COLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. 118</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2010</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">NO. 2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 118 | 2010 | NO. 2 |
| :--- | :--- | :--- |</table-markdown></div>

RIESZ TRANSFORMS FOR THE
 DUNKL ORNSTEIN-UHLENBECK OPERATOR

BY
ADAM NOWAK (Wrocław), LUZ RONCAL (Logroño) and KRZYSZTOF STEMPAK (Wrocław and Opole)

Dedicated to the memory of Professor Andrzej Hulanicki

Abstract

We propose a definition of Riesz transforms associated to the OrnsteinUhlenbeck operator based on the Dunkl Laplacian. In the case related to the group \mathbb{Z}_{2} it is proved that the Riesz transform is bounded on the corresponding L^{p} spaces, $1<p<\infty$.

1. Introduction. In the recent years Riesz transforms in the setting of orthogonal expansions related to general second order differential operators have been intensively studied. In particular, the first and third-named authors proposed a unified approach to this topic [12]. The investigation in the context of differential-difference operators was initiated very recently in [13], where Riesz transforms for the Dunkl harmonic oscillator were defined and studied. The present paper is a continuation of [13]. Now we consider the Ornstein-Uhlenbeck operator based on the Dunkl Laplacian, and define and investigate related Riesz operators. Our results partially contribute to the Dunkl theory, which has gained a considerable interest in various fields of mathematics as well as in theoretical physics during the last years.

Given a finite reflection group $G \subset O\left(\mathbb{R}^{d}\right)$ and a G-invariant nonnegative multiplicity function $k: R \rightarrow[0, \infty)$ on a root system $R \subset \mathbb{R}^{d}$ associated with the reflections of G, the Dunkl differential-difference operators $T_{j}^{k}, j=$ $1, \ldots, d$, are defined by

$$
T_{j}^{k} f(x)=\partial_{j} f(x)+\sum_{\beta \in R_{+}} k(\beta) \beta_{j} \frac{f(x)-f\left(\sigma_{\beta} x\right)}{\langle\beta, x\rangle}, \quad f \in C^{1}\left(\mathbb{R}^{d}\right)
$$

here ∂_{j} is the j th partial derivative, $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{d}, R_{+}is a fixed positive subsystem of R, and σ_{β} denotes the reflection in the hyperplane orthogonal to β. The Dunkl operators $T_{j}^{k}, j=1, \ldots, d$,

[^0]form a commuting system (this is an important feature, cf. [3]) of first order differential-difference operators, and reduce to $\partial_{j}, j=1, \ldots, d$, when $k \equiv 0$. Moreover, T_{j}^{k} are homogeneous of degree -1 on \mathcal{P}, the space of all polynomials in \mathbb{R}^{d}.

In Dunkl's theory the operator

$$
\Delta_{k}=\sum_{j=1}^{d}\left(T_{j}^{k}\right)^{2}
$$

plays the role of the Euclidean Laplacian (in fact Δ comes into play when $k \equiv 0)$. It is homogeneous of degree -2 on \mathcal{P} and symmetric in $L^{2}\left(\mathbb{R}^{d}, w_{k}\right)$, where

$$
w_{k}(x)=\prod_{\beta \in R_{+}}|\langle\beta, x\rangle|^{2 k(\beta)}
$$

if considered initially on $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Note that w_{k} is G-invariant. For basic facts concerning Dunkl's theory we refer the reader to the survey article by Rösler [15]. There, one can also find a discussion (see [15, Section 3]) and extensive references concerning applications of Dunkl's theory in mathematical physics.

In this article we propose a definition of Riesz transforms associated to the operator

$$
L_{k}=-\Delta_{k}+2 x \cdot \nabla
$$

which is symmetric with respect to the measure

$$
\begin{equation*}
d \mu_{k}(x)=e^{-\|x\|^{2}} w_{k}(x) d x, \tag{1.1}
\end{equation*}
$$

and becomes the classical Ornstein-Uhlenbeck operator when $k \equiv 0$. It turns out that L_{k} (or rather its suitable self-adjoint extension \mathcal{L}_{k}) has a discrete spectrum and the corresponding eigenfunctions are the generalized Hermite polynomials defined and investigated by Rösler [14]. Then the formal definition $R_{j}^{k}=\delta_{j}\left(\mathcal{L}_{k}\right)^{-1 / 2}, j=1, \ldots, d$, with $\delta_{j}=T_{j}^{k}$ being appropriate "derivatives" associated to L_{k}, rewritten properly in terms of the related expansions, produces L^{2}-bounded Riesz operators.

In the one-dimensional case of a reflection group isomorphic to \mathbb{Z}_{2} we study L^{p} mapping properties of the above Riesz transform in detail. As the main result (Theorem 5.1) we prove that this operator is bounded on the corresponding L^{p} spaces for $1<p<\infty$. This can be regarded as a generalization of the one-dimensional L^{p} results obtained by Muckenhoupt [8, (9) for the conjugate mappings related to classical Hermite and Laguerre expansions. We conjecture that an analogous result holds for arbitrary dimension d.

In the \mathbb{Z}_{2}^{d} case we also consider an alternative Dunkl Ornstein-Uhlenbeck operator defined by means of the Dunkl gradient rather than the Euclidean one. This variant of the operator seems to be more natural, at least from the

Riesz transforms theory point of view. In particular, suitably defined Riesz operators are L^{2}-contractions, which is not the case of R_{j}^{k}.

Finally, still in the \mathbb{Z}_{2}^{d} case, we obtain the weak type $(1,1)$ estimate for the maximal operator of the semigroup generated by the Dunkl OrnsteinUhlenbeck operator. This extends the analogous results proved earlier by Sjögren [16] and Dinger [2] in the classical Hermite and Laguerre settings.

The paper is organized as follows. In Section 2 we define, in an appropriate L^{2} space, Riesz transforms in the context of the Dunkl OrnsteinUhlenbeck operator based on the general Dunkl Laplacian. Section 3 introduces the particular Dunkl setting related to the group \mathbb{Z}_{2}^{d}. In Section 4 we establish the above-mentioned weak type $(1,1)$ estimate for the heat semigroup maximal operator in the \mathbb{Z}_{2}^{d} case (Theorem 4.1). Section 5 is devoted to the \mathbb{Z}_{2}^{d} Riesz-Dunkl transforms, and the main result of the paper is stated there (Theorem 5.1). In Section 6 we gather several facts from the theory of classical Laguerre expansions needed in the proof of the main result. In particular, we establish L^{p}-boundedness, $1<p<\infty$, of the left and right shift operators in the Laguerre setting (Theorem 6.3); this result is new and of independent interest. The proof of Theorem 5.1 is given at the end of Section 6. Eventually, in Section 7 we discuss Riesz operators related to the already mentioned variant of the Dunkl Ornstein-Uhlenbeck operator.

Throughout the paper we use fairly standard notation. Given a multiindex $n \in \mathbb{N}^{d}$, where $\mathbb{N}=\{0,1,2, \ldots\}$, we write $|n|=n_{1}+\cdots+n_{d} ;\|x\|$ denotes the Euclidean norm of $x \in \mathbb{R}^{d}$, and e_{j} the j th coordinate vector in \mathbb{R}^{d}. For a nonnegative weight function w on \mathbb{R}^{d}, we denote by $L^{p}\left(\mathbb{R}^{d}, w\right), 1 \leq$ $p<\infty$, the usual Lebesgue spaces related to the measure $d w(x)=w(x) d x$ (we will often abuse the notation slightly and use the same symbol w for the measure induced by a density w). Similarly, when w is a nonnegative weight function on $\mathbb{R}_{+}^{d}=(0, \infty)^{d}$, we write $L^{p}\left(\mathbb{R}_{+}^{d}, w\right)$ for the relevant Lebesgue spaces.
2. The general setting. Similarly to numerous frameworks discussed in the literature (see [12), it is reasonable to define, at least formally, the Riesz transforms $R_{1}^{k}, \ldots, R_{d}^{k}$ associated with L_{k} as

$$
\begin{equation*}
R_{j}^{k}=\delta_{j}\left(\mathcal{L}_{k}\right)^{-1 / 2} \Pi_{0} ; \tag{2.1}
\end{equation*}
$$

here \mathcal{L}_{k} is a suitable self-adjoint extension of L_{k} in $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right), \Pi_{0}$ is a projection annihilating the eigenspace of \mathcal{L}_{k} corresponding to the eigenvalue 0 , and δ_{j} 's are appropriately defined first order differential-difference operators.

In the present setting we define the j th partial derivative δ_{j} related to L_{k} by

$$
\delta_{j}=T_{j}^{k}
$$

A short calculation shows that the formal adjoint of δ_{j} in $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$ is

$$
\delta_{j}^{*}=-T_{j}^{k}+2 x_{j} .
$$

To be precise, this means that

$$
\begin{equation*}
\left\langle\delta_{j} f, g\right\rangle_{k}=\left\langle f, \delta_{j}^{*} g\right\rangle_{k}, \quad f, g \in C_{c}^{1}\left(\mathbb{R}^{d}\right) \tag{2.2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{k}$ is the canonical inner product in $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$. One of the facts which motivate the definition (2.1) is that, as a direct computation shows,

$$
L_{k}+(d+2 \gamma)=\frac{1}{2} \sum_{j=1}^{d}\left(\delta_{j}^{*} \delta_{j}+\delta_{j} \delta_{j}^{*}\right), \quad \gamma=\sum_{\beta \in R_{+}} k(\beta)
$$

In the setting of Dunkl's general theory Rösler [14 constructed systems of naturally associated multivariable generalized Hermite polynomials H_{n}^{k} such that $\left\{H_{n}^{k}: n \in \mathbb{N}^{d}\right\}$ is a complete orthogonal system in $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$ (cf. [14, Corollary $3.5(\mathrm{i})]$). Note that, for $k \equiv 0$ the construction leads to (suitably normalized) classical Hermite polynomials. Moreover, H_{n}^{k} are eigenfunctions of L_{k},

$$
L_{k} H_{n}^{k}=2|n| H_{n}^{k}
$$

From now on we will always consider the generalized Hermite polynomials normalized by dividing them by their $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$ norms. For clarity, polynomials of the normalized system will be denoted by \mathcal{H}_{n}^{k}. The operator

$$
\mathcal{L}_{k} f=\sum_{n \in \mathbb{N}^{d}} 2|n|\left\langle f, \mathcal{H}_{n}^{k}\right\rangle_{k} \mathcal{H}_{n}^{k},
$$

defined on the domain

$$
\operatorname{Dom}\left(\mathcal{L}_{k}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right): \sum_{n \in \mathbb{N}^{d}}|2| n\left|\left\langle f, \mathcal{H}_{n}^{k}\right\rangle_{k}\right|^{2}<\infty\right\},
$$

is a self-adjoint extension of L_{k} considered on $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ as the natural domain (the inclusion $C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset \operatorname{Dom}\left(\mathcal{L}_{k}\right)$ may be easily verified). The spectrum of \mathcal{L}_{k} is the discrete set $\{2 m: m \in \mathbb{N}\}$, and the spectral decomposition of \mathcal{L}_{k} is

$$
\mathcal{L}_{k} f=\sum_{m=0}^{\infty} 2 m \mathcal{P}_{m}^{k} f, \quad f \in \operatorname{Dom}\left(\mathcal{L}_{k}\right),
$$

where the spectral projections are

$$
\mathcal{P}_{m}^{k} f=\sum_{|n|=m}\left\langle f, \mathcal{H}_{n}^{k}\right\rangle_{k} \mathcal{H}_{n}^{k}
$$

Then, letting Π_{0} be the orthogonal projection onto the orthogonal complement of the subspace spanned by the constant function $\mathcal{H}_{(0, \ldots, 0)}^{k}$, we have

$$
\mathcal{L}_{k}^{-1 / 2} \Pi_{0} f=\sum_{m=1}^{\infty}(2 m)^{-1 / 2} \mathcal{P}_{m}^{k} f
$$

and this superposition is clearly a bounded operator on $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$.

We now furnish the rigorous definition of R_{j}^{k} on $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$. Let E be the dense subspace of $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$ spanned by $\left\{\mathcal{H}_{n}^{k}: n \in \mathbb{N}^{d}\right\}$. Note that E precisely consists of all polynomials in \mathbb{R}^{d}. Moreover, E is stable under the action of $\mathcal{L}_{k}^{-1 / 2}, \Pi_{0}, \delta_{j}, \delta_{j}^{*}$, and (2.2) is valid also for $f \in E$. Then for $f \in E$ we may define the Riesz transforms by (2.1), and these are bounded operators on E. Indeed, letting $\widehat{R}_{j}^{k}=\delta_{j}^{*} \mathcal{L}_{k}^{-1 / 2} \Pi_{0}$ we see that for $f \in E$,

$$
\begin{aligned}
\left\|R_{j}^{k} f\right\|_{L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)}^{2} & \leq\left\|R_{j}^{k} f\right\|_{L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)}^{2}+\left\|\widehat{R}_{j}^{k} f\right\|_{L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)}^{2} \\
& =\left\langle\delta_{j}^{*} \delta_{j} \mathcal{L}_{k}^{-1 / 2} \Pi_{0} f, \mathcal{L}_{k}^{-1 / 2} \Pi_{0} f\right\rangle_{k}+\left\langle\delta_{j} \delta_{j}^{*} \mathcal{L}_{k}^{-1 / 2} \Pi_{0} f, \mathcal{L}_{k}^{-1 / 2} \Pi_{0} f\right\rangle_{k} \\
& \leq\left\langle\left(\sum_{i=1}^{d}\left(\delta_{i}^{*} \delta_{i}+\delta_{i} \delta_{i}^{*}\right) \mathcal{L}_{k}^{-1 / 2} \Pi_{0} f\right), \mathcal{L}_{k}^{-1 / 2} \Pi_{0} f\right\rangle_{k} \\
& =2\left\langle\left(L_{k}+d+2 \gamma\right) \mathcal{L}_{k}^{-1 / 2} \Pi_{0} f, \mathcal{L}_{k}^{-1 / 2} \Pi_{0} f\right\rangle_{k} \\
& =2\left\|\Pi_{0} f\right\|_{L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)}^{2}+2(d+2 \gamma)\left\|\mathcal{L}_{k}^{-1 / 2} \Pi_{0} f\right\|_{L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)}^{2} \\
& \leq(2+d+2 \gamma)\|f\|_{L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)}^{2}
\end{aligned}
$$

It follows that the unique extension of R_{j}^{k} to the whole $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$ is given by

$$
R_{j}^{k} f=\sum_{|n|>0}(2|n|)^{-1 / 2}\left\langle f, \mathcal{H}_{n}^{k}\right\rangle_{k} \delta_{j} \mathcal{H}_{n}^{k}
$$

the series being convergent in $L^{2}\left(\mathbb{R}^{d}, \mu_{k}\right)$ and its sum being independent of the order of summation.
3. Preliminaries for the \mathbb{Z}_{2}^{d} case. Consider the finite reflection group generated by $\sigma_{j}, j=1, \ldots, d$,

$$
\sigma_{j}\left(x_{1}, \ldots, x_{j}, \ldots, x_{d}\right)=\left(x_{1}, \ldots,-x_{j}, \ldots, x_{d}\right)
$$

and isomorphic to $\mathbb{Z}_{2}^{d}=\{0,1\}^{d}$. The reflection σ_{j} is in the hyperplane orthogonal to e_{j}, the j th coordinate vector in \mathbb{R}^{d}. Thus $R=\left\{ \pm \sqrt{2} e_{j}: j=\right.$ $1, \ldots, d\}, R_{+}=\left\{\sqrt{2} e_{j}: j=1, \ldots, d\right\}$, and for a nonnegative multiplicity function $k: R \rightarrow[0, \infty)$ which is \mathbb{Z}_{2}^{d}-invariant, only values of k on R_{+}are essential. Hence we may think $k=\left(\alpha_{1}+1 / 2, \ldots, \alpha_{d}+1 / 2\right), \alpha_{j} \geq-1 / 2$. We write $\alpha_{j}+1 / 2$ in place of seemingly more appropriate α_{j} since, for the sake of clarity, it is convenient for us to stick to the notation used in the Laguerre polynomial setting.

In what follows, the symbols $T_{j}^{\alpha}, \delta_{j}, \Delta_{\alpha}, \mu_{\alpha}, L_{\alpha}$ and so on denote the objects introduced in Section 2 and related to the present particular setting. Thus the Dunkl differential-difference operators $T_{j}^{\alpha}, j=1, \ldots, d$, are now
given by

$$
T_{j}^{\alpha} f(x)=\partial_{j} f(x)+\left(\alpha_{j}+1 / 2\right) \frac{f(x)-f\left(\sigma_{j} x\right)}{x_{j}}, \quad f \in C^{1}\left(\mathbb{R}^{d}\right)
$$

and the explicit form of the Dunkl Laplacian is

$$
\Delta_{\alpha} f(x)=\sum_{j=1}^{d}\left(\frac{\partial^{2} f}{\partial x_{j}^{2}}(x)+\frac{2 \alpha_{j}+1}{x_{j}} \frac{\partial f}{\partial x_{j}}(x)-\left(\alpha_{j}+1 / 2\right) \frac{f(x)-f\left(\sigma_{j} x\right)}{x_{j}^{2}}\right) .
$$

Note that Δ_{α}, when restricted to the "even" subspace

$$
\begin{equation*}
\left\{f \in C^{2}\left(\mathbb{R}^{d}\right): \forall j=1, \ldots, d, f(x)=f\left(\sigma_{j} x\right)\right\} \tag{3.1}
\end{equation*}
$$

coincides with the multi-dimensional Bessel differential operator $\sum_{j=1}^{d}\left(\partial_{j}^{2}+\right.$ $\frac{2 \alpha_{j}+1}{x_{j}} \partial_{j}$), and consequently $L_{\alpha}=-\Delta_{\alpha}+2 x \cdot \nabla$ reduces to the Laguerre-type operator

$$
\begin{equation*}
-\Delta+2 x \cdot \nabla-\sum_{j=1}^{d} \frac{2 \alpha_{j}+1}{x_{j}} \frac{\partial}{\partial x_{j}} \tag{3.2}
\end{equation*}
$$

(both operators acting on \mathbb{R}_{+}^{d}).
The corresponding measure μ_{α} has a product structure of the form

$$
\begin{aligned}
d \mu_{\alpha}(x) & =\prod_{j=1}^{d}\left|x_{j}\right|^{2 \alpha_{j}+1} e^{-x_{j}^{2}} d x_{j} \\
& =2^{-|\alpha|-d / 2} e^{-\|x\|^{2}} \prod_{\beta \in R_{+}}|\langle\beta, x\rangle|^{2 k(\beta)} d x, \quad x \in \mathbb{R}^{d} ;
\end{aligned}
$$

for simplicity we neglect the constant factor in comparison with (1.1). In dimension one, for the reflection group \mathbb{Z}_{2} (see [14, Example 3.3(2)]) and the multiplicity parameter $\alpha+1 / 2, \alpha \geq-1 / 2$, one obtains as the corresponding (normalized) generalized Hermite polynomials

$$
\begin{aligned}
\mathcal{H}_{2 n}^{\alpha}(x) & =(-1)^{n}\left(\frac{n!}{\Gamma(n+\alpha+1)}\right)^{1 / 2} L_{n}^{\alpha}\left(x^{2}\right) \\
\mathcal{H}_{2 n+1}^{\alpha}(x) & =(-1)^{n}\left(\frac{n!}{\Gamma(n+\alpha+2)}\right)^{1 / 2} x L_{n}^{\alpha+1}\left(x^{2}\right)
\end{aligned}
$$

where $n \in \mathbb{N}$ and L_{n}^{α} denotes the Laguerre polynomial of degree n and or$\operatorname{der} \alpha$ (see [6, p. 76]). Note that these \mathcal{H}_{n}^{α} are, up to multiplicative constants, the genuine generalized Hermite polynomials $H_{n}^{\alpha+1 / 2}$ on \mathbb{R}, as defined and studied by Chihara [1]. For $\alpha=-1 / 2$ the \mathcal{H}_{n}^{α} become the classical (normalized) Hermite polynomials (see [6, p. 81]). In the multi-dimensional setting, corresponding to the group \mathbb{Z}_{2}^{d}, the generalized Hermite polynomials are obtained by taking tensor products of the one-dimensional \mathcal{H}_{n}^{α}. Thus for a
multi-index $\alpha \in[-1 / 2, \infty)^{d}$,

$$
\mathcal{H}_{n}^{\alpha}(x)=\mathcal{H}_{n_{1}}^{\alpha_{1}}\left(x_{1}\right) \cdot \ldots \cdot \mathcal{H}_{n_{d}}^{\alpha_{d}}\left(x_{d}\right), \quad x \in \mathbb{R}^{d}, n \in \mathbb{N}^{d}
$$

The system $\left\{\mathcal{H}_{n}^{\alpha}: n \in \mathbb{N}^{d}\right\}$ is an orthonormal basis in $L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$ consisting of eigenfunctions of L_{α}; recall that $L_{\alpha} \mathcal{H}_{n}^{\alpha}=2|n| \mathcal{H}_{n}^{\alpha}$.
4. \mathbb{Z}_{2}^{d} heat semigroup maximal operator. Let $\left\{T_{t}^{\alpha}\right\}_{t>0}$ be the heatdiffusion semigroup generated by \mathcal{L}_{α},

$$
T_{t}^{\alpha} f=\sum_{m=0}^{\infty} e^{-2 m t} \mathcal{P}_{m}^{\alpha} f, \quad f \in L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)
$$

Then the integral representation of T_{t}^{α} is

$$
T_{t}^{\alpha} f(x)=\int_{\mathbb{R}^{d}} \mathcal{G}_{t}^{\alpha}(x, y) f(y) d \mu_{\alpha}(y), \quad x \in \mathbb{R}^{d}
$$

where the heat kernel is expressed in terms of the \mathcal{H}_{n}^{α},

$$
\mathcal{G}_{t}^{\alpha}(x, y)=\sum_{m=0}^{\infty} e^{-2 m t} \sum_{|n|=m} \mathcal{H}_{n}^{\alpha}(x) \mathcal{H}_{n}^{\alpha}(y)
$$

The oscillating series defining $\mathcal{G}_{t}^{\alpha}(x, y)$ can be summed and we get

$$
\begin{equation*}
\mathcal{G}_{t}^{\alpha}(x, y)=\sum_{\varepsilon \in\{0,1\}^{d}} \mathcal{G}_{t}^{\alpha, \varepsilon}(x, y), \tag{4.1}
\end{equation*}
$$

where the component kernels are given by
$\mathcal{G}_{t}^{\alpha, \varepsilon}(x, y)$

$$
=\frac{e^{2 t|\alpha|}}{\left(1-e^{-4 t}\right)^{d}} \exp \left(-\frac{1}{e^{4 t}-1}\left(\|x\|^{2}+\|y\|^{2}\right)\right) \prod_{i=1}^{d}\left(x_{i} y_{i}\right)^{\varepsilon_{i}} \frac{I_{\alpha_{i}+\varepsilon_{i}}\left(\frac{x_{i} y_{i}}{\sinh 2 t}\right)}{\left(x_{i} y_{i}\right)^{\alpha_{i}+\varepsilon_{i}}},
$$

with I_{ν} being the modified Bessel function of the first kind and order ν (see [6, Chapter 5]). This formula can be deduced, for instance, from a relation with the setting considered in [13, Section 3] and the facts invoked there. Indeed, it is easy to see that $\mathcal{G}_{t}^{\alpha}(x, y)=e^{2 t(|\alpha|+d)} e^{\left(\|x\|^{2}+\|y\|^{2}\right) / 2} G_{t}^{\alpha}(x, y)$, with $G_{t}^{\alpha}(x, y)$ defined in [13, Section 3]. Then the decomposition $G_{t}^{\alpha}(x, y)=$ $\sum_{\varepsilon \in\{0,1\}^{d}} G_{t}^{\alpha, \varepsilon}(x, y)$, together with the explicit form of $G_{t}^{\alpha, \varepsilon}(x, y)$, shows (4.1).

Consider the maximal operator $T_{*}^{\alpha} f=\sup _{t>0}\left|T_{t}^{\alpha} f\right|$. By Stein's general maximal theorem [18, p. 73], T_{*}^{α} is bounded on $L^{p}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$ for $1<p \leq \infty$. The case $p=1$ is more subtle. The following theorem is a consequence of Dinger's result [2] in the classical Laguerre setting. In fact, it generalizes analogous multi-dimensional results for classical Hermite [16] and Laguerre [2] settings, which in one dimension were originally obtained by Muckenhoupt [7].

Theorem 4.1. Let $\alpha \in[-1 / 2, \infty)^{d}$. Then T_{*}^{α} satisfies the weak type $(1,1)$ inequality

$$
\mu_{\alpha}\left\{x \in \mathbb{R}^{d}: T_{*}^{\alpha} f(x)>\lambda\right\} \leq \frac{C}{\lambda}\|f\|_{L^{1}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)}, \quad \lambda>0 .
$$

Proof. Denote $\varepsilon_{o}=(0, \ldots, 0)$. By Soni's inequality [17]

$$
I_{\nu+1}(z)<I_{\nu}(z), \quad z>0, \nu \geq-1 / 2
$$

we see that

$$
0<\mathcal{G}_{t}^{\alpha}(x, y) \leq 2^{d} \mathcal{G}_{t}^{\alpha, \varepsilon_{o}}(x, y), \quad t>0, x, y \in \mathbb{R}^{d} .
$$

Since both $G_{t}^{\alpha, \varepsilon_{o}}(x, y)$ and the density of the measure μ_{α} are even with respect to each coordinate, it follows that

$$
\begin{aligned}
2^{-d} T_{*}^{\alpha} f(x) & \leq \sup _{t>0} \int_{\mathbb{R}^{d}} \mathcal{G}_{t}^{\alpha, \varepsilon_{o}}(x, y)|f(y)| d \mu_{\alpha}(y) \\
& \leq \sum_{\delta \in\{-1,1\}^{d}} \sup _{t>0} \int_{\mathbb{R}_{+}^{d}} \mathcal{G}_{t}^{\alpha, \varepsilon_{o}}\left(\left(\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right), y\right)\left|f_{\delta}(y)\right| d \mu_{\alpha}(y) \\
& \equiv \sum_{\delta \in\{-1,1\}^{d}} T_{*}^{\alpha, \varepsilon_{o}}\left|f_{\delta}\right|\left(\left(\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right)\right)
\end{aligned}
$$

where $f_{\delta}(x)=f\left(\delta_{1} x_{1}, \ldots, \delta_{d} x_{d}\right)$. Thus it suffices to show the weak type $(1,1)$ for the maximal operator $T_{*}^{\alpha, \varepsilon_{o}}$ in \mathbb{R}_{+}^{d}. But $T_{*}^{\alpha, \varepsilon_{o}}$ is, up to a constant factor and the change of variable $\mathbb{R}_{+}^{d} \ni x \mapsto x^{2} \in \mathbb{R}_{+}^{d}$, the Laguerre maximal operator considered by Dinger [2]. The relevant weak type $(1,1)$ estimate is stated in [2, Theorem 1]; see also the accompanying comments explaining the validity of the result for any type multi-index.

An important consequence of Theorem 4.1 is that $T_{t}^{\alpha} f \rightarrow f$ almost everywhere as $t \rightarrow 0^{+}$, for $f \in L^{1}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$.
5. \mathbb{Z}_{2}^{d} Riesz transforms. Recall that our choice of "derivatives" δ_{j} is motivated by the decomposition

$$
L_{\alpha}+(2|\alpha|+2 d)=\frac{1}{2} \sum_{j=1}^{d}\left(\delta_{j}^{*} \delta_{j}+\delta_{j} \delta_{j}^{*}\right) .
$$

First we shall see how δ_{j} 's act on \mathcal{H}_{n}^{α}. It is sufficient to consider the onedimensional situation and then distinguish between the even and odd cases. Recall that $\delta_{j}=T_{j}^{\alpha}$; in the one-dimensional case we simply write δ in place of δ_{1}. For $n \in \mathbb{N}$ and $\alpha \geq-1 / 2$, combining the fact that $\mathcal{H}_{2 n}^{\alpha}$ is an even function with the identity

$$
\begin{equation*}
\frac{d}{d y} L_{n}^{\alpha}(y)=-L_{n-1}^{\alpha+1}(y) \tag{5.1}
\end{equation*}
$$

(see [6, (4.18.6)]), one easily obtains

$$
\delta \mathcal{H}_{2 n}^{\alpha}=\sqrt{4 n} \mathcal{H}_{2 n-1}^{\alpha}
$$

here, and also later on, we use the convention that $\mathcal{H}_{m}^{\alpha} \equiv 0 \equiv L_{m}^{\alpha}$ if $m=-1$. Similarly, combining the fact that $\mathcal{H}_{2 n+1}^{\alpha}$ is an odd function with 5.1) and the identities

$$
\begin{align*}
-y L_{n-1}^{\alpha+2}(y)+(\alpha+1) L_{n}^{\alpha+1}(y) & =y L_{n}^{\alpha+1}(y)+(n+1) L_{n+1}^{\alpha}(y) \tag{5.2}\\
& =(n+\alpha+1) L_{n}^{\alpha}(y)
\end{align*}
$$

which in turn can be deduced from (5.1), [6, (4.18.7)] and [6, (4.18.4)], one gets

$$
\delta \mathcal{H}_{2 n+1}^{\alpha}=\sqrt{4 n+4 \alpha+4} \mathcal{H}_{2 n}^{\alpha}
$$

Summarizing, in d dimensions, for $n \in \mathbb{N}^{d}$ and $\alpha \in[-1 / 2, \infty)^{d}$ we have

$$
\delta_{j} \mathcal{H}_{n}^{\alpha}=m_{j}(n, \alpha) \mathcal{H}_{n-e_{j}}^{\alpha}
$$

where

$$
m_{j}(n, \alpha)= \begin{cases}\sqrt{2 n_{j}} & \text { if } n_{j} \text { is even } \\ \sqrt{2 n_{j}+4 \alpha_{j}+2} & \text { if } n_{j} \text { is odd }\end{cases}
$$

by convention, $\mathcal{H}_{n-e_{j}} \equiv 0$ if $n_{j}=0$. Note that for each j the system $\left\{\delta_{j} \mathcal{H}_{n}^{\alpha}\right.$: $\left.n_{j} \geq 1\right\}$ is orthogonal in $L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$.

The rigorous definition of the Riesz transforms on $L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$ is provided by the orthogonal series

$$
\begin{equation*}
R_{j}^{\alpha} f=\sum_{|n|>0} \frac{m_{j}(n, \alpha)}{\sqrt{2|n|}}\left\langle f, \mathcal{H}_{n}^{\alpha}\right\rangle_{\alpha} \mathcal{H}_{n-e_{j}}^{\alpha} \tag{5.3}
\end{equation*}
$$

from which the L^{2}-boundedness can easily be seen directly. Notice, however, that R_{j}^{α} is not a contraction on $L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$ if $\alpha_{j}>-1 / 2$ for some j.

Our main result, Theorem 5.1 below, is an extension of Muckenhoupt's L^{p} results [8, 9] for the conjugate mappings related to classical Hermite and Laguerre expansions.

Theorem 5.1. Let $d=1$ and assume that $\alpha \geq-1 / 2$. Then for each $1<p<\infty$ the Riesz transform R_{1}^{α}, defined on $L^{2}\left(\mathbb{R}, \mu_{\alpha}\right)$ by (5.3), extends to a bounded operator on $L^{p}\left(\mathbb{R}, \mu_{\alpha}\right)$.

We conjecture that an analogous result holds for arbitrary dimension d and $\alpha \in[-1 / 2, \infty)^{d}$, but proving this seems to be a rather difficult task. In contrast with the maximal operator, it is not possible to deduce the result in a straightforward manner from the known results [11] in the Laguerre setting. Nor the technique of square functions used in [11] seems to be suitable in the present context.

The proof of Theorem 5.1 is partially based on known results in the classical Laguerre setting. To show the L^{p} estimate we split a function into
its even and odd parts. Then the Riesz transform of the even part can be identified with the Riesz-Laguerre transform for which the relevant bound is known. Treatment of the odd part is less straightforward. The Riesz operator coincides, up to shift and multiplier operators, with the adjoint of the Riesz-Laguerre transform. Thus to get the desired estimate we need to invoke a suitable multiplier theorem and to establish L^{p}-boundedness of a shift operator in the Laguerre setting. The next section gathers the abovementioned auxiliary results. The proof of the main theorem is furnished at the end of Section 6 .
6. Laguerre setting results and proof of Theorem 5.1. The onedimensional setting discussed below is equivalent to the classical Laguerre polynomial setting, from which it emerges by the change of variable $x \mapsto x^{2}$ on \mathbb{R}_{+}. Thus all relevant definitions and results can be directly translated from the original to "squared" Laguerre setting. In what follows, we always assume that $\alpha \geq-1 / 2$. The restriction of μ_{α} to \mathbb{R}_{+}will be denoted by the same symbol.

Consider the operator (3.2) in dimension one,

$$
\mathbb{L}_{\alpha}=-\frac{d^{2}}{d x^{2}}-\frac{2 \alpha+1-2 x^{2}}{x} \frac{d}{d x},
$$

which is positive and symmetric in $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$. The polynomials $L_{n}^{\alpha}\left(x^{2}\right)$, $n \in \mathbb{N}$, are eigenfunctions of \mathbb{L}_{α},

$$
\mathbb{L}_{\alpha} L_{n}^{\alpha}\left(x^{2}\right)=4 n L_{n}^{\alpha}\left(x^{2}\right),
$$

and the set $\left\{L_{n}^{\alpha}\left(x^{2}\right): n \in \mathbb{N}\right\}$ forms an orthogonal basis in $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$. In what follows, it is convenient to normalize this system in $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$ and consider the polynomials

$$
\varphi_{n}^{\alpha}(x)=\left(\frac{2 n!}{\Gamma(n+\alpha+1)}\right)^{1 / 2} L_{n}^{\alpha}\left(x^{2}\right) .
$$

The definition of the Riesz transform in the "squared" Laguerre setting is inherited from the classical Laguerre setting (see [9] or [11]), and hence is induced by the mapping

$$
R_{\varphi}^{\alpha}: \varphi_{n}^{\alpha} \mapsto-\psi_{n-1}^{\alpha}, \quad n \in \mathbb{N},
$$

where $\psi_{-1}^{\alpha} \equiv 0$ and $\left\{\psi_{n}^{\alpha}: n \in \mathbb{N}\right\}$ is another orthonormal basis of $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$ consisting of the polynomials

$$
\psi_{n}^{\alpha}(x)=\left(\frac{2 n!}{\Gamma(n+\alpha+2)}\right)^{1 / 2} x L_{n}^{\alpha+1}\left(x^{2}\right) .
$$

By Plancherel's theorem, R_{φ}^{α} extends uniquely to a contraction on $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$, which we denote by the same symbol. Notice that φ_{n}^{α} and ψ_{n}^{α}
coincide, up to constant factors independent of n and α, with the generalized Hermite polynomials $\mathcal{H}_{2 n}^{\alpha}$ and $\mathcal{H}_{2 n+1}^{\alpha}$, respectively.

In view of Muckenhoupt's result [9, Theorem 3(b)] (see also [11, Theorem 13]), we have the following

Theorem 6.1. Let $\alpha \geq-1 / 2$ and $1<p<\infty$. Then

$$
\left\|R_{\varphi}^{\alpha} f\right\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)}
$$

with a constant C independent of $f \in L^{2} \cap L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$.
It is immediate that the adjoint operator $\left(R_{\varphi}^{\alpha}\right)^{*}$, taken in $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$, is determined by the mapping

$$
R_{\psi}^{\alpha}: \psi_{n}^{\alpha} \mapsto-\varphi_{n+1}^{\alpha}, \quad n \in \mathbb{N}
$$

whose (unique) extension to $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$ (still denoted by the same symbol) is precisely the adjoint of R_{φ}^{α}. Consequently, by Theorem 6.1 and duality we see that for $1<p<\infty$,

$$
\begin{equation*}
\left\|R_{\psi}^{\alpha} f\right\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)} \tag{6.1}
\end{equation*}
$$

with a constant C independent of $f \in L^{2} \cap L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$.
The next ingredient that will be needed in the proof of Theorem5.1 is the multiplier theorem below. It is a direct translation to the "squared" Laguerre setting of [5, Theorem 3.4], after specifying it to one dimension and taking $\beta=1$.

Theorem 6.2. Let $1<p<\infty$ and $\alpha \geq-1 / 2$. Assume that h is a function analytic in a neighborhood of the origin. Let $\{\xi(n)\}_{n \in \mathbb{N}}$ be a sequence of real numbers such that $\xi(n)=h\left(n^{-1}\right)$ for $n \geq n_{0} \geq 0$. Then the multiplier operator given by

$$
M_{\xi}: \varphi_{n}^{\alpha} \mapsto \xi(n) \varphi_{n}^{\alpha}
$$

satisfies

$$
\left\|M_{\xi} f\right\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)}
$$

with a constant C independent of $f \in L^{2} \cap L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$.
Finally, we establish L^{p}-boundedness of the left and right shift operators related to the system $\left\{\varphi_{n}^{\alpha}\right\}$. Changing the variable leads to the analogous result for the system of (normalized) Laguerre polynomials. This may be regarded as an extension of the result stated in [4, Proposition 3.3(a)].

Theorem 6.3. Let $\alpha \geq-1 / 2$ and $1<p<\infty$. Then the shift operators given by

$$
S_{L}: \varphi_{n}^{\alpha} \mapsto \varphi_{n-1}^{\alpha}, \quad S_{R}: \varphi_{n}^{\alpha} \mapsto \varphi_{n+1}^{\alpha}
$$

satisfy

$$
\left\|S_{L} f\right\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)}, \quad\left\|S_{R} f\right\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)},
$$

with a constant C independent of $f \in L^{2} \cap L^{p}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$.

Proof. First, observe that by duality it suffices to prove the statement only for S_{R}, the adjoint of S_{L} in $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$. Then the estimate we need to justify is

$$
\begin{equation*}
\int_{0}^{\infty}\left|\sum_{n=0}^{\infty} a_{n} \varphi_{n+1}^{\alpha}(x)\right|^{p} d \mu_{\alpha}(x) \leq C \int_{0}^{\infty}\left|\sum_{n=0}^{\infty} a_{n} \varphi_{n}^{\alpha}(x)\right|^{p} d \mu_{\alpha}(x) \tag{6.2}
\end{equation*}
$$

Next notice that by means of Theorem 6.2 the task of showing 6.2 can be reduced to proving the estimate

$$
\begin{equation*}
\int_{0}^{\infty}\left|\sum_{n=0}^{\infty} \frac{n+1}{n+\alpha+1} b_{n} L_{n+1}^{\alpha}\left(x^{2}\right)\right|^{p} d \mu_{\alpha}(x) \leq C \int_{0}^{\infty}\left|\sum_{n=0}^{\infty} b_{n} L_{n}^{\alpha}\left(x^{2}\right)\right|^{p} d \mu_{\alpha}(x) \tag{6.3}
\end{equation*}
$$

Indeed, to get 6.2 let $\xi(n)=\sqrt{\frac{n+\alpha+1}{n+1}}$ and apply first 6.3 with $b_{n}=$ $\xi(n) a_{n}$ and then use Theorem 6.2 for the multiplier $\xi(n)$.

It remains to prove (6.3). We invoke the formula (see (5.2))

$$
\frac{n+1}{n+\alpha+1} L_{n+1}^{\alpha}(y)=L_{n}^{\alpha}(y)-\frac{y}{n+\alpha+1} L_{n}^{\alpha+1}(y)
$$

and use it to estimate the left-hand side in (6.3). We get

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\sum_{n=0}^{\infty} \frac{n+1}{n+\alpha+1} b_{n} L_{n+1}^{\alpha}\left(x^{2}\right)\right|^{p} d \mu_{\alpha}(x) \\
& \leq 2^{p} \int_{0}^{\infty}\left|\sum_{n=0}^{\infty} b_{n} L_{n}^{\alpha}\left(x^{2}\right)\right|^{p} d \mu_{\alpha}(x)+2^{p} \int_{0}^{\infty}\left|\sum_{n=0}^{\infty} \frac{x^{2}}{n+\alpha+1} b_{n} L_{n}^{\alpha+1}\left(x^{2}\right)\right|^{p} d \mu_{\alpha}(x) .
\end{aligned}
$$

To deal with the last integral we apply the identity (see Koshlyakov's formula [6, p. 94])

$$
\frac{x^{2}}{n+\alpha+1} L_{n}^{\alpha+1}\left(x^{2}\right)=\frac{2}{x^{2 \alpha}} \int_{0}^{x} L_{n}^{\alpha}\left(y^{2}\right) y^{2 \alpha+1} d y
$$

This produces

$$
\begin{aligned}
\int_{0}^{\infty} \left\lvert\, \sum_{n=0}^{\infty} \frac{x^{2}}{n+\alpha+1} b_{n} L_{n}^{\alpha+1}\right. & \left.\left(x^{2}\right)\right|^{p} d \mu_{\alpha}(x) \\
& =\int_{0}^{\infty}\left|\frac{2}{x^{2 \alpha}} \int_{0}^{x}\left(\sum_{n=0}^{\infty} b_{n} L_{n}^{\alpha}\left(y^{2}\right)\right) y^{2 \alpha+1} d y\right|^{p} d \mu_{\alpha}(x)
\end{aligned}
$$

Now the desired estimate is a consequence of weighted Hardy's inequality

$$
\begin{equation*}
\int_{0}^{\infty}\left|\int_{0}^{x} g(y) d y\right|^{p} x^{2 \alpha(1-p)+1} e^{-x^{2}} d x \leq C \int_{0}^{\infty}|g(x)|^{p} x^{(2 \alpha+1)(1-p)} e^{-x^{2}} d x \tag{6.4}
\end{equation*}
$$

But it is known (see for instance [10, Theorem 1]) that a sufficient (and
necessary) condition for (6.4) to hold is

$$
\begin{equation*}
\sup _{r>0}\left(\int_{r}^{\infty} x^{\alpha(1-p)} e^{-x} d x\right)^{1 / p}\left(\int_{0}^{r} x^{\alpha} e^{x /(p-1)} d x\right)^{1-1 / p}<\infty \tag{6.5}
\end{equation*}
$$

(this condition is, by the change of variable $x^{2} \mapsto x$, equivalent to [10, (1.3)] with suitably chosen weights $U, V)$.

Thus the proof will be finished once we verify 6.5. The decay at $+\infty$ of the integrated expressions in 6.5 is essentially determined by the exponentials. So neglecting the power factors at the price of adding a positive constant to both exponents, we see that when r is large, say $r \geq 1$, the whole expression under the supremum is dominated by a constant. On the other hand, for x close to 0^{+}the exponential factors can be neglected. Then taking into account small r and integrating the power factors shows that the expression under the supremum is controlled by a positive power of r. The conclusion follows.

REmARK 6.4. The Laguerre setting results of this section hold in fact for a wider range $\alpha>-1$ of the type parameter. This remark concerns in particular Theorem 6.3, and the proof given above is valid also for $\alpha \in$ $(-1,-1 / 2)$.

We are now in a position to prove Theorem5.1. Given $f \in L^{2} \cap L^{p}\left(\mathbb{R}, \mu_{\alpha}\right)$, decompose it into its even and odd parts,

$$
f=f_{e}+f_{o}
$$

To prove the theorem it is sufficient to show the L^{p} estimates

$$
\begin{equation*}
\left\|R_{1}^{\alpha} f_{e}\right\|_{L^{p}\left(\mathbb{R}, \mu_{\alpha}\right)} \leq C\left\|f_{e}\right\|_{L^{p}\left(\mathbb{R}, \mu_{\alpha}\right)}, \quad\left\|R_{1}^{\alpha} f_{o}\right\|_{L^{p}\left(\mathbb{R}, \mu_{\alpha}\right)} \leq C\left\|f_{o}\right\|_{L^{p}\left(\mathbb{R}, \mu_{\alpha}\right)} \tag{6.6}
\end{equation*}
$$

Since the generalized Hermite polynomial \mathcal{H}_{n}^{α} is even if n is even, and odd for n odd, the expansions of f_{e} and f_{o} are given only by even and odd \mathcal{H}_{n}^{α} 's, respectively. Moreover, in view of (5.3), $R_{1}^{\alpha} f_{e}$ is odd and $R_{1}^{\alpha} f_{o}$ is even. Due to these symmetries we consider the operators R_{e}^{α} and R_{o}^{α} on $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$ emerging naturally from restrictions of R_{1}^{α} to the subspaces of $L^{2}\left(\mathbb{R}, \mu_{\alpha}\right)$ of even and odd functions, respectively. Clearly, 6.6 will follow once we show suitable L^{p} estimates for R_{e}^{α} and R_{o}^{α}.

Observe that by (5.3) we have

$$
R_{e}^{\alpha}: \varphi_{n}^{\alpha} \mapsto-\psi_{n-1}^{\alpha}, \quad R_{o}^{\alpha}: \psi_{n}^{\alpha} \mapsto \sqrt{\frac{n+\alpha+1}{n+1 / 2}} \varphi_{n}^{\alpha}
$$

Thus R_{e}^{α} coincides with R_{φ}^{α}, and the corresponding L^{p} estimate is provided by Theorem 6.1. On the other hand, R_{o}^{α} is related to the mapping R_{ψ}^{α} by
means of shift and multiplier operators,

$$
R_{o}^{\alpha}=M_{\xi} S_{L} R_{\psi}^{\alpha}, \quad \xi(n)=-\sqrt{\frac{n+\alpha+1}{n+1 / 2}} .
$$

Consequently, the relevant L^{p} estimate follows by Theorems 6.2 and 6.3, and (6.1).

The proof of Theorem 5.1 is complete.
7. Alternative \mathbb{Z}_{2}^{d} Dunkl Ornstein-Uhlenbeck operator. In this section we consider the "Laplacian"

$$
\widetilde{L}_{\alpha}=-\Delta_{\alpha}+2 x \cdot \nabla_{\alpha},
$$

a variant of the Dunkl Ornstein-Uhlenbeck operator based on the Dunkl gradient

$$
\nabla_{\alpha}=\left(T_{1}^{\alpha}, \ldots, T_{d}^{\alpha}\right)
$$

This variant seems to be more natural than L_{α} for defining Riesz transforms, at least in the \mathbb{Z}_{2}^{d} case. It turns out that Riesz transforms naturally associated with \widetilde{L}_{α} are contractions in $L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$, which is not the case of R_{j}^{α} related to L_{α}. Moreover, the context of \widetilde{L}_{α} is better related to the classical Laguerre setting, as will be seen below. Similarly to L_{α}, when restricted to the "even" subspace (3.1), \widetilde{L}_{α} coincides with the Laguerre-type operator 3.2 , and for $\alpha=(-1 / 2, \ldots,-1 / 2)$ it reduces to the classical Ornstein-Uhlenbeck operator. Below we keep the notation introduced in previous sections.

It is straightforward to check that \widetilde{L}_{α} admits the decomposition

$$
\widetilde{L}_{\alpha}=\sum_{j=1}^{d} \delta_{j}^{*} \delta_{j} .
$$

In fact, the decomposition $-\Delta_{k}+2 x \cdot \nabla_{k}=\sum_{j=1}^{d} \delta_{j}^{*} \delta_{j}, \nabla_{k}=\left(T_{1}^{k}, \ldots, T_{d}^{k}\right)$, $\delta_{j}=T_{j}^{k}$, also holds in the general setting from Section 2. It follows that \widetilde{L}_{α} is symmetric and nonnegative in $L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$. Thus it is reasonable (see [12]) to define formally the Riesz transforms associated with \widetilde{L}_{α} by

$$
\widetilde{R}_{j}^{\alpha}=\delta_{j}\left(\widetilde{L}_{\alpha}\right)^{-1 / 2} \Pi_{0}, \quad j=1, \ldots, d .
$$

The multi-dimensional generalized Hermite polynomials are eigenfunctions of \widetilde{L}_{α},

$$
\widetilde{L}_{\alpha} \mathcal{H}_{n}^{\alpha}=\left(2|n|+\sum_{\left\{j: n_{j} \text { odd }\right\}}\left(4 \alpha_{j}+2\right)\right) \mathcal{H}_{n}^{\alpha}=\left(\sum_{j=1}^{d}\left[m_{j}(n, \alpha)\right]^{2}\right) \mathcal{H}_{n}^{\alpha} .
$$

Let $\widetilde{\mathcal{L}}_{\alpha}$ be the self-adjoint extension of \widetilde{L}_{α} whose spectral decomposition is
given by the \mathcal{H}_{n}^{α}. Then the rigorous definition of $\widetilde{R}_{j}^{\alpha} f$ for f being a (generalized Hermite) polynomial is $\widetilde{R}_{j}^{\alpha}=\delta_{j} \widetilde{\mathcal{L}}_{\alpha}^{-1 / 2} \Pi_{0}$. Rewriting this in terms of the corresponding expansions leads to the orthogonal series

$$
\begin{equation*}
\widetilde{R}_{j}^{\alpha} f=\sum_{|n|>0} \frac{m_{j}(n, \alpha)}{\sqrt{\sum_{j=1}^{d}\left[m_{j}(n, \alpha)\right]^{2}}}\left\langle f, \mathcal{H}_{n}^{\alpha}\right\rangle_{\alpha} \mathcal{H}_{n-e_{j}}^{\alpha} \tag{7.1}
\end{equation*}
$$

which provides a definition of the Riesz operators on $L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$. Clearly, by Plancherel's theorem the mapping

$$
f \mapsto \sqrt{\left|\widetilde{R}_{1}^{\alpha} f\right|^{2}+\cdots+\left|\widetilde{R}_{d}^{\alpha} f\right|^{2}}
$$

is a contraction on $L^{2}\left(\mathbb{R}^{d}, \mu_{\alpha}\right)$, and even an isometry on the orthogonal complement of the constant function $\mathcal{H}_{(0, \ldots, 0)}^{\alpha}$.

We now state an analogue of Theorem 5.1 in the context of \widetilde{L}_{α}.
Theorem 7.1. Let $d=1$ and $\alpha \geq-1 / 2$. Then for each $1<p<\infty$ the Riesz transform $\widetilde{R}_{1}^{\alpha}$, defined on $L^{2}\left(\underset{R}{(}, \mu_{\alpha}\right)$ by (7.1), extends to a bounded operator on $L^{p}\left(\mathbb{R}, \mu_{\alpha}\right)$.

Proof. We proceed as in the proof of Theorem 5.1 and arrive at the operators $\widetilde{R}_{e}^{\alpha}$ and $\widetilde{R}_{o}^{\alpha}$ acting on $L^{2}\left(\mathbb{R}_{+}, \mu_{\alpha}\right)$. The conclusion will follow once we show suitable L^{p} estimates for these two operators. Notice that by (7.1) we have

$$
\widetilde{R}_{e}^{\alpha}: \varphi_{n}^{\alpha} \mapsto-\psi_{n-1}^{\alpha}, \quad \widetilde{R}_{o}^{\alpha}: \psi_{n}^{\alpha} \mapsto \varphi_{n}^{\alpha}
$$

Thus $\widetilde{R}_{e}^{\alpha}=R_{\varphi}^{\alpha}$ and $\widetilde{R}_{o}^{\alpha}=-S_{L} R_{\psi}^{\alpha}$. Now the relevant L^{p} estimates are consequences of Theorem 6.1, and Theorem 6.3 and 6.1), respectively.

Acknowledgments. This research was started in the Spring of 2007 during the sojourn in Wrocław of the second-named author, who wants to thank Politechnika Wrocławska for the support and hospitality.

Research of the first and third-named authors was supported by MNiSW Grant N201 054 32/4285.

Research of the second-named author was supported by grant MTM2006-$13000-\mathrm{C} 03-03$ of the DGI and by FPI grant of the University of La Rioja.

REFERENCES

[1] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[2] U. Dinger, Weak type $(1,1)$ estimates of the maximal function for the Laguerre semigroup in finite dimensions, Rev. Mat. Iberoamer. 8 (1992), 93-120.
[3] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), 167-183.
[4] G. Gasper and W. Trebels, Applications of weighted Laguerre transplantation theorems, Methods Appl. Anal. 6 (1999), 337-346.
[5] P. Graczyk, J. J. Loeb, I. López, A. Nowak and W. Urbina, Higher order Riesz transforms, fractional derivatives, and Sobolev spaces for Laguerre expansions, J. Math. Pures Appl. 84 (2005), 375-405.
[6] N. N. Lebedev, Special Functions and Their Applications, rev. ed., Dover Publ., New York, 1972.
[7] B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242.
[8] -, Hermite conjugate expansions, ibid. 139 (1969), 243-260.
[9] - , Conjugate functions for Laguerre expansions, ibid. 147 (1970), 403-418.
[10] -, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38.
[11] A. Nowak, On Riesz transforms for Laguerre expansions, J. Funct. Anal. 215 (2004), 217-240.
[12] A. Nowak and K. Stempak, L^{2}-theory of Riesz transforms for orthogonal expansions, J. Fourier Anal. Appl. 12 (2006), 675-711.
[13] -, 一, Riesz transforms for the Dunkl harmonic oscillator, Math. Z. 262 (2009), 539-556.
[14] M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (1998), 519-542.
[15] -, Dunkl operators: theory and applications, in: Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math. 1817, Springer, Berlin, 2003, 93-135.
[16] P. Sjögren, On the maximal function for the Mehler kernel, in: Harmonic Analysis (Cortona, 1982), Lecture Notes in Math. 992, Springer, Berlin, 1983, 73-82.
[17] R. P. Soni, On an inequality for modified Bessel functions, J. Math. Phys. 44 (1965), 406-407.
[18] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton, NJ, 1970.

Adam Nowak
Instytut Matematyki i Informatyki
Politechnika Wrocławska
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland
E-mail: Adam.Nowak@pwr.wroc.pl
Luz Roncal
Departamento de Matemáticas y Computación Universidad de La Rioja
Edificio J. L. Vives
Calle Luis de Ulloa s/n
26004 Logroño, Spain
E-mail: luz.roncal@unirioja.es

Krzysztof Stempak
Instytut Matematyki i Informatyki
Politechnika Wrocławska
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland and
Katedra Matematyki
i Zastosowań Informatyki
Politechnika Opolska
Mikołajczyka 5
45-271 Opole, Poland
E-mail: Krzysztof.Stempak@pwr.wroc.pl

[^0]: 2010 Mathematics Subject Classification: Primary 42C10, 42C20.
 Key words and phrases: Dunkl operators, Dunkl Laplacian, Ornstein-Uhlenbeck operator, Riesz transforms, maximal operator, generalized Hermite polynomials.

