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Abstract. We propose a definition of Riesz transforms associated to the Ornstein–
Uhlenbeck operator based on the Dunkl Laplacian. In the case related to the group Z2 it is
proved that the Riesz transform is bounded on the corresponding Lp spaces, 1 < p <∞.

1. Introduction. In the recent years Riesz transforms in the setting of
orthogonal expansions related to general second order differential operators
have been intensively studied. In particular, the first and third-named au-
thors proposed a unified approach to this topic [12]. The investigation in the
context of differential-difference operators was initiated very recently in [13],
where Riesz transforms for the Dunkl harmonic oscillator were defined and
studied. The present paper is a continuation of [13]. Now we consider the
Ornstein–Uhlenbeck operator based on the Dunkl Laplacian, and define and
investigate related Riesz operators. Our results partially contribute to the
Dunkl theory, which has gained a considerable interest in various fields of
mathematics as well as in theoretical physics during the last years.

Given a finite reflection group G ⊂ O(Rd) and a G-invariant nonnegative
multiplicity function k : R → [0,∞) on a root system R ⊂ Rd associated
with the reflections of G, the Dunkl differential-difference operators T kj , j =
1, . . . , d, are defined by

T kj f(x) = ∂jf(x) +
∑
β∈R+

k(β)βj
f(x)− f(σβx)
〈β, x〉

, f ∈ C1(Rd);

here ∂j is the jth partial derivative, 〈·, ·〉 denotes the Euclidean inner product
in Rd, R+ is a fixed positive subsystem of R, and σβ denotes the reflection
in the hyperplane orthogonal to β. The Dunkl operators T kj , j = 1, . . . , d,
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form a commuting system (this is an important feature, cf. [3]) of first or-
der differential-difference operators, and reduce to ∂j , j = 1, . . . , d, when
k ≡ 0. Moreover, T kj are homogeneous of degree −1 on P, the space of all
polynomials in Rd.

In Dunkl’s theory the operator

∆k =
d∑
j=1

(T kj )2

plays the role of the Euclidean Laplacian (in fact ∆ comes into play when
k ≡ 0). It is homogeneous of degree −2 on P and symmetric in L2(Rd, wk),
where

wk(x) =
∏
β∈R+

|〈β, x〉|2k(β),

if considered initially on C∞c (Rd). Note that wk is G-invariant. For basic
facts concerning Dunkl’s theory we refer the reader to the survey article by
Rösler [15]. There, one can also find a discussion (see [15, Section 3]) and ex-
tensive references concerning applications of Dunkl’s theory in mathematical
physics.

In this article we propose a definition of Riesz transforms associated to
the operator

Lk = −∆k + 2x · ∇,
which is symmetric with respect to the measure

(1.1) dµk(x) = e−‖x‖
2
wk(x) dx,

and becomes the classical Ornstein–Uhlenbeck operator when k ≡ 0. It turns
out that Lk (or rather its suitable self-adjoint extension Lk) has a discrete
spectrum and the corresponding eigenfunctions are the generalized Hermite
polynomials defined and investigated by Rösler [14]. Then the formal def-
inition Rkj = δj(Lk)−1/2, j = 1, . . . , d, with δj = T kj being appropriate
“derivatives” associated to Lk, rewritten properly in terms of the related
expansions, produces L2-bounded Riesz operators.

In the one-dimensional case of a reflection group isomorphic to Z2 we
study Lp mapping properties of the above Riesz transform in detail. As the
main result (Theorem 5.1) we prove that this operator is bounded on the
corresponding Lp spaces for 1 < p <∞. This can be regarded as a generaliza-
tion of the one-dimensional Lp results obtained by Muckenhoupt [8, 9] for the
conjugate mappings related to classical Hermite and Laguerre expansions.
We conjecture that an analogous result holds for arbitrary dimension d.

In the Zd2 case we also consider an alternative Dunkl Ornstein–Uhlenbeck
operator defined by means of the Dunkl gradient rather than the Euclidean
one. This variant of the operator seems to be more natural, at least from the
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Riesz transforms theory point of view. In particular, suitably defined Riesz
operators are L2-contractions, which is not the case of Rkj .

Finally, still in the Zd2 case, we obtain the weak type (1, 1) estimate for
the maximal operator of the semigroup generated by the Dunkl Ornstein–
Uhlenbeck operator. This extends the analogous results proved earlier by
Sjögren [16] and Dinger [2] in the classical Hermite and Laguerre settings.

The paper is organized as follows. In Section 2 we define, in an appro-
priate L2 space, Riesz transforms in the context of the Dunkl Ornstein–
Uhlenbeck operator based on the general Dunkl Laplacian. Section 3 intro-
duces the particular Dunkl setting related to the group Zd2. In Section 4
we establish the above-mentioned weak type (1, 1) estimate for the heat
semigroup maximal operator in the Zd2 case (Theorem 4.1). Section 5 is de-
voted to the Zd2 Riesz–Dunkl transforms, and the main result of the paper
is stated there (Theorem 5.1). In Section 6 we gather several facts from the
theory of classical Laguerre expansions needed in the proof of the main re-
sult. In particular, we establish Lp-boundedness, 1 < p < ∞, of the left
and right shift operators in the Laguerre setting (Theorem 6.3); this result
is new and of independent interest. The proof of Theorem 5.1 is given at
the end of Section 6. Eventually, in Section 7 we discuss Riesz operators
related to the already mentioned variant of the Dunkl Ornstein–Uhlenbeck
operator.

Throughout the paper we use fairly standard notation. Given a multi-
index n ∈ Nd, where N = {0, 1, 2, . . .}, we write |n| = n1 + · · · + nd; ‖x‖
denotes the Euclidean norm of x ∈ Rd, and ej the jth coordinate vector in Rd.
For a nonnegative weight function w on Rd, we denote by Lp(Rd, w), 1 ≤
p < ∞, the usual Lebesgue spaces related to the measure dw(x) = w(x)dx
(we will often abuse the notation slightly and use the same symbol w for the
measure induced by a density w). Similarly, when w is a nonnegative weight
function on Rd

+ = (0,∞)d, we write Lp(Rd
+, w) for the relevant Lebesgue

spaces.

2. The general setting. Similarly to numerous frameworks discussed
in the literature (see [12]), it is reasonable to define, at least formally, the
Riesz transforms Rk1 , . . . , Rkd associated with Lk as

(2.1) Rkj = δj(Lk)−1/2Π0;

here Lk is a suitable self-adjoint extension of Lk in L2(Rd, µk), Π0 is a pro-
jection annihilating the eigenspace of Lk corresponding to the eigenvalue 0,
and δj ’s are appropriately defined first order differential-difference operators.

In the present setting we define the jth partial derivative δj related to
Lk by

δj = T kj .
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A short calculation shows that the formal adjoint of δj in L2(Rd, µk) is

δ∗j = −T kj + 2xj .
To be precise, this means that
(2.2) 〈δjf, g〉k = 〈f, δ∗j g〉k, f, g ∈ C1

c (Rd),

where 〈·, ·〉k is the canonical inner product in L2(Rd, µk). One of the facts
which motivate the definition (2.1) is that, as a direct computation shows,

Lk + (d+ 2γ) =
1
2

d∑
j=1

(δ∗j δj + δjδ
∗
j ), γ =

∑
β∈R+

k(β).

In the setting of Dunkl’s general theory Rösler [14] constructed systems
of naturally associated multivariable generalized Hermite polynomials Hk

n

such that {Hk
n : n ∈ Nd} is a complete orthogonal system in L2(Rd, µk) (cf.

[14, Corollary 3.5(i)]). Note that, for k ≡ 0 the construction leads to (suitably
normalized) classical Hermite polynomials. Moreover, Hk

n are eigenfunctions
of Lk,

LkH
k
n = 2|n|Hk

n.

From now on we will always consider the generalized Hermite polyno-
mials normalized by dividing them by their L2(Rd, µk) norms. For clarity,
polynomials of the normalized system will be denoted by Hkn. The operator

Lkf =
∑
n∈Nd

2|n|〈f,Hkn〉kHkn,

defined on the domain

Dom(Lk) =
{
f ∈ L2(Rd, µk) :

∑
n∈Nd

| 2|n|〈f,Hkn〉k|2 <∞
}
,

is a self-adjoint extension of Lk considered on C∞c (Rd) as the natural domain
(the inclusion C∞c (Rd) ⊂ Dom(Lk) may be easily verified). The spectrum of
Lk is the discrete set {2m : m ∈ N}, and the spectral decomposition of Lk is

Lkf =
∞∑
m=0

2mPkmf, f ∈ Dom(Lk),

where the spectral projections are

Pkmf =
∑
|n|=m

〈f,Hkn〉kHkn.

Then, letting Π0 be the orthogonal projection onto the orthogonal comple-
ment of the subspace spanned by the constant function Hk(0,...,0), we have

L−1/2
k Π0f =

∞∑
m=1

(2m)−1/2Pkmf,

and this superposition is clearly a bounded operator on L2(Rd, µk).
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We now furnish the rigorous definition of Rkj on L2(Rd, µk). Let E be
the dense subspace of L2(Rd, µk) spanned by {Hkn : n ∈ Nd}. Note that
E precisely consists of all polynomials in Rd. Moreover, E is stable under
the action of L−1/2

k , Π0, δj , δ∗j , and (2.2) is valid also for f ∈ E. Then for
f ∈ E we may define the Riesz transforms by (2.1), and these are bounded
operators on E. Indeed, letting R̂kj = δ∗jL

−1/2
k Π0 we see that for f ∈ E,

‖Rkj f‖2L2(Rd, µk)≤ ‖R
k
j f‖2L2(Rd, µk) + ‖R̂kj f‖2L2(Rd, µk)

= 〈δ∗j δjL
−1/2
k Π0f,L−1/2

k Π0f〉k + 〈δjδ∗jL
−1/2
k Π0f,L−1/2

k Π0f〉k

≤
〈( d∑

i=1

(δ∗i δi + δiδ
∗
i )L
−1/2
k Π0f

)
,L−1/2

k Π0f
〉
k

= 2〈(Lk + d+ 2γ)L−1/2
k Π0f,L−1/2

k Π0f〉k
= 2‖Π0f‖2L2(Rd, µk) + 2(d+ 2γ)‖L−1/2

k Π0f‖2L2(Rd, µk)

≤ (2 + d+ 2γ)‖f‖2L2(Rd, µk).

It follows that the unique extension of Rkj to the whole L2(Rd, µk) is given
by

Rkj f =
∑
|n|>0

(2|n|)−1/2〈f,Hkn〉k δjHkn,

the series being convergent in L2(Rd, µk) and its sum being independent of
the order of summation.

3. Preliminaries for the Zd2 case. Consider the finite reflection group
generated by σj , j = 1, . . . , d,

σj(x1, . . . , xj , . . . , xd) = (x1, . . . ,−xj , . . . , xd),

and isomorphic to Zd2 = {0, 1}d. The reflection σj is in the hyperplane or-
thogonal to ej , the jth coordinate vector in Rd. Thus R = {±

√
2 ej : j =

1, . . . , d}, R+ = {
√

2 ej : j = 1, . . . , d}, and for a nonnegative multiplicity
function k : R → [0,∞) which is Zd2-invariant, only values of k on R+ are
essential. Hence we may think k = (α1 + 1/2, . . . , αd + 1/2), αj ≥ −1/2. We
write αj + 1/2 in place of seemingly more appropriate αj since, for the sake
of clarity, it is convenient for us to stick to the notation used in the Laguerre
polynomial setting.

In what follows, the symbols Tαj , δj , ∆α, µα, Lα and so on denote the
objects introduced in Section 2 and related to the present particular setting.
Thus the Dunkl differential-difference operators Tαj , j = 1, . . . , d, are now
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given by

Tαj f(x) = ∂jf(x) + (αj + 1/2)
f(x)− f(σjx)

xj
, f ∈ C1(Rd),

and the explicit form of the Dunkl Laplacian is

∆αf(x) =
d∑
j=1

(
∂2f

∂x2
j

(x) +
2αj + 1
xj

∂f

∂xj
(x)− (αj + 1/2)

f(x)− f(σjx)
x2
j

)
.

Note that ∆α, when restricted to the “even” subspace

(3.1) {f ∈ C2(Rd) : ∀j = 1, . . . , d, f(x) = f(σjx)},

coincides with the multi-dimensional Bessel differential operator
∑d

j=1

(
∂2
j +

2αj+1
xj

∂j
)
, and consequently Lα = −∆α+2x ·∇ reduces to the Laguerre-type

operator

(3.2) −∆+ 2x · ∇ −
d∑
j=1

2αj + 1
xj

∂

∂xj

(both operators acting on Rd
+).

The corresponding measure µα has a product structure of the form

dµα(x) =
d∏
j=1

|xj |2αj+1e−x
2
jdxj

= 2−|α|−d/2e−‖x‖
2
∏
β∈R+

|〈β, x〉|2k(β)dx, x ∈ Rd;

for simplicity we neglect the constant factor in comparison with (1.1). In
dimension one, for the reflection group Z2 (see [14, Example 3.3(2)]) and the
multiplicity parameter α+1/2, α ≥ −1/2, one obtains as the corresponding
(normalized) generalized Hermite polynomials

Hα2n(x) = (−1)n
(

n!
Γ (n+ α+ 1)

)1/2

Lαn(x2),

Hα2n+1(x) = (−1)n
(

n!
Γ (n+ α+ 2)

)1/2

xLα+1
n (x2),

where n ∈ N and Lαn denotes the Laguerre polynomial of degree n and or-
der α (see [6, p. 76]). Note that these Hαn are, up to multiplicative constants,
the genuine generalized Hermite polynomials Hα+1/2

n on R, as defined and
studied by Chihara [1]. For α = −1/2 the Hαn become the classical (normal-
ized) Hermite polynomials (see [6, p. 81]). In the multi-dimensional setting,
corresponding to the group Zd2, the generalized Hermite polynomials are ob-
tained by taking tensor products of the one-dimensional Hαn. Thus for a
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multi-index α ∈ [−1/2,∞)d,

Hαn(x) = Hα1
n1

(x1) · . . . · Hαdnd (xd), x ∈ Rd, n ∈ Nd.

The system {Hαn : n ∈ Nd} is an orthonormal basis in L2(Rd, µα) consisting
of eigenfunctions of Lα; recall that LαHαn = 2|n|Hαn .

4. Zd2 heat semigroup maximal operator. Let {Tαt }t>0 be the heat-
diffusion semigroup generated by Lα,

Tαt f =
∞∑
m=0

e−2mtPαmf, f ∈ L2(Rd, µα).

Then the integral representation of Tαt is

Tαt f(x) =
�

Rd
Gαt (x, y)f(y) dµα(y), x ∈ Rd,

where the heat kernel is expressed in terms of the Hαn ,

Gαt (x, y) =
∞∑
m=0

e−2mt
∑
|n|=m

Hαn(x)Hαn(y).

The oscillating series defining Gαt (x, y) can be summed and we get

(4.1) Gαt (x, y) =
∑

ε∈{0,1}d
Gα,εt (x, y),

where the component kernels are given by

Gα,εt (x, y)

=
e2t|α|

(1− e−4t)d
exp
(
− 1
e4t − 1

(‖x‖2 + ‖y‖2)
) d∏
i=1

(xiyi)εi
Iαi+εi

( xiyi
sinh 2t

)
(xiyi)αi+εi

,

with Iν being the modified Bessel function of the first kind and order ν
(see [6, Chapter 5]). This formula can be deduced, for instance, from a re-
lation with the setting considered in [13, Section 3] and the facts invoked
there. Indeed, it is easy to see that Gαt (x, y) = e2t(|α|+d)e(‖x‖

2+‖y‖2)/2Gαt (x, y),
with Gαt (x, y) defined in [13, Section 3]. Then the decomposition Gαt (x, y) =∑

ε∈{0,1}d G
α,ε
t (x, y), together with the explicit form ofGα,εt (x, y), shows (4.1).

Consider the maximal operator Tα∗ f = supt>0 |Tαt f |. By Stein’s general
maximal theorem [18, p. 73], Tα∗ is bounded on Lp(Rd, µα) for 1 < p ≤ ∞.
The case p = 1 is more subtle. The following theorem is a consequence of
Dinger’s result [2] in the classical Laguerre setting. In fact, it generalizes
analogous multi-dimensional results for classical Hermite [16] and Laguerre
[2] settings, which in one dimension were originally obtained by Mucken-
houpt [7].
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Theorem 4.1. Let α ∈ [−1/2,∞)d. Then Tα∗ satisfies the weak type
(1, 1) inequality

µα{x ∈ Rd : Tα∗ f(x) > λ} ≤ C

λ
‖f‖L1(Rd, µα), λ > 0.

Proof. Denote εo = (0, . . . , 0). By Soni’s inequality [17]

Iν+1(z) < Iν(z), z > 0, ν ≥ −1/2,

we see that

0 < Gαt (x, y) ≤ 2dGα,εot (x, y), t > 0, x, y ∈ Rd.

Since both Gα,εot (x, y) and the density of the measure µα are even with
respect to each coordinate, it follows that

2−d Tα∗ f(x) ≤ sup
t>0

�

Rd
Gα,εot (x, y)|f(y)| dµα(y)

≤
∑

δ∈{−1,1}d
sup
t>0

�

Rd+

Gα,εot ((|x1|, . . . , |xd|), y)|fδ(y)| dµα(y)

≡
∑

δ∈{−1,1}d
Tα,εo∗ |fδ|((|x1|, . . . , |xd|)),

where fδ(x) = f(δ1x1, . . . , δdxd). Thus it suffices to show the weak type
(1, 1) for the maximal operator Tα,εo∗ in Rd

+. But T
α,εo
∗ is, up to a constant

factor and the change of variable Rd
+ 3 x 7→ x2 ∈ Rd

+, the Laguerre maximal
operator considered by Dinger [2]. The relevant weak type (1, 1) estimate is
stated in [2, Theorem 1]; see also the accompanying comments explaining
the validity of the result for any type multi-index.

An important consequence of Theorem 4.1 is that Tαt f → f almost ev-
erywhere as t→ 0+, for f ∈ L1(Rd, µα).

5. Zd2 Riesz transforms. Recall that our choice of “derivatives” δj is
motivated by the decomposition

Lα + (2|α|+ 2d) =
1
2

d∑
j=1

(δ∗j δj + δjδ
∗
j ).

First we shall see how δj ’s act on Hαn. It is sufficient to consider the one-
dimensional situation and then distinguish between the even and odd cases.
Recall that δj = Tαj ; in the one-dimensional case we simply write δ in place
of δ1. For n ∈ N and α ≥ −1/2, combining the fact that Hα2n is an even
function with the identity

(5.1)
d

dy
Lαn(y) = −Lα+1

n−1(y)
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(see [6, (4.18.6)]), one easily obtains

δHα2n =
√

4nHα2n−1;

here, and also later on, we use the convention that Hαm ≡ 0 ≡ Lαm if m = −1.
Similarly, combining the fact that Hα2n+1 is an odd function with (5.1) and
the identities

−yLα+2
n−1(y) + (α+ 1)Lα+1

n (y) = yLα+1
n (y) + (n+ 1)Lαn+1(y)(5.2)

= (n+ α+ 1)Lαn(y),

which in turn can be deduced from (5.1), [6, (4.18.7)] and [6, (4.18.4)], one
gets

δHα2n+1 =
√

4n+ 4α+ 4Hα2n.
Summarizing, in d dimensions, for n ∈ Nd and α ∈ [−1/2,∞)d we have

δjHαn = mj(n, α)Hαn−ej ,
where

mj(n, α) =

{√
2nj if nj is even,√
2nj + 4αj + 2 if nj is odd;

by convention, Hn−ej ≡ 0 if nj = 0. Note that for each j the system {δjHαn :
nj ≥ 1} is orthogonal in L2(Rd, µα).

The rigorous definition of the Riesz transforms on L2(Rd, µα) is provided
by the orthogonal series

(5.3) Rαj f =
∑
|n|>0

mj(n, α)√
2|n|

〈f,Hαn〉αHαn−ej ,

from which the L2-boundedness can easily be seen directly. Notice, however,
that Rαj is not a contraction on L2(Rd, µα) if αj > −1/2 for some j.

Our main result, Theorem 5.1 below, is an extension of Muckenhoupt’s
Lp results [8, 9] for the conjugate mappings related to classical Hermite and
Laguerre expansions.

Theorem 5.1. Let d = 1 and assume that α ≥ −1/2. Then for each
1 < p < ∞ the Riesz transform Rα1 , defined on L2(R, µα) by (5.3), extends
to a bounded operator on Lp(R, µα).

We conjecture that an analogous result holds for arbitrary dimension d
and α ∈ [−1/2,∞)d, but proving this seems to be a rather difficult task. In
contrast with the maximal operator, it is not possible to deduce the result in
a straightforward manner from the known results [11] in the Laguerre setting.
Nor the technique of square functions used in [11] seems to be suitable in
the present context.

The proof of Theorem 5.1 is partially based on known results in the
classical Laguerre setting. To show the Lp estimate we split a function into
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its even and odd parts. Then the Riesz transform of the even part can be
identified with the Riesz–Laguerre transform for which the relevant bound
is known. Treatment of the odd part is less straightforward. The Riesz op-
erator coincides, up to shift and multiplier operators, with the adjoint of
the Riesz–Laguerre transform. Thus to get the desired estimate we need to
invoke a suitable multiplier theorem and to establish Lp-boundedness of a
shift operator in the Laguerre setting. The next section gathers the above-
mentioned auxiliary results. The proof of the main theorem is furnished at
the end of Section 6.

6. Laguerre setting results and proof of Theorem 5.1. The one-
dimensional setting discussed below is equivalent to the classical Laguerre
polynomial setting, from which it emerges by the change of variable x 7→ x2

on R+. Thus all relevant definitions and results can be directly translated
from the original to “squared” Laguerre setting. In what follows, we always
assume that α ≥ −1/2. The restriction of µα to R+ will be denoted by the
same symbol.

Consider the operator (3.2) in dimension one,

Lα = − d2

dx2
− 2α+ 1− 2x2

x

d

dx
,

which is positive and symmetric in L2(R+, µα). The polynomials Lαn(x2),
n ∈ N, are eigenfunctions of Lα,

LαLαn(x2) = 4nLαn(x2),

and the set {Lαn(x2) : n ∈ N} forms an orthogonal basis in L2(R+, µα). In
what follows, it is convenient to normalize this system in L2(R+, µα) and
consider the polynomials

ϕαn(x) =
(

2n!
Γ (n+ α+ 1)

)1/2

Lαn(x2).

The definition of the Riesz transform in the “squared” Laguerre setting
is inherited from the classical Laguerre setting (see [9] or [11]), and hence is
induced by the mapping

Rαϕ : ϕαn 7→ −ψαn−1, n ∈ N,

where ψα−1 ≡ 0 and {ψαn : n ∈ N} is another orthonormal basis of L2(R+, µα)
consisting of the polynomials

ψαn(x) =
(

2n!
Γ (n+ α+ 2)

)1/2

xLα+1
n (x2).

By Plancherel’s theorem, Rαϕ extends uniquely to a contraction on
L2(R+, µα), which we denote by the same symbol. Notice that ϕαn and ψαn
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coincide, up to constant factors independent of n and α, with the generalized
Hermite polynomials Hα2n and Hα2n+1, respectively.

In view of Muckenhoupt’s result [9, Theorem 3(b)] (see also [11, Theo-
rem 13]), we have the following

Theorem 6.1. Let α ≥ −1/2 and 1 < p <∞. Then

‖Rαϕf‖Lp(R+, µα) ≤ C‖f‖Lp(R+, µα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, µα).

It is immediate that the adjoint operator (Rαϕ)∗, taken in L2(R+, µα), is
determined by the mapping

Rαψ : ψαn 7→ −ϕαn+1, n ∈ N,

whose (unique) extension to L2(R+, µα) (still denoted by the same symbol)
is precisely the adjoint of Rαϕ. Consequently, by Theorem 6.1 and duality we
see that for 1 < p <∞,

(6.1) ‖Rαψf‖Lp(R+, µα) ≤ C‖f‖Lp(R+, µα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, µα).
The next ingredient that will be needed in the proof of Theorem 5.1 is the

multiplier theorem below. It is a direct translation to the “squared” Laguerre
setting of [5, Theorem 3.4], after specifying it to one dimension and taking
β = 1.

Theorem 6.2. Let 1 < p < ∞ and α ≥ −1/2. Assume that h is a
function analytic in a neighborhood of the origin. Let {ξ(n)}n∈N be a sequence
of real numbers such that ξ(n) = h(n−1) for n ≥ n0 ≥ 0. Then the multiplier
operator given by

Mξ : ϕαn 7→ ξ(n)ϕαn
satisfies

‖Mξf‖Lp(R+, µα) ≤ C‖f‖Lp(R+, µα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, µα).

Finally, we establish Lp-boundedness of the left and right shift operators
related to the system {ϕαn}. Changing the variable leads to the analogous
result for the system of (normalized) Laguerre polynomials. This may be
regarded as an extension of the result stated in [4, Proposition 3.3(a)].

Theorem 6.3. Let α ≥ −1/2 and 1 < p <∞. Then the shift operators
given by

SL : ϕαn 7→ ϕαn−1, SR : ϕαn 7→ ϕαn+1,

satisfy

‖SLf‖Lp(R+, µα) ≤ C‖f‖Lp(R+, µα), ‖SRf‖Lp(R+, µα) ≤ C‖f‖Lp(R+, µα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, µα).
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Proof. First, observe that by duality it suffices to prove the statement
only for SR, the adjoint of SL in L2(R+, µα). Then the estimate we need to
justify is

(6.2)
∞�

0

∣∣∣ ∞∑
n=0

anϕ
α
n+1(x)

∣∣∣p dµα(x) ≤ C
∞�

0

∣∣∣ ∞∑
n=0

anϕ
α
n(x)

∣∣∣p dµα(x).

Next notice that by means of Theorem 6.2 the task of showing (6.2) can be
reduced to proving the estimate

(6.3)
∞�

0

∣∣∣∣ ∞∑
n=0

n+ 1
n+α+1

bnL
α
n+1(x

2)
∣∣∣∣pdµα(x)≤C

∞�

0

∣∣∣ ∞∑
n=0

bnL
α
n(x2)

∣∣∣pdµα(x).

Indeed, to get (6.2) let ξ(n) =
√

n+α+1
n+1 and apply first (6.3) with bn =

ξ(n)an and then use Theorem 6.2 for the multiplier ξ(n).
It remains to prove (6.3). We invoke the formula (see (5.2))

n+ 1
n+ α+ 1

Lαn+1(y) = Lαn(y)− y

n+ α+ 1
Lα+1
n (y)

and use it to estimate the left-hand side in (6.3). We get
∞�

0

∣∣∣∣ ∞∑
n=0

n+ 1
n+ α+ 1

bnL
α
n+1(x

2)
∣∣∣∣p dµα(x)

≤ 2p
∞�

0

∣∣∣ ∞∑
n=0

bnL
α
n(x2)

∣∣∣p dµα(x) + 2p
∞�

0

∣∣∣∣ ∞∑
n=0

x2

n+ α+ 1
bnL

α+1
n (x2)

∣∣∣∣p dµα(x).

To deal with the last integral we apply the identity (see Koshlyakov’s formula
[6, p. 94])

x2

n+ α+ 1
Lα+1
n (x2) =

2
x2α

x�

0

Lαn(y2)y2α+1 dy.

This produces
∞�

0

∣∣∣ ∞∑
n=0

x2

n+ α+ 1
bnL

α+1
n (x2)

∣∣∣p dµα(x)

=
∞�

0

∣∣∣∣ 2
x2α

x�

0

( ∞∑
n=0

bnL
α
n(y2)

)
y2α+1 dy

∣∣∣∣p dµα(x).

Now the desired estimate is a consequence of weighted Hardy’s inequality

(6.4)
∞�

0

∣∣∣ x�
0

g(y) dy
∣∣∣px2α(1−p)+1e−x

2
dx ≤ C

∞�

0

|g(x)|px(2α+1)(1−p)e−x
2
dx.

But it is known (see for instance [10, Theorem 1]) that a sufficient (and
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necessary) condition for (6.4) to hold is

(6.5) sup
r>0

(∞�
r

xα(1−p)e−x dx
)1/p( r�

0

xαex/(p−1) dx
)1−1/p

<∞

(this condition is, by the change of variable x2 7→ x, equivalent to [10, (1.3)]
with suitably chosen weights U, V ).

Thus the proof will be finished once we verify (6.5). The decay at +∞
of the integrated expressions in (6.5) is essentially determined by the expo-
nentials. So neglecting the power factors at the price of adding a positive
constant to both exponents, we see that when r is large, say r ≥ 1, the
whole expression under the supremum is dominated by a constant. On the
other hand, for x close to 0+ the exponential factors can be neglected. Then
taking into account small r and integrating the power factors shows that the
expression under the supremum is controlled by a positive power of r. The
conclusion follows.

Remark 6.4. The Laguerre setting results of this section hold in fact
for a wider range α > −1 of the type parameter. This remark concerns
in particular Theorem 6.3, and the proof given above is valid also for α ∈
(−1,−1/2).

We are now in a position to prove Theorem 5.1. Given f ∈ L2∩Lp(R, µα),
decompose it into its even and odd parts,

f = fe + fo.

To prove the theorem it is sufficient to show the Lp estimates

(6.6) ‖Rα1 fe‖Lp(R, µα)≤C‖fe‖Lp(R, µα), ‖Rα1 fo‖Lp(R, µα)≤C‖fo‖Lp(R, µα).

Since the generalized Hermite polynomial Hαn is even if n is even, and odd
for n odd, the expansions of fe and fo are given only by even and odd Hαn ’s,
respectively. Moreover, in view of (5.3), Rα1 fe is odd and Rα1 fo is even. Due
to these symmetries we consider the operators Rαe and Rαo on L2(R+, µα)
emerging naturally from restrictions of Rα1 to the subspaces of L2(R, µα) of
even and odd functions, respectively. Clearly, (6.6) will follow once we show
suitable Lp estimates for Rαe and Rαo .

Observe that by (5.3) we have

Rαe : ϕαn 7→ −ψαn−1, Rαo : ψαn 7→

√
n+ α+ 1
n+ 1/2

ϕαn.

Thus Rαe coincides with Rαϕ, and the corresponding Lp estimate is provided
by Theorem 6.1. On the other hand, Rαo is related to the mapping Rαψ by
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means of shift and multiplier operators,

Rαo = MξSLR
α
ψ, ξ(n) = −

√
n+ α+ 1
n+ 1/2

.

Consequently, the relevant Lp estimate follows by Theorems 6.2 and 6.3, and
(6.1).

The proof of Theorem 5.1 is complete.

7. Alternative Zd2 Dunkl Ornstein–Uhlenbeck operator. In this
section we consider the “Laplacian”

L̃α = −∆α + 2x · ∇α,
a variant of the Dunkl Ornstein–Uhlenbeck operator based on the Dunkl
gradient

∇α = (Tα1 , . . . , T
α
d ).

This variant seems to be more natural than Lα for defining Riesz trans-
forms, at least in the Zd2 case. It turns out that Riesz transforms naturally
associated with L̃α are contractions in L2(Rd, µα), which is not the case
of Rαj related to Lα. Moreover, the context of L̃α is better related to the
classical Laguerre setting, as will be seen below. Similarly to Lα, when re-
stricted to the “even” subspace (3.1), L̃α coincides with the Laguerre-type
operator (3.2), and for α = (−1/2, . . . ,−1/2) it reduces to the classical
Ornstein–Uhlenbeck operator. Below we keep the notation introduced in
previous sections.

It is straightforward to check that L̃α admits the decomposition

L̃α =
d∑
j=1

δ∗j δj .

In fact, the decomposition −∆k + 2x · ∇k =
∑d

j=1 δ
∗
j δj , ∇k = (T k1 , . . . , T

k
d ),

δj = T kj , also holds in the general setting from Section 2. It follows that L̃α
is symmetric and nonnegative in L2(Rd, µα). Thus it is reasonable (see [12])
to define formally the Riesz transforms associated with L̃α by

R̃αj = δj(L̃α)−1/2Π0, j = 1, . . . , d.

The multi-dimensional generalized Hermite polynomials are eigenfunc-
tions of L̃α,

L̃αHαn =
(
2|n|+

∑
{j :nj odd}

(4αj + 2)
)
Hαn =

( d∑
j=1

[mj(n, α)]2
)
Hαn.

Let L̃α be the self-adjoint extension of L̃α whose spectral decomposition is
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given by the Hαn. Then the rigorous definition of R̃αj f for f being a (gener-

alized Hermite) polynomial is R̃αj = δjL̃−1/2
α Π0. Rewriting this in terms of

the corresponding expansions leads to the orthogonal series

(7.1) R̃αj f =
∑
|n|>0

mj(n, α)√∑d
j=1[mj(n, α)]2

〈f,Hαn〉αHαn−ej ,

which provides a definition of the Riesz operators on L2(Rd, µα). Clearly, by
Plancherel’s theorem the mapping

f 7→
√
|R̃α1 f |2 + · · ·+ |R̃αd f |2

is a contraction on L2(Rd, µα), and even an isometry on the orthogonal
complement of the constant function Hα(0,...,0).

We now state an analogue of Theorem 5.1 in the context of L̃α.

Theorem 7.1. Let d = 1 and α ≥ −1/2. Then for each 1 < p < ∞
the Riesz transform R̃α1 , defined on L2(R, µα) by (7.1), extends to a bounded
operator on Lp(R, µα).

Proof. We proceed as in the proof of Theorem 5.1 and arrive at the
operators R̃αe and R̃αo acting on L2(R+, µα). The conclusion will follow once
we show suitable Lp estimates for these two operators. Notice that by (7.1)
we have

R̃αe : ϕαn 7→ −ψαn−1, R̃αo : ψαn 7→ ϕαn.

Thus R̃αe = Rαϕ and R̃αo = −SLRαψ. Now the relevant Lp estimates are con-
sequences of Theorem 6.1, and Theorem 6.3 and (6.1), respectively.
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