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Abstract. We show that the Lp boundedness, p > 2, of the Riesz transform on a
complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel
estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such
terms the heat kernel gradient upper estimate on manifolds with polynomial growth.

1. Introduction. The present paper may be considered as a compan-
ion paper to [2], which gave criteria for the Lp boundedness, for p > 2, of
the Riesz transform on non-compact Riemannian manifolds. Here we refor-
mulate these criteria in terms of certain Sobolev inequalities. That is, we
deduce some Lp to Lp estimates from suitable Lq to Lp estimates, for q < p.

Let M be a complete, connected, non-compact Riemannian manifold.
The methods of this paper remain valid for other types of spaces endowed
with a gradient, a metric which is compatible with this gradient, a measure,
and finally an operator associated with the Dirichlet form constructed from
the gradient and the measure. An interesting example is a Lie group endowed
with a family of left-invariant Hörmander vector fields. We leave the details
of such extensions to the reader.

Let d be the geodesic distance on M ; denote by B(x, r) the open ball
with respect to d with center x ∈M and radius r > 0.

Denote by µ the Riemannian measure, by Lp(M,µ), 1 ≤ p ≤ ∞, the
corresponding Lp spaces, and let V (x, r) = µ(B(x, r)).

Let ∆ be the (non-negative) Laplace–Beltrami operator. One could con-
sider another measure µ̃ with positive smooth non-zero density with respect
to µ, and the associated operator ∆µ̃, formally given by

(∆µ̃f, f) =
�

M

|∇f |2 dµ̃.

Again, for simplicity, we stick to the standard case.
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Let ∇ be the Riemannian gradient. We can now formally define the Riesz
transform operator ∇∆−1/2.

Let p ∈ (1,∞). The boundedness of the Riesz transform on Lp(M,µ)
reads

(Rp) ‖ |∇f | ‖p ≤ Cp‖∆1/2f‖p, ∀f ∈ C∞0 (M),

and if the reverse inequality (RRp) also holds, one has

(Ep) ‖ |∇f | ‖p ' ‖∆1/2f‖p, ∀f ∈ C∞0 (M).

One says that M has the volume doubling property if there exists C such
that

(D) V (x, 2r) ≤ CV (x, r), ∀r > 0, x ∈M,

more precisely if there exist ν, Cν > 0 such that

(Dν)
V (x, r)
V (x, s)

≤ Cν
(
r

s

)ν
, ∀r ≥ s > 0, x ∈M.

The heat semigroup is the family of operators (exp(−t∆))t>0 acting on
L2(M,µ), with a positive and smooth kernel pt(x, y) called the heat kernel.
We shall consider the following standard heat kernel estimates for manifolds
with doubling: the on-diagonal upper estimate,

(DUE) pt(x, x) ≤ C

V (x,
√
t)

for some C > 0, all x ∈M and t > 0; the full Gaussian upper estimate,

(UE) pt(x, y) ≤ C

V (x,
√
t)

exp
(
−c d

2(x, y)
t

)
for some C, c > 0, all x, y ∈ M and t > 0; the upper and lower Gaussian
estimates,

(LY )
c

V (x,
√
t)

exp
(
−d

2(x, y)
ct

)
≤ pt(x, y) ≤ C

V (x,
√
t)

exp
(
−d

2(x, y)
Ct

)
for some C, c > 0, all x, y ∈ M and t > 0; and finally the gradient upper
estimate

(G) |∇xpt(x, y)| ≤ C√
t V (y,

√
t)

for all x, y ∈ M , t > 0. It is known that, under (D) and (DUE), (G)
self-improves into

|∇xpt(x, y)| ≤ C√
t V (y,

√
t)

exp
(
−d

2(x, y)
Ct

)
for all x, y ∈M , t > 0 (see [15] and also [12, Section 4.4]). It will follow from
Proposition 2.1 below that assumption (DUE) is not needed here.
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Recall that (DUE) plus (D) implies (UE) ([18, Theorem 1.1], see also
[12, Corollary 4.6]), and (UE) plus (G) and (D) implies (LY ) ([21]). We
shall see in Proposition 2.1 below that (G) implies (DUE), therefore (G)
plus (D) implies (LY ). Conversely, (LY ) implies (D) (see for instance [24,
p. 161]).

The following is one of the two main results of [2] (Theorem 1.4 there).

Theorem 1.1. Let M be a complete non-compact Riemannian manifold
satisfying (D), (DUE), and (G). Then the equivalence (Ep) holds for all
1 < p <∞.

Taking into account Proposition 2.1 below, one can skip condition (DUE),
and formulate this result in the following simpler way.

Theorem 1.2. Let M be a complete non-compact Riemannian manifold
satisfying (D) and (G). Then the equivalence (Ep) holds for all 1 < p <∞.

Let us now introduce an Lp version of (G), namely

(Gp) ‖ |∇e−t∆| ‖p→p ≤
Cp√
t
, ∀t > 0.

The other main result of [2] is the following (Theorem 1.3 and Proposi-
tion 1.10 there).

Theorem 1.3. Let M be a complete non-compact Riemannian mani-
fold satisfying (D) and (LY ). Let p0 ∈ (2,∞]. The following assertions are
equivalent:

(a) (Rp) holds for all p ∈ (2, p0).
(b) (Gp) holds for all p ∈ (2, p0).
(c) For all p ∈ (2, p0), there exists Cp such that

‖ |∇pt(·, y)| ‖p ≤
Cp

√
t [V (y,

√
t)]1−

1
p

, ∀t > 0, y ∈M.

According to Proposition 3.6 below, we will be able to add another equiv-
alent condition to the above list, namely

(d) For all p ∈ (2, p0), there exists Cp such that

‖ |∇f | ‖2p ≤ Cp‖f‖p‖∆f‖p, ∀f ∈ C∞0 (M).

The above two results are the cornerstones of the present paper. Our main
results are Theorems 4.1, 4.2 and Corollary 4.3 below. In Theorem 4.1, using
Theorem 1.3, we give a necessary and sufficient condition for (Rp) to hold
for p in an interval above 2 on manifolds with polynomial volume growth
satisfying (D) and (LY ), in terms of an Lp-Lq Sobolev type inequality with
a gradient in the left-hand side. In Theorem 4.2, we give a necessary and
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sufficient condition for (G) on manifolds with polynomial volume growth sat-
isfying a mild local condition, in terms of a multiplicative L∞ Sobolev type
inequality, with a gradient in the left-hand side. In Corollary 4.3 we deduce
from Theorems 4.1 and 1.1 that this L∞ Sobolev inequality alone implies
(Ep) on manifolds with polynomial growth and the above local condition.

Here is the plan we will follow. In Section 2, we prove that (G) implies
(DUE), together with a similar statement for some related kernels. In Sec-
tion 3, we give a first version of our results for manifolds with doubling and
a polynomial volume upper bound. In Section 4, we assume full polyno-
mial growth and obtain more complete results. Finally, in Section 5, we give
applications of our methods to second order elliptic operators in Rn.

2. Gradient estimates imply heat kernel bounds. Note that the
following result does not require assumption (D).

Proposition 2.1. (G) implies (DUE).

Proof. For x ∈M , t > 0, define

K = K(x, t) = V (x,
√
t)pt(x, x)/2.

We claim that
pt(y, x) ≥ K/V (x,

√
t)

for all y ∈ B(x,K
√
t/C). Indeed, according to (G) and the mean value

theorem, for such y,

|pt(y, x)− pt(x, x)| ≤ Cd(y, x)√
t V (x,

√
t)
≤ C√

t V (x,
√
t)
K
√
t

C
=

K

V (x,
√
t)
.

Thus, given the definition of K,

pt(y, x) ≥ pt(x, x)−K/V (x,
√
t) = K/V (x,

√
t),

hence the claim. Now

1 ≥
�

M

pt(y, x) dµ(y) ≥
�

B(x,K
√
t/C)

pt(y, x) dµ(y)

≥
�

B(x,K
√
t/C)

K dµ(y)
V (x,

√
t)

=
KV (x,K

√
t/C)

V (x,
√
t)

.

If K ≥ C, this means that K ≤ 1. Hence

K ≤ max(C, 1),

and
pt(x, x) ≤ 2 max(C, 1)/V (x,

√
t), ∀t > 0, x ∈M.

As we noticed in the introduction, the following is a consequence of
Proposition 2.1 together with known results.
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Corollary 2.2. Assume that M satisfies (G) and (D). Then M satis-
fies (LY ).

It may be of interest to notice that the assumption in Proposition 2.1
can be replaced by a gradient estimate of some other kernels. Namely, for
a > 0, denote by rat (x, y) the (positive) kernel of the operator

Rat = (I + t∆)−a =
1

Γ (a)

+∞�

0

sa−1 exp(−s(I + t∆)) ds.

Similarly, for 0 < a < 1, denote by pat (x, y) the kernel of the operator
P at = exp(−(t∆)a). In the following statement, we assume doubling only
for simplicity, otherwise one has to include an additional constant in the
outcome.

Proposition 2.3. Assume (D). Suppose that qat = rat for some a > 0
or qat = pat for some 0 < a < 1. Next assume that M satisfies the gradient
upper estimate

(Ga) |∇xqat (x, y)| ≤ C√
t V (y,

√
t)

for all x, y ∈M , t > 0. Then M satisfies (DUE).

Proof. First note that in all cases�

M

qat (x, y) dµ(y) ≤ 1, ∀x ∈M.

Fix x ∈M , t > 0. Define

K = K(x, t) = V (x,
√
t)qat (x, x)/2.

Exactly as in the proof of Proposition 2.1, one shows that K ≤ max(C, 1).
To finish the proof of Proposition 2.3, note that, for a > 0,

pt(x, x) = ‖pt/2(·, x)‖2 ≤ C‖ra/2t/2 (·, x)‖2 = Crat/2(x, x).

Indeed, write

exp(−t∆) = exp(−t∆)(I + t∆)a(I + t∆)−a,

so that
pt(·, x) = exp(−t∆)(I + t∆)arat (·, x),

and since by spectral theory the operator exp(−t∆)(I + t∆)a is uniformly
bounded on L2(M,µ), the claim is proved.

Similarly, for 0 < a < 1, writing

exp(−t∆) = exp(−t∆) exp(t∆)a exp(−(t∆)a),

one sees that

pt(x, x) = ‖pt/2(·, x)‖2 ≤ C‖pat/2(·, x)‖2 = Cpa
2(1−a)/at(x, x).
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3. Doubling volume. Recall that (LY ) implies (D). Thus the doubling
volume assumption will be implicit in the first two statements of this section.

Theorem 3.1. Let M satisfy (LY ). Let ν > 0 be such that

(3.1) V (x, r) ≤ Crν , ∀r > 0, x ∈M.

Let p0 ∈ (2,∞]. Assume

(3.2) ‖ |∇f | ‖p ≤ Cp‖∆
ν
2
( 1
q
− 1
p
)+ 1

2 f‖q, ∀f ∈ C∞0 (M),

for all p ∈ (2, p0) and some 1 < q < p. Then (Rp) holds for all p ∈ (2, p0).

Proof. Let p be such that 2 < p < p0, and q ∈ (1, p) such that (3.2)
holds. Taking f = p2t(·, y) = exp(−t∆)pt(·, y), t > 0, y ∈ M , in (3.2), one
obtains

‖ |∇p2t(·, y)| ‖p ≤ Cp‖∆
ν
2
( 1
q
− 1
p
)+ 1

2 exp(−t∆)pt(·, y)‖q,
hence, by analyticity of the heat semigroup on Lq(M,µ),

‖ |∇p2t(·, y)| ‖p ≤ Ct−
ν
2
( 1
q
− 1
p
)− 1

2 ‖pt(·, y)‖q, ∀t > 0, y ∈M.

On the other hand, (UE) yields

‖pt(·, y)‖q ≤
C

[V (y,
√
t)]1−

1
q

, ∀t > 0, y ∈M.

Hence

‖ |∇p2t(·, y)| ‖p ≤
Ct−1/2

[V (y,
√
t)]1−

1
p

[t−ν/2V (y,
√
t)]

1
q
− 1
p , ∀t > 0, y ∈M,

and, according to (3.1), the quantity t−ν/2V (y,
√
t) is bounded from above,

therefore

(3.3) ‖ |∇p2t(·, y)| ‖p ≤
C ′

√
t [V (y,

√
t)]1−

1
p

, ∀t > 0, y ∈M.

One concludes by applying [2], namely Theorem 1.3 above.

Remarks.

• Remember that it follows from [9] that, under the assumptions of
Theorems 3.1, (Rp) also holds for p ∈ (1, 2]. As a consequence, (RRp) also
holds, therefore assumption (3.2) implies

‖∆1/2f‖p ≤ Cp‖∆
ν
2
( 1
q
− 1
p
)+ 1

2 f‖q, ∀f ∈ C∞0 (M),

hence, by making the change of functions ∆1/2f → f , we obtain the Sobolev
inequality

‖f‖p ≤ Cp‖∆
ν
2
( 1
q
− 1
p
)
f‖q, ∀f ∈ C∞0 (M).

It follows that
V (x, r) ≥ crν , ∀r > 0, x ∈M
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(see [6]). Thus, in fact, under the assumptions of Theorem 3.1, the volume
growth of M has to be polynomial of exponent ν (in particular, ν has to
coincide with the topological dimension of M). However, the fact that we do
not use explicitly polynomial growth in the proof will allow us below some
true excursions in the doubling volume realm.
• An equivalent formulation of (3.2) is

‖ |∇f | ‖p ≤ Cp‖∆αf‖q, ∀f ∈ C∞0 (M),

for all p ∈ (2, p0) and some α > 1/2, with q = 1/
(

1
p + 2

ν

(
α− 1

2

))
. In partic-

ular, α = 1 and q = pν/(ν + p) is a valid choice. See Section 5 below.
• When p0 <∞, if one assumes

(3.4) ‖ |∇f | ‖p0 ≤ C‖∆
ν
2
( 1
q
− 1
p0

)+ 1
2 f‖q, ∀f ∈ C∞0 (M),

instead of (3.2), one still obtains the same conclusion by interpolation.
• One can also replace (3.2) by the following weaker inequality:

‖ |∇f | ‖p ≤ Cp‖∆α/2f‖θq1‖f‖
1−θ
q2 , ∀f ∈ C∞0 (M),

where 0 < θ < 1, 1 ≤ q1, q2 ≤ ∞, 1
p <

θ
q1

+ 1−θ
q2

< 1 and

αθ = ν

(
θ

q1
+

1− θ
q2
− 1
p

)
+ 1.

Here also, one can take p = p0.

In the next statement, we shall relax the volume upper bound assumption
for small radii. This can be useful in situations where the volume growth is
polynomial, but with different exponents for small and large radii, say for
instance the Heisenberg group endowed with a group invariant Riemannian
metric.

We shall say that the local Riesz inequality (Rp)loc holds on M if

‖ |∇f | ‖p ≤ Cp(‖∆1/2f‖p + ‖f‖p), ∀f ∈ C∞0 (M).

This is the case for instance if M has Ricci curvature bounded from below
(see [3]).

Theorem 3.2. Let M satisfy (LY ) and (Rp)loc. Let ν > 0 be such that

(3.5) V (x, r) ≤ Crν , ∀r ≥ 1, x ∈M.

Let p0 ∈ (2,∞]. Assume (3.2) for all p ∈ (2, p0) and some 1 < q < p. Then
(Rp) holds for all p ∈ (2, p0).

Proof. Given (3.5), the same proof as in Theorem 3.1 yields

‖ |∇p2t(·, y)| ‖p ≤
C

√
t[V (y,

√
t)]1−

1
p

, ∀t ≥ 1, y ∈M.
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On the other hand, (Rp)loc easily implies, by analyticity of the heat semi-
group on Lp(M,µ),

‖ |∇e−t∆| ‖p→p ≤ C(1/
√
t+ 1),

for all t > 0, hence, following [2, p. 944],

‖ |∇p2t(·, y)| ‖p ≤
C

√
t [V (y,

√
t)]1−

1
p

, ∀t ≤ 1, y ∈M.

One concludes as before.

Remark. One way to ensure (3.5) is to assume (Dν) and

(3.6) sup
x∈M

V (x, 1) < +∞.

Let us consider now the limit case p =∞ in inequality (3.2).

Theorem 3.3. Let M satisfy (D), (DUE), and (3.1) for some ν > 0.
Assume

(3.7) ‖ |∇f | ‖∞ ≤ C‖f‖
1− ν+q

αq
q ‖∆α/2f‖

ν+q
αq
q , ∀f ∈ C∞0 (M),

for some q ∈ [1,∞) and some α > ν
q +1. Then (Ep) holds for all p ∈ (1,∞).

Proof. Taking again f = p2t(·, y) = exp(−t∆)pt(·, y), t > 0, y ∈ M , in
(3.7), and using the fact that (UE) yields

(3.8) ‖pt(·, y)‖q ≤
C

[V (y,
√
t)]1−

1
q

, ∀t > 0, y ∈M,

one obtains

‖ |∇p2t(·, y)| ‖∞ ≤
C

[V (y,
√
t)](1−

1
q
)(1− ν+q

αq
)
‖∆α/2 exp(−t∆)pt(·, y)‖

ν+q
αq
q ,

hence, by analyticity of the heat semigroup on Lq(M,µ) (when q = 1, it
follows from (UE), see for instance [14, Lemma 9], [13, Theorem 3.4.8, p. 103]
or [23]),

‖ |∇p2t(·, y)| ‖∞ ≤
C

[V (y,
√
t)](1−

1
q
)(1− ν+q

αq
)
t
−α

2
( ν+q
αq

)‖pt(·, y)‖
ν+q
αq
q

≤ C

[V (y,
√
t)]1−

1
q

t
− ν+q

2q

≤ C√
t V (y,

√
t)

[t−ν/2V (y,
√
t)]1/q, ∀t > 0, y ∈M,

hence, using (3.1),

‖ |∇p2t(·, y)| ‖∞ ≤
C√

t V (y,
√
t)
, ∀t > 0, y ∈M,

that is, (G). One concludes by applying [2], namely Theorem 1.1 above.
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Theorem 3.4. Assume that M has Ricci curvature bounded from below.
Let M satisfy (D), (DUE), (3.5) and (3.7) for some ν > 0, some q ∈ [1,∞)
and some α > ν

q + 1. Then (Ep) holds for all p ∈ (1,∞).

Proof. Given (3.5), the same proof as in Theorem 3.3 yields

‖ |∇p2t(·, y)| ‖∞ ≤
C√

t V (y,
√
t)
, ∀t ≥ 1, y ∈M,

that is, (G) for large time. Since M has Ricci curvature bounded from below,
it follows from [21] that (G) also holds for small time. One concludes as
before.

Note that inequality (3.7) is known in Rn, with ν = n.

Remark. Let the space Lip(M) be the completion of C∞0 (M) with re-
spect to the norm

‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
d(x, y)

.

It is well-known that if f ∈ Lip(M), then f is differentiable almost every-
where and

‖f‖Lip = ‖ |∇f | ‖∞.

By the reiteration lemma (see for instance [4, Proposition 2.10, p. 316]),
inequality (3.7) is equivalent to the embedding

[Lqα, L
q]θ,1 → Lip,

where [X,Y ]θ,r denotes the real interpolation space between X and Y with
parameters θ and r, θ = (ν + q)/αq, and Lqα is the completion of C∞0 (M)
with respect to the norm ‖∆α/2f‖q. Then it is a well-known fact (see for
instance [5, Proposition 3.5.3] and modify it to obtain a version for homo-
geneous spaces) that

[Lqα, L
q]θ,1 = Λq,1θα ,

where the Besov space Λp,qα is defined via the norm

Λq,1α (f) =
+∞�

0

tk−
α
2 ‖∆ke−t∆f‖q

dt

t

for k > α/2. Finally, (3.7) is equivalent to

Λq,1ν
q
+1 → Lip.

Let us finally consider the limit case q = ∞ in Theorem 3.3. Here, no
upper volume bound is needed.
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Theorem 3.5. Let M satisfy (D) and (DUE). Assume

(3.9) ‖ |∇f | ‖∞ ≤ C‖f‖
1− 1

α∞ ‖∆α/2f‖1/α∞ , ∀f ∈ C∞0 (M),

for some α > 1. Then (Ep) holds for all p ∈ (1,∞).

Let us emphasize the particular case α = 2 of inequality (3.9):

(3.10) ‖ |∇f | ‖2∞ ≤ C‖f‖∞‖∆f‖∞, ∀f ∈ C∞0 (M).

Proof. Substituting exp(−t∆)f in (3.9) yields

‖ |∇ exp(−t∆)f | ‖∞ ≤ C‖exp(−t∆)f‖1−
1
α∞ ‖∆α/2 exp(−t∆)f‖1/α∞ .

Recall that it follows from (DUE) that the heat semigroup is analytic on
L1(M,µ), hence by duality

‖∆α/2 exp(−t∆)f‖∞ ≤ Ct−α/2‖f‖∞.
The heat semigroup being uniformly bounded on L∞(M,µ), one obtains

‖ |∇ exp(−t∆)f | ‖∞ ≤ Ct−1/2‖f‖∞,
that is, (G∞), or

sup
x∈M, t>0

√
t
�

M

|∇xpt(x, y)| dµ(y) <∞.

It is well-known and easy to see that (G∞) together with (D) and (UE)
implies (G) (in fact, these conditions are equivalent, because of the already
mentioned self-improvement of (G)). One concludes again by applying [2],
namely Theorem 1.1 above.

Next we discuss a result which does not require any assumption on the
volume growth and which is motivated by (3.10). This result is contained
in [16], with a similar argument, in a discrete setting. For another approach
to inequality (3.11) below, see [10, Section 4].

Proposition 3.6. For any 1 ≤ p ≤ ∞, condition (Gp) is equivalent to

(3.11) ‖ |∇f | ‖2p ≤ C‖f‖p‖∆f‖p, ∀f ∈ C∞0 (M).

Proof. To prove that (3.11) implies (Gp) we modify slightly the argument
of the proof of Theorem 3.5; namely, we put α = 2 and replace L∞ norm
by Lp norm.

To prove the opposite direction, write

∇(I + t∆)−1 =
∞�

0

∇ exp(−s(1 + t∆)) ds.

Hence, for suitable f ,

‖ |∇(I + t∆)−1f | ‖p ≤
∞�

0

e−s‖ |∇ exp(−st∆)f | ‖p ds.
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Assuming (Gp), one obtains, for f ∈ Lq(M,µ),

‖ |∇(I + t∆)−1f | ‖p ≤ Ct−1/2‖f‖p
∞�

0

s−1/2e−s ds = C ′t−1/2‖f‖p.

Hence

‖ |∇f | ‖p ≤ C ′t−1/2‖(I + t∆)f‖p ≤ C ′t−1/2(‖f‖p + t‖∆f‖p).
Taking t = ‖f‖p‖∆f‖−1

p yields (3.11).

4. Polynomial volume growth

Theorem 4.1. Let n > 0. Suppose that M satisfies upper and lower
n-dimensional Gaussian estimates

ct−n/2 exp
(
−d

2(x, y)
ct

)
≤ pt(x, y) ≤ Ct−n/2 exp

(
−d

2(x, y)
Ct

)
for some C, c > 0, all x, y ∈ M and t > 0. Let p0 ∈ (2,∞]. Then the
following are equivalent:

(i)

(4.1) ‖ |∇f | ‖p ≤ Cp,q‖∆
n
2
( 1
q
− 1
p
)+ 1

2 f‖q, ∀f ∈ C∞0 (M),

for some q ∈ (1, p), and all p ∈ (2, p0).
(ii) (Rp) holds for all p ∈ (2, p0).

Proof. Let q and p be such that 1 < q < p < ∞ and p > 2. According
to [26], the following Sobolev inequality is a consequence of the upper heat
kernel estimate:

‖f‖p ≤ C‖∆
n
2
( 1
q
− 1
p
)
f‖q, ∀f ∈ C∞0 (M),

and in particular

‖∆1/2f‖p ≤ C‖∆
n
2
( 1
q
− 1
p
)+ 1

2 f‖q, ∀f ∈ C∞0 (M).

Thus (Rp) for some p > 2 implies (4.1) for all q such that 1 < q < p, and in
particular (ii) implies (i).

Conversely, observe that the heat kernel estimates imply V (x, r) ' rn

for all r > 0 and x ∈ M (see [19, Theorem 3.2]). Therefore Theorem 3.1
applies with ν = n and shows that (i) implies (ii).

Remarks similar to those after Theorem 3.1 are valid. We add one more.

Remark. According to [1, Theorem 0.4], under the assumptions of The-
orem 4.1, there always exists a p0 such that (ii) holds. It would be nice to
have a proof of this fact using (i).

Again, we shall now consider the limit case p =∞ of inequality (4.1).
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We shall have to make local assumptions in order to ensure that the
quantity

θ(t) := sup
0<u≤t, x∈M

un/2pu(x, x) = sup
0<u≤t

un/2‖exp(−u∆)‖1→∞

is finite for some (all) t > 0. For instance, a local Sobolev inequality of
dimension n is enough, since then sup∈M pt(x, x) ≤ Ct−n/2, 0 < t ≤ 1. This
holds for instance if dimM ≤ n, M has Ricci curvature bounded from below
and satisfies the matching condition to (3.6): infx∈M V (x, 1) > 0.

Theorem 4.2. Assume that M has Ricci curvature bounded from below.
Let n ∈ N∗. Assume that

(4.2) V (x, r) ' rn, ∀r > 0, x ∈M.

Then M satisfies the heat kernel gradient estimate (G), that is,

(4.3) |∇xpt(x, y)| ≤ Ct−(n+1)/2 exp
(
−d

2(x, y)
Ct

)
,

for some C > 0, all x, y ∈M and t > 0, if and only if

(4.4) ‖ |∇f | ‖∞ ≤ C‖f‖
1−n+q

αq
q ‖∆α/2f‖

n+q
αq
q , ∀f ∈ C∞0 (M),

for some (all) q ∈ (1,∞) and some (all) α > n
q + 1. Moreover, if (4.3)

or (4.4) holds, then M satisfies (LY ), that is, the upper and lower n-
dimensional Gaussian estimates

(4.5) ct−n/2 exp
(
−C d2(x, y)

t

)
≤ pt(x, y) ≤ Ct−n/2 exp

(
−c d

2(x, y)
t

)
,

for some C, c > 0, all x, y ∈M and t > 0.

The following result is a direct consequence of Theorem 4.2 together with
[2, Theorem 1.4], that is, Theorem 1.1 above.

Corollary 4.3. Assume that M has Ricci curvature bounded from be-
low, and satisfies (4.2) and (4.4). Then (Ep) holds for all p ∈ (1,∞).

Let us prepare the proof of Theorem 4.2 with two lemmas. The first one
is reminiscent of Proposition 2.1: it shows that a certain gradient estimate
implies an upper bound of the heat kernel.

Lemma 4.4. Assume that M has Ricci curvature bounded from below
and let n > 0. Assume that, for some c > 0,

(4.6) V (x, r) ≥ crn

for all x ∈M and r > 0. Next suppose that, for some q ∈ [1,∞],

(Gnq,∞) ‖ |∇ exp(−t∆)| ‖q→∞ ≤ Ct−
n+q
2q
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for all t > 0. Then there exists a constant C ′ such that

sup
x∈M

pt(x, x) ≤ C ′t−n/2

for all t > 0.

Proof. Set

θ(t) = sup
0<u≤t, x∈M

un/2pu(x, x) = sup
0<u≤t

un/2‖exp(−u∆)‖1→∞.

Remember that the curvature assumption together with the volume lower
bound ensures the finiteness of θ(t) for all t > 0. Using (Gnq,∞) and interpo-
lation, we can write

‖ |∇ exp(−2s∆)| ‖1→∞ ≤ ‖ |∇ exp(−s∆)| ‖q→∞‖exp(−s∆)‖1→q
≤ Cs−

n+q
2q (θ(s)s−n/2)1−

1
q = Cs−(n+1)/2θ(s)1−

1
q .

For x ∈M and s > 0, define

K = K(s, x) = sn/2p2s(x, x)/2.

For all y ∈ Bs(x) = B(x,K
√
s/(Cθ(s)1−

1
q )),

|p2s(y, x)− p2s(x, x)| ≤ d(y, x) sup
z∈M
|∇p2s(z, x)|

≤ d(y, x)‖ |∇ exp(−2s∆)| ‖1→∞

≤ K
√
s

Cθ(s)1−
1
q

Cθ(s)1−
1
q

s(n+1)/2
=

K

sn/2
,

therefore

p2s(y, x) ≥ p2s(x, x)− K

sn/2
=

2K
sn/2

− K

sn/2
=

K

sn/2
.

Hence

1 ≥
�

M

p2s(y, x) dµ(y) ≥
�

Bs(x)

p2s(y, x) dµ(y)

≥
�

Bs(x)

K

sn/2
dµ(y) ≥ c Kn+1

Cnθ(s)n(1− 1
q
)
,

using (4.6) in the last inequality. Since θ is obviously non-decreasing, we
also have

1 ≥ c Kn+1

Cnθ(2s)n(1− 1
q
)
,

that is,

K(s, x) ≤
(
Cn

c
θ(2s)n(1− 1

q
)
)1/(n+1)

,
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hence

K(s, x) ≤
(
Cn

c
θ(2t)n(1− 1

q
)
)1/(n+1)

for 0 < s ≤ t.
Taking supremum in x and s yields

2−n/2−1θ(2t) ≤
(
Cn

c
θ(2t)n(1− 1

q
)
)1/(n+1)

.

Since n(1− 1
q )/(n+ 1) < 1, it follows that θ is bounded from above,

which proves the claim.

Remark. One can write a version of the above lemma in the case where
V (x, r) ≥ v(r) for some doubling function v.

The lemma below yields as a by-product a new proof of inequality (4.4)
in Rn. It does not require any volume growth assumption.

Lemma 4.5. Let 1 < q < ∞ and n > 0. The following estimates are
equivalent:

(i)

(Gnq,∞) ‖ |∇ exp(−t∆)| ‖q→∞ ≤ Ct−
n+q
2q , ∀t > 0.

(ii)

‖ |∇(I + t∆)−α/2| ‖q→∞ ≤ Cαt−
n+q
2q ,

for some (all) α > n
q + 1 and all t > 0.

(iii)

‖ |∇f | ‖∞ ≤ C‖f‖
1−n+q

αq
q ‖∆α/2f‖

n+q
αq
q , ∀f ∈ C∞0 (M),

for some (all) α > n
q + 1, that is, (4.4).

Proof. We shall show that (i)⇒(ii)⇒(iii)⇒(i).
Write

∇(I + t∆)−α/2 =
∞�

0

s
α
2
−1∇ exp(−s(1 + t∆)) ds.

Hence, for suitable f ,

‖ |∇(I + t∆)−α/2f | ‖∞ ≤
∞�

0

s
α
2
−1e−s‖ |∇ exp(−st∆)f | ‖∞ ds.
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Assuming (Gnq,∞), one obtains, for f ∈ Lq(M,µ),

‖ |∇(I + t∆)−α/2f | ‖∞ ≤ C
∞�

0

s
α
2
−1e−s(ts)−

n+q
2q ‖f‖q ds

= Ct
−n+q

2q ‖f‖q
∞�

0

s
α
2
− n

2q
− 3

2 e−s ds

= Cαt
−n+q

2q ‖f‖q,
since α > n

q + 1.
Assume (ii), and write

‖ |∇f | ‖∞ ≤ Ct−
n+q
2q ‖(I + t∆)α/2f‖q

≤ Cαt−
n+q
2q (‖f‖q + ‖(t∆)α/2f‖q)

= Ct
−n+q

2q (‖f‖q + tα/2‖∆α/2f‖q).
The second inequality relies on the Lp-boundedness of the operator (I +
t∆)α/2(I + (t∆)α/2)−1 (see [25], or use analyticity).

Taking t = ‖f‖2/αq ‖∆α/2f‖−2/α
q yields (iii).

Finally, assume (iii). Replacing f by exp(−t∆)f , one obtains, by con-
tractivity and analyticity of the heat semigroup on Lq(M,µ),

‖ |∇exp(−t∆)f | ‖∞ ≤ C‖exp(−t∆)f‖
1−n+q

αq
q ‖∆α/2exp(−t∆)f‖

n+q
αq
q

≤ Ct−α
n+q
2αq ‖f‖q = Ct

−n+q
2q ‖f‖q,

that is, (i).

Remark. The above lemma also holds for q = 1,∞, provided the heat
semigroup is analytic on L1(M,µ), which is the case, as we already said, if it
satisfies Gaussian estimates and (D) holds. Note that, according to Lemma
4.4, this is automatic from (i) under the boundedness from below of the
Ricci curvature and (4.2).

Proof of Theorem 4.2. Assume (4.4). By Lemma 4.5, (Gnq,∞) follows, and
by Lemma 4.4,

(4.7) sup
x∈M

pt(x, x) = ‖exp(−t∆)‖1→∞ ≤ C ′t−n/2

for all t > 0. The Gaussian upper bound follows:

pt(x, y) ≤ Ct−n/2 exp
(
−d

2(x, y)
Ct

)
for some C, c > 0 and all x, y ∈M and t > 0. By interpolation, (4.7) yields

(4.8) ‖exp(−t∆)‖1→q ≤ Ct−n(1− 1
q
)/2
.
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Combining (Gnq,∞) with (4.8) yields

(4.9) sup
x,y∈M

|∇xpt(x, y)| = ‖ |∇ exp(−t∆)| ‖1→∞ ≤ Ct−(n+1)/2,

which together with the upper bound yields the Gaussian lower bound

ct−n/2 exp
(
−d

2(x, y)
ct

)
≤ pt(x, y).

Finally, (4.9) self-improves to (4.3).
Conversely, (4.3) obviously implies (Gn1,∞) and, together with the volume

upper bound, (Gn∞,∞) or, in other words, (G∞):

sup
x∈M

�

M

|∇xpt(x, y)| dµ(y) = ‖ |∇ exp(−t∆)| ‖∞→∞ ≤ Ct−1/2.

By interpolation, one obtains (Gnq,∞), therefore (4.4), thanks to Lemma 4.5.

Remarks.

• As a consequence of Theorem 4.2, (4.4) implies, using the results in [7],

‖f‖∞ ≤ C‖f‖
1− n

αq
q ‖∆α/2f‖

n
αq
q , ∀f ∈ C∞0 (M),

for α > n/q, q ∈ [1,∞), and, using the results in [8],

|f(x)− f(y)|
[d(x, y)]α−

n
q

≤ C‖∆α/2f‖q, ∀x, y ∈M, f ∈ C∞0 (M),

for α > n/q, q ∈ [1,∞). It would be interesting to have a direct proof of
these two implications.
• According to known results on Riesz transforms (see [2] for references),

(4.4) is true for manifolds with non-negative Ricci curvature, Lie groups with
polynomial volume growth, cocompact coverings with polynomial volume
growth. Again, it would be interesting to have direct proofs.
• It would interesting to study the stability under perturbation of in-

equalities (4.4) or (4.1), in the light of the result in [11].

5. Applications. Now we consider a uniformly elliptic operator H in
divergence form acting on Rn, n ∈ N∗, that is,

Hf = −
n∑

i,j=1

∂i(aij∂jf)

where aij ∈ L∞ for all 1 ≤ i, j ≤ n, and the matrix (aij(x))1≤i,j≤n is a
symmetric matrix with real coefficients, such that∑

i,j

aij(x)ξjξi ≥ c|ξ|2 for a.e. x, ξ ∈ Rn,
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for some c > 0. Next let ∆ denote the standard non-negative Laplace oper-
ator acting on Rn.

It follows from the above uniform ellipticity assumption and the bound-
edness of the coefficients that

|∇Hf(x)|2 =
∑
i,j

aij(x)∂jf(x)∂if(x) ' |∇f(x)|2.

We say that H satisfies (Rp) for some p ∈ (1,∞) if

‖ |∇Hf | ‖p ≤ Cp‖H1/2f‖p, ∀f ∈ C∞0 (Rn),

which according to the above remark is equivalent to

‖ |∇f | ‖p ≤ Cp‖H1/2f‖p, ∀f ∈ C∞0 (Rn).

To avoid technicalities we assume that all coefficients aij , bij discussed below
are smooth. However, we point out that this assumption can be substantially
relaxed.

Recall that the Gaussian estimates do hold for e−tH and that the above
framework applies.

The assumption in our first application may be seen as some boundedness
for the higher order Riesz transform associated with H.

Theorem 5.1. Suppose that

(5.1) ‖∆α/2f‖q0 ≤ C‖Hα/2f‖q0 , ∀f ∈ C∞0 (Rn),

for some α > 1 and 1 < q0 <∞. If α < n
q0

+ 1, then H satisfies (Rp) for all
p ∈ (1, p0), where p0 = n/( nq0 + 1− α), while if α ≥ n

q0
+ 1, then H satisfies

(Rp) for all p ∈ (1,∞).

Proof. The boundedness of the classical Riesz transform on Lp(Rn, dx)
together with the Sobolev inequality in Rn implies, for 1 < q0 < p <∞,

‖ |∇f | ‖p ≤ C‖∆
n
2
( 1
q0
− 1
p
)+ 1

2 f‖q0 ≤ C ′‖∆α/2f‖θq0‖f‖
1−θ
q0 , ∀f ∈ C∞0 (Rn),

as soon as α ≥ n( 1
q0
− 1

p) + 1, θ ∈ (0, 1] being such that αθ = n( 1
q0
− 1

p) + 1.
Now let α and q0 be such that (5.1) holds. If α ≥ n

q0
+ 1, choose any p > q0.

If α < n/q0 + 1, choose p0 in (q0,∞) so that α = n( 1
q0
− 1

p0
) + 1. In both

cases,
‖ |∇f | ‖p0 ≤ C‖Hα/2f‖θq0‖f‖

1−θ
q0 , ∀f ∈ C∞0 (Rn),

and (Rp) for 1 < p < p0 follows from Theorem 3.1 and the remarks after-
wards.

Our next application says that (Rp) also holds for small L∞ ∩ W 1,n

perturbations of operators with bounded second order Riesz transform.
To state this result we set

Hεf = Hf + ε
∑
i,j

∂ibij(x)∂jf,
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where H = H0 is as above. We do not assume here that the matrix
(bij(x))1≤i,j≤n is positive definite. However, we assume that bij∈L∞(Rn, dx)
and that ε is small enough so that the operator Hε is uniformly elliptic.

Theorem 5.2. Suppose that bij ∈ L∞(Rn, dx) for all 1 ≤ i, j ≤ n and
that ∂jbij ∈ Ln(Rn, dx) for all 1 ≤ i, j ≤ n. Next assume that for some
q0 < n,

(5.2) ‖∆f‖q0 ≤ Cq0‖H0f‖q0 , ∀f ∈ C∞0 (Rn),

Then there exists γ > 0 such that (5.2) holds for Hε for ε < γ and so (Rp)
holds for Hε for all ε < γ and 1 < p < p0 where 1

p0
+ 1

n = 1
q0

.

Proof. Note that (5.2) is just (5.1) for α = 2. We will extend this in-
equality from H to Hε for 0 < ε < γ and apply Theorem 5.1. To this end,
it is enough to show that for some γ > 0 and all ε < γ,

(5.3) ‖Hεf −H0f‖p0 ≤
1

2Cq0
‖∆f‖p0 .

Now
‖Hεf −H0f‖q0 ≤ ε

(∑
i,j

‖∂ibij∂jf‖q0
)
.

Since
∂i(bij∂jf) = bij(∂i∂jf) + (∂ibij)(∂jf),

one may write∑
i,j

‖∂ibij∂jf‖q0 ≤ max
i,j
‖bij‖∞

∑
i,j

‖∂i∂jf‖q0 +
∑
i,j

‖(∂ibij)(∂jf)‖q0 ,

hence∑
i,j

‖∂ibij∂jf‖q0 ≤ max
i,j
‖bij‖∞

∑
i,j

‖∂i∂jf‖q0 +
∑
i,j

‖(∂ibij)(∂jf)‖q0

≤ n2 max
i,j
‖bij‖∞‖∂i∂j∆−1‖q0→q0‖∆f‖q0 +

∑
i,j

‖∂ibij‖n‖∂jf‖p0 .

Here we have used the Lq0 boundedness of the second order Riesz trans-
form in Rn and the Hölder inequality ‖fg‖q0 ≤ ‖f‖n‖g‖p0 .

Now recall that an inequality similar to (4.1) holds in Rn, that is,

‖∂jf‖p0 ≤ C‖∆f‖q0 .
Therefore∑
i,j

‖∂ibij∂jf‖q0

≤
(
n2 max

i,j
‖bij‖∞‖∂i∂j∆−1‖q0→q0+max

i
‖∂i∆−1‖q0→p0

∑
i,j

‖∂ibij‖n
)
‖∆f‖q0 .
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This yields (5.3) with

γ
(
n2 max

i,j
‖bij‖∞‖∂i∂j∆−1‖q0→q0 + max

i
‖∂i∆−1‖q0→p0

∑
i,j

‖∂ibij‖n
)
=

1
2Cq0

.

The second order Riesz transform bound (5.2) is known for various large
classes of operators. We discuss one instance of such class next.

Example. Assume the coefficients aij of H are continuous and periodic
with a common period and that

∑n
i=1 ∂iaij = 0 for 1 ≤ j ≤ n. Then

‖Hf‖p ' ‖∆f‖p, ∀f ∈ C∞0 (Rn),

for all 1 ≤ p ≤ ∞ (see [17, Theorem 1.3]), so that H satisfies the assumption
of Theorem 5.2. In [17], it is proved that (Rp) holds for such H, but the above
shows that it also holds for small L∞ ∩W 1,n perturbations of H.

Remark. It is interesting to compare Theorem 5.1, which proves that
boundedness of second order Riesz transform implies boundedness of first
order Riesz transform on a larger range on Lp spaces, with the results ob-
tained in [22]. See also [20, (1.26)].

Acknowledgments. The authors would like to thank Professor Vladi-
mir Maz’ya for interesting discussions about the proof of inequality (4.4) in
the Euclidean space.
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[3] D. Bakry, Étude des transformations de Riesz dans les variétés riemanniennes à
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