,~y) > 0 (independent of n)
such that

(5.1) (14,05 @)llepg < CM, )M S~ e 14, QB]|| gy

HEA,
0<k<1

Proof. First step. Assuming first that A is only in £(H) we shall study
the differential system satisfied by the functions

(5.2) (1) = 4.0 Q). 0<j<1
The @i’s are C! maps from R into £(H!(A,), H1(4,)) and satisfy

d
— & (t) = D}
Sa8(t) = B (1),
d
A0 = —ilA, o) (1P, Vi, D)) = —ia) ([l (4), [P, Vi, ).
Using the operators K, of Proposition 3.3, we have
(057 (A), [Py, Vall = D Kol (4), Qu)).
HEAR

Next define IN(AN(t), an operator mapping L£(H(A,), H 1(A,)) into itself,
by

(53)  Ka(t)(@) = ) (Kpu(al,V9)),  ¥® € L(H (A,), H (40)).
With these notations the system becomes

G4 SRO =90, T =i 3 K@),

MGAH

Summing up, for all A in £(H) supported in A, the functions & (¢) defined
in (5.2) (A € A,) are C* from R to L(H'A,), H"1(A,)). These maps are
bounded independently of ¢ and satisfy (5.4). This is the unique solution to
(5.4) having these properties together with

(5.5) B3(0) = [4,Qx],  D5(0) = [A4, Py

Second step. One can find operator-valued matrices (Agu(t),A}\u(t)) in
L(L(H)) satisfying

d d
(56) th ( ) A%\M(t)v th)\p, Z K)\V OAO )

(5.7) A3, (0) =d0xud,  A3,(0) = 0.
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In (5.6) the composition is now the composition in L(L(H)), and in (5.7)
the identity operator is the identity in £(£(H)). Indeed, for all  in (0,7p),
the hypotheses in Proposition B.1 are satisfied, by Proposition 3.4. If ~ is
in (0,70) and M > /S, there exists C(M, ) such that

(5.8) HAg\M(t)HL(L(H)) < C(M,~)e A=wl,

We can find, by a similar construction, operator-valued matrices Bg u (t) and
B}\# (t) of L(L(H)) satisfying the same differential system (5.6) together with
the same estimates (5.8) and the new initial conditions

(5.9) B3, (0)=0, Bj,(0) =61

Suppose now that A belongs to W, and is supported in A,,. The operators
[A, Q)] and [A, P,] are in £L(H). We then define the operators in £L(H) by

W0 = 3 (AL 00A.Q) + BLOAPD). =01
HEAn
These functions, taking values in L(H), satisfy the same differential system
(5.4) with the same initial conditions (5.5) as the functions @i(t) (being a
priori in L(HY(A,), H"1(A,))). Uniqueness shows that @f\(t) = L_Uf\(t) The
functions @i(t) defined in (5.2) therefore have the stated properties. =

For all A and p in A,, the commutator [Qg\j),asa( Lk))] (0<j,k<1)is

bounded from H*(A,,) into H~1(A,). We shall show that it is an element of
L(H) and we shall estimate its norm.

PROPOSITION 5.2. Under the hypotheses (H1) and (H2) of Section 1,
for all X and p in A,,, the commutator | E\]),aﬁa( ,(f))] 0<jk<1l)isa
bounded operator in H. Moreover, for all v in (0,7v9) and M > /S, there
exists C(M,~) > 0 (independent of n, t, A and p) such that

1105 o) (@Il < QLM le190m,0 < jik <1.

Proof. Using the matrices Af\u(t) and Biu(t) (j = 0,1) defined in the
second step of the proof of Proposition 5.1 one shows that
[Praff) Q)] = AL, [Qxal) Q) =B}, (01, 0<j<l.

The proof uses the same points as those in Proposition 5.1. Then Proposition
5.2 follows from the estimates on these matrices in Proposition B.1.

Let us now consider commutators of length two.
PROPOSITION 5.3. If A is in Wha, then the commutators [[aga (A), QE\jll)],

E\jj)} are in L(H) (t € R, A\y and \g in Ay, 0 < j1,j2 < 1). Moreover, if v
is in (0,70) and M > 2,/5,, then there exists C = C(M,~) such that
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1D (4), @571, @51 ey
gCeM“‘[ Z e*VHAI*“IHMT“QHH[[A,Qfﬁl)],Q(’“Q)]H

2
(/‘17“‘2)6/1721

0<k,k2<1
S
vehAn
0<k<1

Proof. First step. Take A in L(H). We show that the functions defined
for all real t by

(5.10)  OEM = [4.00 Q) oD Q). 0<ji i<,
are C! from R into £(H?(A,), H:Q(/ln)) and satisfy the following differen-

tial system where the operators K, (t) are defined in (5.3) and where the
operators Ry, are given by Proposition 3.5:

d

(511) dt(p)\l)\z( ) = @9\]1-)\2( ) + (ﬁ)\l)\g( )
d
(512) dt@)\l)\z( ) é)\l)\g - l Z K)\llll 1)\2( ))
H1€A,
d
(513) dtQSAl)\Q( ) @)\1>\2 Z K)\2,Uf2 /\1#2( ))
n2E€AR
d
(5.14) dtQSAl)\g = =1 Z K)\lul u1>\2( )
#leAn
—1 Z K)\zuz (t) (45}\?#2 (t)) + F>\1,>\2 (t)v
H2€Ay,
(5.15) Faoo) = = > ol (R (105,7(4), Qul, Po))-
MleAn

The system of functions @}\? 4»(t) 18 the unique solution to the differential
system (5.11)—(5.15) satisfying the initial conditions

(5.16) R0 =400 &) 0<hp<1

Let us give more details for the proof of (5.14). By the differential system
satisfied by OAXT)L(QA) and a%i(@u) (see the first step of the proof of Propo-

sition 4.2), one observes that

d ) _
SO, (1) = —ialy) ([laf” (4), [Py, Va, . P,

—t
+ ([, (A). P, [Poo, V).
Using the operators K, of Proposition 3.3, one gets
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t
[lods, (4), Py [P Vi ]) = 3 Koa (e (A), Py Qo))
H2€AR
Also using the operators Ry, of Proposition 3.5, one sees that

—t —t
(a5, (A) [Pas Vil Pro] = 37 (B ([l (4), Q) Pra))
HleAn
—t
+ R>\1,u1 ([0‘5171 )(A)7 Q,ul]7 P/\Q))'
Equalities (5.14) and (5.15) then follow.

Second step. Suppose now that A is in Ws. We shall show that the
operators F), »,(t) defined in (5.15) are in £(H) and we shall estimate their
norms. More precisely, we shall show that if v € (0,70) and M > /S, then
(5:17) [ Fa o (®)llpg < CeM N~ emmolamalmadBad) 14, o],

veEA,
0<k<1

Indeed, from Proposition 3.5, if A\; # Ag, then the sum in (5.15) is reduced
to two terms: with u; = A1 and with p; = Ag. In this case,

HF)\l,)\z (t)”E(H)

< Ceo P2l (1100 (4), Qe + 107 (A), Qualll 2 iry)-
If A1 = Ao, then from Proposition 3.5,
1Eris Ollcpn <€ S e 0Mml) 00 (4), Quulll ey
MleAn
In view of Proposition 5.1, if M > /S, then

1 (A), Qualll ey = 1A @ (@)l 2y
< C(M,7)eM N el )[A, QW) | £y

VGAn
0<k<1

and the estimates (5.17) are easily deduced.

Third step. If A is in W, then the initial data (5.16) are in £(H). From
the remarks below Proposition B.1, if v is in (0, 7o), the system (5.11)—(5.14)
has a solution 313 (t) in L(H) satisfying (5.16). Moreover, if M > 2,/S.,
there exists C'(M, ) such that

12 ()] < C(M, 7)™ emrmmitRemneby g, @] k)|

A1 A2
(vauz)e/l?z
0<k1,k2<1

t
+C(M,y) Y e mmbemeh fMIsl g, L (s)] ds.
(p1,p2)€A2 0
The conclusion then follows from the estimates of F},, ,,(s) in (5.17).
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6. Evolution for a finite number of sites. From Proposition 4.1,
the operator e®*4» @ I is bounded in each H*(A,,). However, the proof of
that proposition might suggest that the norm of this operator could depend
on n. On the contrary, the next proposition provides a bound independent
of n.

PROPOSITION 6.1. The operator e4n @1 is bounded in H* (0 < k < 2)
with norm < CreMrltl where Cy, My, > 0 are independent of all the parame-
ters. For all A € L(H*, H) (k = 1,2) with finite support, if A, contains the
support of A, then

t
(6.1) i) ()l cres 30y < Cre™ M| Al g 30

Proof. Let f € H'. From Proposition 4.2, for all A € A,,,

J@(4 & D] = ol (@]
< RA(=0)F 1+ D (1A (~0Qu Il + | BY) (—) P f1I).
HEAR
We deduce from (4.5) and (4.6) that if v € (0,79) and M; > /S, then

QA @ D) fI| < CreM| £l

with C7 > 1 independent of n and ¢. If A is not in A,, then the same inequality
is valid since Q) commutes with e®4» ® I. We proceed similarly with the
operators Py, proving that [|e!Han ® Il g1y < ChreMltl,

Action z'n H2 For all A\; and Ay in A we have, from the above,
1QVVQY) (e an @ I f|| = QY (¢"4n @ 1)’y P (QF2) £
< Cre ol Q) fle
One sees that
1QE S @) Il < 11QW, oS QTN + [le S (@R 1

< 1M FIL+ 195 Fllaer)
for all p € A,.
The above two terms have been estimated using Propositions 5.2 and
5.1 respectively. One deduces (with another constant C3) that

1QFY Q2 (e=Han @ 1) f|] < Coe® M| fl3qe.
The proof is complete. "

THEOREM 6.2. If A is in Wy with finite support, and A,, contains the
support of A, then O‘SQ(A) is in Wy (0 < k < 2). Moreover, there exist
constants Cy, My > 0, independent of A, n and t, such that

(6.2) 1l (), < Cre™ ) Ay, .
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Proof. The norm in L£(H) is conserved by 04%. By Proposition 5.1, if

A € W, is supported in A, and A € A, then the commutators of A with
asl_t)(QE\])) are bounded operators. Thus, if A € A,, the commutators of

n

0452 (A) with Qg\j) are bounded operators. Since these commutators vanish

when A ¢ A, it follows that a%)l (A)isin Wy. If visin (0,v) and My > /S5,
we see that

3 11 (4), Q] < C(My,p)Mi ST e a4, QP

AEA, N
o=I=t (OSI;'?ICSI
< CI(MI,’V)eMMHAHWI Supze—'ydo\,u).
HEZ \ez,

Consequently, there are Cy, M; > 0 such that (6.2) is valid for k = 1.

Action in W?. Proposition 5.3 shows that the commutators written as
[a%i (A), QE\jll)], QE\J;)} are bounded operators and vanish if A\; or A is not

in A,. Consequently, aﬁa (A) is in Wy, If v is in (0,v) and My > 2,/5,
then Proposition 5.3 implies (6.2) for k = 2. =

7. Existence of dynamics in the Weyl algebra. The number of
sites will now go to infinity. The proofs of Theorems 1.1 and 1.2 on the

existence of a limit rely on the description of the difference a%}n (A) —a% (A).

ProposITION 7.1. There exist C, M,~ > 0 with the following properties.
For all A € Wy with finite support, all integers m and n with 0 < m < n
and such that Ay, contains the support o(A) of A, and all t € R,

(71 ol (4) = ol (Wllan o) < ClAweM e 7o),

m

Proof. For m < n we denote by VM the potential of interaction be-
tween A, and A, \ Ap:

Vi (2) = =bQmQmi1 = bQ-mQ-m-1+ > Vi
(M\p)EEmn
where E,,,, denotes the set of pairs of sites (A, i) such that one of the sites
(A or p) is in A, and the other in A, \ A4,,. For all 6 € [0, 1], set

Hmn@ = HAn - (1 - 9>V7ir?7§er'

One can define a unitary operator by e®*Hmno and set

o (A) = (etmne @ [) A(e™Hmno @ ).

mné

Thus, if A is supported in A,, and m < n then
o (4) = alf) (4),  afo(4) = al]) (4).

mnl



638 L. AMOUR ET AL.

The function p(t,0) = 8904( ) (A) satisfies

mné

8 N mter
S = il Homo, ] + iV 0l (A 0(0,6) =
Consequently,
8 S nter S
2 00, o() = 1§l (Vi A1) s
00 5
One obtains the integral representation
t1
o) (4) — alf) (4) =i {§al (Vi af o (A)]) ds do.
00

Applying Proposition 6.1 to the operator H,,,¢ which satisfies the same
hypotheses as H,,, we deduce that there exist C, M > 0 such that

t1
lay (4) — oY) () 2 0y < C Y| Ml VR 08 ()] £t 2 ds dB
00

for all (A\,u) in Ej,. Applying Proposition 3.2 to the operator agw(A)
belonging in W, we obtain

Vi 0o (Nl a2 700y < Ce™ P71 3™ l(ad Q1) (ad Q) ) o (A)])-

1<j+k<2
Similarly,
1Q@m@mi1s by (Dl 20y <C D [1(ad Q) (ad Q1) Fali) o (A)])-
1<j+k<2

Summing on the pairs (A, 1) in E,,, we get

Ve ol (AN][| zier 20y

<O Y e P 3T (ad QaY (ad Qu)Falo(A)ll

(Mw)EEmn 1<j+k<2
Consequently,
(72)  llaf)(4) = af) (Dllega o)
t1
<C Z e—wu—mn Mit=sl]|(ad Q»)’ (ad Q)% cx mne( )|| ds dé.
(A\B)EEmn 00
1< +k<2

Proposition 7.1 then follows from the next lemma, which will also be used
in Section 8.

LEMMA 7.2. If v is in (0,7) and M > 2,/S, then there exists C(M,~y)
such that for all n, all disjoint sets E1 and Fo included in A, and all A € Ws
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supported in Eq,

Z e—volh—kal||(adQ/\l)a(adQ,\z,)ﬂa,(i)ng(A)||

(AM,\2)EAL X E2

1<a+ps? < (M, )| Ay, Mol =4 E2),

This lemma can be deduced from Propositions 5.1 and 5.3 applied to
the Hamiltonian H,,,s. Proposition 7.1 is a consequence of (7.2) and the
lemma, with F1 = 0(A) and Fy = A, \ Ap,.

Proof of Theorems 1.1 and 1.2. From Proposition 7.1 the sequence
ozgfi(A) is a Cauchy sequence in £(H?2,H) and thus converges in £L(H?,H)
to an element, say a¥(A). By Proposition 6.2, we have ||oz£1ti(A)||y\;2 <
CeMIU||Allyy,. By Theorem 1.4 the operator a®(A) is in Wy with norm
< CeMM||Allw,, and for all f € H, the sequence aga (A)f strongly con-

verges to ) (A) f. The classical continuity of the map ¢ — 0‘531 (A)f for all
n and all f, together with the above inequalities, shows the continuity of
t— ozsa (A)f. m

Extension of o) to the algebra W,. Let A in W, have an arbitrary
support. From Theorem 1.3 there exists a sequence (4,) in Ws with finite
support such that

lnlbws < Alws, T [ Ay — All g ) =0

The operator a(¥)(A4,,) is well-defined, in view of Theorems 1.1 and 1.2, since
the A, have finite support. One has

(7.3) 1ot (An)llw, < CeM) Aglw, < CeM) Al

If m < n then we also see from Theorem 1.2 that

[0 (A = Am) 10y < CEM An = Arll o)

The sequence o) (A,) thus converges in £(H2,H) to an element denoted
a)(A). From (7.3) and Theorem 1.4 this element is in W, and

1o (A) [, < CeMM||A]w,.
The group a® is thus extended to the whole algebra W.

8. Lieb—Robinson’s inequalities

PROPOSITION 8.1. For all v in (0,7) and M > 2./S,, there exists
C(M,~) > 0 such that, for all A and B in Wy with finite supports o(A) and
o(B), all n such that A,, contains oc(A) and o(B), and allt € R,
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(81) 1 (A), Blllce.agy < COM, )| Allws || Bllwye e rdo (0 (B),
(*

The same inequality is valid with a/f replaced by ob).

n

Proof. From Corollary 2.6 applied to the operators B and O‘SQ (A) (both
having support in A;,), one has

1} (A), Blllcger < ClBlw, Y. Ilad P (ad Q) (o] (4)].
A€o (B)
1<j+k<2

Inequality (8.1) then follows by applying Lemma 7.2 to the sets Ey = o(A)
and Ey = o(B). The analogous inequality for a()(A) is then deduced since

Ha%i (A) - a(t) (A)HE(HQ,H) tends to 0. =
Propagation speed. Set

2./8
(8.2) Vo= inf 7

0<v<v0 Yy

where S, is the constant of Proposition 3.4. For the case of interaction with
nearest neighbors the infimum is taken on (0, c0).

Proof of Theorem 1.5. Let A and B in W, have finite supports o(A) and
o(B). Let (hp,t,) be a sequence in Z x R with |t,| — oo and |h,| > v1|ty]
where v1 > Vj, Vj as above. Choose v € (0,79) such that 2,/5, < vi7. Pick
M such that 2,/S, < M < v1y. The sequence M|t,| —vd(o(A),o(mh,(B)))
tends to —oo. For all f € H? the inequality (8.1) (with O‘EQ replaced with
o) shows that

lim. ([0 (4), 71, (B)] e = 0.

n—oo

This extends by density to all f € H. =

Appendix A. Proof of Proposition 2.5. We shall first prove the
conclusion of Proposition 2.5 for E and F' with F'\ E consisting of only one
element A. Operators in £(Hp) will be identified, using the map ipyz, with
elements of L(H) supported in F. We denote by Wy (F') the set of all A in
L(Hp) such that ipz(A) is in W.

PROPOSITION A.1. There exists a constant C > 0 such that, for all finite
subsets E in Z and F = EU{\} where A\ € Z\ E, and for all T in Wa(F),

(A1) ([(T—igropre(M)fllcaer <C Y. l(ad Py (ad Q) Tl £y
1<) k<2

End of proof of Proposition 2.5. If E C F' C G then pgg = prropgr and
igc = irgoipr. Consequently, if FF = EU{Aj,..., \p,} then we successively
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apply Proposition A.1 with the set B, = EU{A1,..., A} (1 <k <m) and
Ey = E. We obtain, for all 7" in Wh(F),
m
IT = igr o pre(T)lceem < O NTk —in,_ 5 © pee, (To) |l coem
k=1
where Ty, = prpg, (T'). Proposition 2.5 thus follows from Proposition A.1
applied to the operators T}. m

Notations. {2(yy denotes the ground state of the space Hyy, associated
to the corresponding creation and annihilation operators a) and a}. One
knows that Hy,y is associated with the orthonormal basis (h;);>0 defined
by

ho =2y, hjpr1 =0+ 1)~ 2axh;.
If we identify Hy,y with L?(R), this basis is the basis of Hermite’s functions
and ayh; = v/jhj_1 (j > 1). We shall use the following notations for the
operators belonging to the tensor product Hrp = Hg ® Hyyy. We set A =
I®ay, A* =1®a} and for all T € L(HF) we set R(T') = pre(T) ® I where
p(T') is defined in Section 2 by p(T') = 7 pTngr. Thus R(T) = igrpre(T).
In order to generalize the operator mgr we define, for all j > 0, a map ¥;
from Hg into Hr by
Uif = f®h;j.

We denote by ¥ the adjoint operator of Hp in Hp. With these notations,
we can gather some of the usual properties of Hermite’s functions in the
next lemma:

LEMMA A.2. With these notations one has

(A.2) SNwwr =1, > |l = If3, Vf€Hr
j=0 j=0

If we denote by H™(E,F) (m > 0) the partial Sobolev space consisting of
f € Hp such that

o0

£ 3.y = Y (L + )™ 127 fliF, < 00,
§=0

then the operator AA* with domain H*(E,F) is self-adjoint and satisfies
AA* > 1. For alla € R and j > 0,

(A.3) (AA7)* W5 = (j + 1), FF(AAN)" = (j +1)°%5.
Forallj > 1,
(A.4) AT = \[jW; 1, WIA*=\/jT}_,
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1if 7 = 0 then the right-hand sides are replaced by 0). For all 3 > 0,
if =0 th he right-hand sid laced by 0). F Ilj>0
(A5) A*Wj = j + 1Wj+1, WJ*A = ] —+ 1W;+1

For each T in L(Hp) we define an operator-valued matrix a;;(7T") in
L(HE) by

Thus mpp = Wy and ppp(T) = Ag(T). The norm of T in L(Hp) can be
estimated starting from those of the a;;(7") using the following proposition
which is a variant of Schur’s Lemma.

PROPOSITION A.3. Let T be in L(HF). Suppose that there exists M > 0
such that, for all k > 0 and ¢ in Hg,

A7) > lawDelly < Mllelns, D lapT)ellns < Ml
>0 >0

Then ||T||zerpy < M.

Proof. From Lemma A.2, for all f and g in Hr one gets
(Tf.9) =) (a(T)WLf, ¥} g).
ik

One has

ajr (D)L f W5 )] < llaju(T)EE I g1l
This scalar product can be bounded by

[{ajn (TS T g)| < 1S lage ()5 gl
Consequently,

[aw (T £, 95 9)| < (lagn (DT LI NZE DY (lagw(T)F g 125 gl1)' 2.

From Cauchnychwarz,

(T1.9) [2 () £ 195 1 [Z lage ()5 gl 12591
Noticing that (a;,(T))* = ar;(T™*) we obtain

(T f.9)2 < M2 SN FIR] [ D 17 91P] < M2 51, gl

k>0 §>0

The proof of Proposition A.3 is complete. m

PROPOSITION A.4. Let T be in Wi (F'). Assume that there is M > 0
such that for all ¢ in Hg,
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lajx(T)ell#p
A8 )
(A9 wp Y A < Ml
laj(T)ellrns
(A.9) su . M|l
k20157 (j+1)(k+1) B
Then
(A.10) ITfI| < MV2[(A5)2F] + V2 | [AL T £

for all f in H*(E,F).
Proof. Set S = (AA*)~1/2T(AA*)~'/2. By Lemma A.2,
a;k(T)
G+ D(k+1)

Under the hypotheses of the proposition the operator S is then bounded in
‘Hp with norm < M. From Lemma A2, for all g in Hp,

[(AA™)~ 1/ZA*gIPfZ ) 1@7_y9]* > Z\IW*gH2 fllg\IQ-
j>1 J>0

a;k(S) =

Consequently, for all f in H2(E, F),
ITfI < V2II(AA)TV2ATf|| < V2|[A% T |1 F]l + V2 ([(AA) 72T A f.
Since ||(AA*)~Y/2|| < 1, we have
I(AA")TPT A f|| < ||S(AA)T/2A )|
< M|[(AATPAf| = M[(A*)?f]].
Consequently, (A.10) follows. =

We shall apply Proposition A.4 to the operator T'— R(T') noticing that
R(T) commutes with A and A*. The operator R(T") is chosen such that
apo(T — R(T)) = 0. Using commutators, we shall estimate all the other
elements a;, (T — R(T')). This is the purpose of the next proposition.

PROPOSITION A.5. Under the hypotheses of Proposition A.1, for all k>0
and ¢ in Hg,

lajx(T — R(T))¢|
(a11) ]2 V3G +1)( k:+1)

< Cllell Z [(ad P)*(ad Q)" T| £ (),
1<a+p3<2

and a similar estimate holds with T replaced by T™*.
Proof. Estimations of So(T, ). We shall prove that
(A.12) So(T, @) < [[[A, Tl
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From (A.5), one sees that for all j > 1,

Viajo(T — R(T)) = U7 [A, T]¥,

Since apo(T — R(T')) = 0, we deduce using (A.2) that
- 1
T,p) <) ——== ¥ 1[A Tl

; ViG+1)

0 1 1/2 = oo )
[;j(j+1)] (S 19t 7o
< [I[4, T]®oel| < [I[A, T]|[ lll]-

Inequality (A.12) is therefore true.

Recursion between the Sk(T, ). We shall prove that if £ > 1 then

k
(A13)  SK(T,9) < =7 Sh1(T)

+ ﬂﬂ' (1A, T + 1A%, T + |[A*, (4%, T]|]]).

To this end, we use the fact that if 1 < 7 < k then from (A.4) and (A.5) we
have

Vkaj(T = R(T)) = /7 aj-16-1(T — R(T)) + W} [T, A" _y.

If j = 0 then the first term above has to be replaced by 0. If 7 > k then we
use

Via(T = R(T)) = Vkaj_1,-1(T — R(T)) + ¥}, [A, T
Then we can write S,(T,¢) < Si.(T,¢) + S/ (T, ¢) + S’ (T, ¢) where

o0

. laj—1k—1(T — R(T)) ||
= inf
JZ; (Vb /R/3) +1)(k+1)
_kLSk (T, ),

i [CZ TAY/WH
k1 VI 7+ 1) (k+1
|5 [T, A1 |

///
Z\/jJrl k(k+1)

From (A.2) and since ||| = ||l¢]l
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st s [ 3 S g ]
L, P) = Y2} j—11+> kY
k+1L47,00+1) =
Lz Al .

If £ = 1 then we see that S (T,¢) < ||[A*,T]| ll¢ll- If & > 2 then the
estimation of S}’(T', ¢) involves commutators with length 2. We still have,
if 7 <k,
Vk = 1WHT, AWy = /O[T, Ao + WF[[T, A*], A% .
Consequently, for k > 2,
k .
— VE=1 /(G+Dk(k+1)

j=1

Z ([T, A, A |||
G+ (k+Dk(k—1)

Using again Cauchy—Schwarz and Lemma A.2, we obtain for k& > 2,
1
ST, @) < ———— (||[A%, T]|| + ||[A*, [A*, T .
(Tp) < k(k_l)(H[ J =+ ITA% (A% TTHD e |l

Hence we deduce (A.13). Inequality (A.11) follows by iteration of (A.12)
and (A.13). Proposition A.1 is a consequence of Propositions A.4 and A.5,
and so the proof of Proposition 2.5 is finished.

Appendix B. Differential systems

PrOPOSITION B.1. Suppose that for all X and p in A, we are given a
continuous map t — 25,(t) from R into L(L(H)). Assume that there are
v >0 and S, > 0 such that, for all X and v in A, and allt € R,

(B-1) 12l 2ye M < Sye A
HEAR

Then, for all s € R, there exist C! functions t AE\(B (t,s) andt — Ag\lu) (t,s)
((\, 1) € A2) from R into L(L(H)) such that

d
(B2) ZAV(ts) = A{)(t,9). d—A“ = 3 2ut) 0 AN, ),
veA,
(B.3) Ag\(g (s,8) = oaud, Ag\lu)(s, s)=0

(in (B.2), the composition is the one of L(L(H)), and in (B.3) the identity
operator I is the one of L(L(H))). Moreover, if M > /S, then there exists
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C(M,~) > 0 independent of n such that
(B4) AL 8l ceny < COMy)eMI=slemP=rlw(n, ) € A2,

There are also operator-valued matrices t +— Bg\ )(t, s) and t BS} (t,s)
satisfying the same system with the same estimates and the initial conditions
0 1
(B.5) BY)(s,5) =0, B{)(s,5) = bl
Proof. Let Ey be the set of all matrices A = (Ax,)((au)ea2) Where each
Ay, is in L(L(H)), endowed with the norm
|Allny = sup PPN AL | £z
(Am)eAd

The left composition by the operator-valued matrix (2),(¢) defines a map
2(t) in L(E,,) with norm < S,. For all ¢ > 0 we can endow E?W with a
norm such that the norm of the operator

v = (0(()t) é)

is < 1/85,(1+¢). The stated result is then valid. m

REMARK 1. In the tensor product E ®@E?_ let V(t) be the map defined
by V(t) = U(t)@I+1®U(t). For all ¢ > 0 one can endow E2 ® E2_ with a
norm such that the norm of the map V(t) is < 2,/5, (1 +¢). Consequently,
if M >2,/S, and Ag is in E, ® E2_ then the differential system
A'(t) =U®)A®),  A(0) = Ao,
has a solution taking values in E%,Y ® E%,Y and with exponential time growth
eMlt|

REMARK 2. If we are also given a continuous function ¢ — F)(t) from
R to L(H) then the family of functions ¢ — X U )( t) defined by

t
X(] Z SB(J t,s)(Fy(s))ds
nEA, 0
satisfies the differential system

X =x{), = >~ 2uOEP0) + Fa)
HEAR

with the initial conditions Xy G )( 0) = 0 and the following estimates (for
example for ¢ > 0):

t
X ()l < C(M,y) S e P M B ()| 3¢y ds
HEAy, 0
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