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Abstract. We consider the random recursion Xx
n = MnX

x
n−1 + Qn + Nn(Xx

n−1),
where x ∈ R and (Mn, Qn, Nn) are i.i.d., Qn has a heavy tail with exponent α > 0,
the tail of Mn is lighter and Nn(Xx

n−1) is smaller at infinity, than MnX
x
n−1. Using the

asymptotics of the stationary solutions we show that properly normalized Birkhoff sums
Sxn =

Pn
k=0X

x
k converge weakly to an α-stable law for α ∈ (0, 2]. The related local limit

theorem is also proved.

1. Introduction. We assume that (Mn, Qn, Nn)n∈N with Mn, Qn > 0
and Nn : R → R+ is a sequence of independent random triples identically
distributed according to the measure µ. Moreover, we assume that

ψn(x) = Mnx+Qn +Nn(x) for x ∈ R,
is Lipschitz with Lipschitz constant Ln and we consider the stochastic re-
cursion

Xx
n = ψn(Xx

n) = MnX
x
n−1 +Qn +Nn(Xx

n−1),(1.1)

where Xx
0 = x ∈ R. We are interested in the asymptotic behaviour of the

Birkhoff sums Sxn =
∑n

k=0X
x
k . We are going to show that Sxn normalized

appropriately converge to an α-stable random variable (see Theorem 1.7).
We also prove a related local limit theorem (see Theorem 1.12). Throughout
the paper we will assume that the sequence (Mn, Qn, Nn)n∈N satisfies the
hypotheses of the theorem stated below.

Theorem 1.2 (Grey [5]). Let (M,Q,N) ∈ R+ × R+ × R+ be a generic
triple of the sequence above. Let ψ be a random nondecreasing Lipschitz func-
tion with Lipschitz constant L <∞ and let

ψ(x) = Mx+Q+N(x) for x ∈ R.(1.3)

Assume that
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(1) E(Lα) < 1, E(Lβ) <∞ and E(Nβ) <∞ for some 0 < α < β.
(2) The tails of Q satisfy

P({Q > t}) ∼ ct−α as t→∞, for some constant c > 0.

(3) N(x) ≤ Nφ(x) for every x ∈ R, where φ is a fixed nondecreasing
nonnegative function such that φ(x) = o(x) as x→ ±∞.

Then there exists a unique stationary solution S of the above equation with
law ν such that

P({S > t}) ∼ c

1− E(Mα)
t−α as t→∞.(1.4)

The proof goes along the same lines as in [5] and we write here only what
is specific to the current situation.

It is easy to see that E(Lα) < 1 and E(Lβ) < ∞ imply respectively
E(Mα) < 1 and E(Mβ) < ∞. (1.4) implies immediately that for every
bounded continuous function f ,

lim
t→∞

tα
�

R
f(t−1x) ν(dx) =

�

R
f(x)Λ(dx), where(1.5)

Λ(dx) = C−1(−∞,0)(x)
dx

|x|α+1
+ C+1(0,∞)(x)

dx

xα+1
,(1.6)

and C− = 0 and C+ = αc/(1− E(Mα)).
One of our main results is the following:

Theorem 1.7. Assume that the random variables M, N and Q satisfy
the hypotheses of the previous theorem and S is the stationary solution of
(1.1) with law ν. Additionally, assume that the function φ of Theorem 1.2 is
bounded. Let Sxn =

∑n
k=0X

x
k for n ∈ N, m =

	
R x ν(dx) and W =

∑∞
k=1M1 ·

. . . ·Mk with law η.

• If 0 < α < 1 and ∆n
α is the characteristic function of the random

variable n−1/αSxn for n ∈ N, then

(1.8) lim
n→∞

∆n
α(t) = Υα(t) = exp(tαCα),

where

Cα = αcϑαE((W + 1)α) and ϑα = −Γ (1− α)
α

e−iαπ/2.

• If α = 1 and ∆n
1 is the characteristic function of the random variable

n−1Sxn − nξ(n−1) for n ∈ N, then

(1.9) lim
n→∞

∆n
1 (t) = Υ1(t) = exp(tC1 − iC+t log t),
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where

ξ(t) =
�

R

tx

1 + t2x2
ν(dx),

C1 = C+ϑ1 − iC+E((W + 1) log(W + 1)−W logW )

and ϑ1 = −π/2 + iκ where κ > 0.
• If 1 < α < 2 and ∆n

α is the characteristic function of the random
variable n−1/α(Sxn − nm) for n ∈ N, then

(1.10) lim
n→∞

∆n
α(t) = Υα(t) = exp(tαCα),

where

Cα = αcϑαE((W + 1)α) and ϑα =
Γ (2− α)
α(α− 1)

e−iαπ/2.

• If α = 2 and ∆n
2 is the characteristic function of the random variable

(n log n)−1/2(Sxn − nm) for n ∈ N, then

(1.11) lim
n→∞

∆n
2 (t) = Υ2(t) = exp(t2C2),

where C2 = −(c/2)E((W + 1)2). Moreover, <Cα < 0 for all α ∈ (0, 2].

Similar problems have recently been investigated in the context of affine
recursion by Guivarc’h and LePage [6] (one-dimensional case), by Buraczew-
ski, Damek and Guivarc’h [2] (multidimensional matrix case) and by Mirek
[11] (for some class of Lipschitz maps close to affine at infinity) when Kesten’s
conditions are satisfied [10], i.e. E(|M |α) = 1 and E(|Q|α) < ∞ for some
α > 0 (see also [4] for simplifications and [3] for generalizations). The proof
of the theorem stated above is based on spectral properties of the transition
operator P and its Fourier perturbations Pt (see Section 2.1 for precise def-
initions). The spectral method was initiated by Nagaev [12] and then used
and developed by many authors (for more references see especially [7] and
[8]; see also [2], [6] and [11]). The most important tool in the proof is the
perturbation theorem of Keller and Liverani [9], which allows us to show
that the operators Pt have similar spectral properties to the operator P for
sufficiently small values of |t| (see Proposition 2.6). We also conclude that
the behaviour of the large powers of the operator Pt is determined by the
peripheral eigenvalue k(t) associated with this operator. The eigenvalues k(t)
appear naturally in the expansions of the characteristic functions of appro-
priately normalized Birkhoff sums. The asymptotic behaviour (1.4) of the
stationary measure ν allows us to expand the dominant eigenvalue k(t) at
0, which is crucial for Theorem 1.7.

Now we have the following

Theorem 1.12. Assume that |E(eitS)| < 1 for every t 6= 0. Suppose that
the hypotheses of the previous theorem are satisfied. Then
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lim
n→∞

n1/αP({Sxn ∈ I}) =
|I|
2π

�

R
Υα(t) dt if α ∈ (0, 1),

lim
n→∞

n1/αP({Sxn − nm ∈ I}) =
|I|
2π

�

R
Υα(t) dt if α ∈ (1, 2),

for every bounded interval I ⊆ R, where |I| denotes the Lebesgue measure
of I.

The proof of the above theorem is based on the ideas from [2]. Theo-
rem 3.1 below, which says that the spectral radius of the operators Pt for
t 6= 0 is strictly smaller than 1, plays a crucial role in the proof. It also shows
an interesting connection between the operators Pt and the stationary so-
lution S of (1.1). The rest of the proof of Theorem 1.12 strongly uses the
asymptotic properties and expansions of the dominant eigenvalues k(t).

2. Limit theorem

2.1. Fourier operators. We start by introducing two Banach spaces
Cρ(R) and Bρ,ε,λ(R) cointained in the space C(R) of continuous functions:

Cρ = Cρ(R) =
{
f ∈ C(R) : |f |ρ = sup

x∈R

|f(x)|
(1 + |x|)ρ

<∞
}
,

Bρ,ε,λ = Bρ,ε,λ(R) = {f ∈ C(R) : ‖f‖ρ,ε,λ = |f |ρ + [f ]ε,λ <∞},
where

[f ]ε,λ = sup
x 6=y

|f(x)− f(y)|
|x− y|ε(1 + |x|)λ(1 + |y|)λ

.

Remark 2.1. If ε+λ < ρ, then by the Arzelà–Ascoli theorem the injec-
tion operator Bρ,ε,λ ↪→ Cρ is compact.

On Cρ and Bρ,ε,λ we consider the transition operator

Pf(x) = E(f(Mx+Q+N(x)))

and its perturbations

Ptf(x) = E(eit(Mx+Q+N(x))f(Mx+Q+N(x))),

where x ∈ R and t ∈ [−1, 1]. We will also use the Fourier operators

Ttf(x) = E
(
ei(Mx+tQ+tN(t−1x))f(Mx+ tQ+ tN(t−1x))

)
for x ∈ R, where t ∈ [−1, 1]. Denote T = T0 = E(eiMxf(Mx))). Recall that
for every n ∈ N,

Tnf(x) = E(ei
Pn
k=1Mk·...·M1xf(Mn · . . . ·M1x)),

The lemma below shows a connection between the operators Pt and Tt.
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Lemma 2.2. If f ∈ Cρ, then for every n ∈ N, x ∈ R and t ∈ [−1, 1],

Pnt (f ◦ δt)(x) = Tnt f(tx).(2.3)

Moreover, if f ∈ Cρ is an eigenfunction of Tt with eigenvalue k(t), then f ◦δt
is an eigenfunction of Pt with the same eigenvalue.

Proof. A straightforward application of the definitions of Pt and Tt.

Lemma 2.4. The unique eigenvalue of modulus 1 for the operator P act-
ing on Cρ is 1 and the eigenspace is one-dimensional. The corresponding
projection on C · 1 is given by the map f 7→ ν(f).

Proof. See the proof of the lemma below.

Lemma 2.5. The unique eigenvalue of modulus 1 for the operator T act-
ing on Cρ is 1 with the eigenspace C · h(x), where h(x) = E(eiWx), and
W =

∑∞
k=1M1 · . . . ·Mk has law η.

Proof. Observe that the random variables
∑∞

k=1Mk · . . . · M1x and∑∞
k=2Mk · . . . ·M2x have the same law, hence

Th(x) = E(eiM1xh(M1x)) = E(eiM1xei
P∞
k=2Mk·...·M2(M1x))

= E(eiM1xei
P∞
k=2Mk·...·M2·M1x) = h(x).

This proves that 1 is an eigenvalue for T . Let f ∈ Cρ be such that Tnf(x) =
f(x). Since h(0) = 1 and limn→∞Mn · . . . ·M1x = 0 a.e. we have

|f(x)− f(0)h(x)| n→∞−−−→ 0.

Hence f(x) = f(0)h(x). Now assume that for a z of modulus 1 and a non-
trivial f ∈ Cρ we have Tf(x) = zf(x). Then for every x such that f(x) 6= 0
we have limn→∞ z

n = (f(0)/f(x))h(x), which is impossible.

The following proposition summarizes the necessary properties of the
operators Pt and Tt.

Proposition 2.6. Assume that 0 < ε < 1, λ > 0, λ+ 2ε < ρ = 2λ and
2λ+ ε < α. Then there exist 0 < % < 1, δ > 0 and t0 > 0 such that % < 1− δ
and for every |t| ≤ t0:

• σ(Pt), σ(Tt) ⊂ D = {z ∈ C : |z| ≤ %} ∪ {z ∈ C : |z − 1| ≤ δ}.
• The sets σ(Pt)∩{z ∈ C : |z− 1| ≤ δ} and σ(Tt)∩{z ∈ C : |z− 1| ≤ δ}
consist of exactly one eigenvalue k(t), the corresponding eigenspace is
one-dimensional and limt→0 k(t) = 1.

• For all z ∈ Dc and f ∈ Bρ,ε,λ,

‖(z − Pt)−1f‖ρ,ε,λ ≤ D‖f‖ρ,ε,λ, ‖(z − Tt)−1f‖ρ,ε,λ ≤ D‖f‖ρ,ε,λ,

where D > 0 is a universal constant which does not depend on |t| ≤ t0.
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• Moreover, for every n ∈ N,

Pnt = k(t)nΠP,t +QnP,t, Tnt = k(t)nΠT,t +QnT,t,

where ΠP,t and ΠT,t are projections onto the above mentioned one-
dimensional eigenspaces. QP,t and QT,t are complementary operators
to ΠP,t and ΠT,t respectively, such that ΠP,tQP,t = QP,tΠP,t = 0
and ΠT,tQT,t = QT,tΠT,t = 0. Furthermore, ‖QP,t‖Bρ,ε,λ ≤ % and
‖QT,t‖Bρ,ε,λ ≤ %.
• The above operators can be expressed in the terms of the resolvents of
Pt and Tt. Indeed, for appropriate parameters ξ1, ξ2 > 0,

k(t)ΠF,t =
1

2πi

�

|z−1|=ξ1

z(z − Ft)−1dz,

ΠF,t =
1

2πi

�

|z−1|=ξ1

(z − Ft)−1dz,

QF,t =
1

2πi

�

|z|=ξ2

z(z − Ft)−1dz,

where Ft = Pt or Ft = Tt.

Proof. A direct application of the perturbation theorem of Keller and
Liverani [9], Lemmas 2.4, 2.5 and arguments from [11].

2.2. Rate of convergence of projections. The main goal of this sec-
tion is to prove the following

Theorem 2.7. Assume that the hypotheses of Proposition 2.6 hold and
let h be the eigenfunction of the operator T defined as in Lemma 2.5. Then
for any 0 < δ ≤ 1 and ε < δ < α there exists C > 0 such that

‖((ΠT,t −ΠT,0)h) ◦ δt‖ρ,ε,λ ≤ C|t|
δ for every |t| ≤ t0.(2.8)

We start with

Lemma 2.9. Assume that the hypotheses of Proposition 2.6 hold and let
h be the eigenfunction of T defined as in Lemma 2.5. Then for any 0 < δ ≤ 1
and ε < δ < α we have

[(Tt − T )h]ε,λ ≤ C1|t|δ−ε,(2.10)

|(Tt − T )h|ρ ≤ C2|t|δ,(2.11)

where C1, C2 > 0 do not depend on t.
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Proof. We will estimate the seminorm [(Tt − T )h]ε,λ. Notice that

[(Tt − T )h]ε,λ ≤ sup
x 6=y, |x−y|≤t

|(Tt − T )h(x)− (Tt − T )h(y)|
|x− y|ε(1 + |x|)λ(1 + |y|)λ

(2.12)

+ sup
x 6=y, |x−y|>t

|(Tt − T )h(x)− (Tt − T )h(y)|
|x− y|ε(1 + |x|)λ(1 + |y|)λ

.

For the first term in (2.12) (|x− y| ≤ t) we observe that

(Tt − T )h(x)− (Tt − T )h(y)

= E((ei(Mx+tQ+tN(t−1x))−ei(My+tQ+tN(t−1y)))h(Mx+tQ+tN(t−1x)))(2.13)

+E(ei(My+tQ+tN(t−1y))(h(Mx+tQ+tN(t−1x))−h(My+tQ+tN(t−1y))))(2.14)
−E((eiMx−eiMy)h(Mx))(2.15)
−E(eiMy(h(Mx)−h(My))).(2.16)

We will estimate (2.13), (2.14), (2.15) and (2.16) separately. Observe that
for every 0 < δ ≤ 1 such that ε < δ < α we have

(2.17) E
(
|ei(Mx+tQ+tN(t−1x))−ei(My+tQ+tN(t−1y))| |h(Mx+tQ+tN(t−1x))|

|x−y|ε(1+|x|)λ(1+|y|)λ

)
≤ 2E(Lδ)|x−y|δ−ε ≤ 2E(Lδ)|t|δ−ε.

Similarly we estimate the second term:

(2.18) E
(
|ei(My+tQ+tN(t−1y))(h(Mx+tQ+tN(t−1x))−h(Mx+tQ+tN(t−1y)))|

|x−y|ε(1+|x|)λ(1+|y|)λ

)
≤ 2E(Lδ)E(W δ)|x−y|δ−ε ≤ 2E(Lδ)E(W δ)|t|δ−ε.

The terms (2.15) and (2.16) are estimated in a similar way. Now consider
the second term of (2.12) (|x−y| > t) and notice that

(Tt − T )h(x)− (Tt − T )h(y)

= E
(
(ei(Mx+tQ+tN(t−1x)) − eiMx)h(Mx+ tQ+ tN(t−1x))

)
(2.19)

+ E(eiMx(h(Mx+ tQ+ tN(t−1x))− h(Mx))
)

(2.20)

− E((eMy+tQ+tN(t−1y) − eiMy)h(My + tQ+ tN(t−1y)))(2.21)

− E(eiMy(h(My + tQ+ tN(t−1y))− h(My))).(2.22)

As before we will estimate (2.19), (2.20), (2.21) and (2.22) separately using
|tQ+tN(t−1x)| ≤ |t| |R| for some random variable R such that E(|R|β) <∞
where β > 0 is as in Theorem 1.2. Indeed, for every 0 < δ ≤ 1 such that
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ε < δ < α we have

(2.23) E
(
|ei(Mx+tQ+tN(t−1x)) − eiMx| |h(Mx+ tQ+ tN(t−1x))|

|x− y|ε(1 + |x|)λ(1 + |y|)λ

)
≤ 2E

(
|t|δ|R|δ

|x− y|ε

)
≤ 2E(|R|δ)|t|δ−ε.

Similarly we estimate the second term:

(2.24) E
(
|eiMx(h(Mx+ tQ+ tN(t−1x))− h(Mx))|

|x− y|ε(1 + |x|)λ(1 + |y|)λ

)
≤ 2E

(
|Mx+ tQ+ tN(t−1x)−Mx|δW δ

|x− y|ε
) ≤ 2E

(
|t|δ|R|δW δ

|x− y|ε

)
≤ 2E(|R|δ)E(W δ)|t|δ−ε.

Also (2.21) and (2.22) can be estimated similarly. Hence, in view of (2.17),
(2.18), (2.23) and (2.24), we obtain (2.10). For (2.11) notice that

(Tt−T )h(x) = E
(
(eiMx+tQ+tN(t−1x)−eiMx)h(Mx+tQ+tN(t−1x))

)
(2.25)

+ E
(
eiMx(h(Mx+tQ+tN(t−1x))−h(Mx))

)
,

and arguing as above we obtain the assertion.

Proof of Theorem 2.7. It is easy to see that for f ∈ Bρ,ε,λ, x ∈ R and
|t| ≤ t0 we have

((z − Pt,v)−1(f ◦ δt))(x) = ((z − Tt,v)−1f)(tx),(2.26)

(ΠT,t −ΠT )h =
1
2π

2π�

0

(ξeis + 1− Tt,v)−1((Tt − T )h) ds.(2.27)

Notice that for every f ∈ Bρ,ε,λ we have

‖f ◦ δt‖ρ,ε,λ ≤
{
|f |ρ + |t|ε[f ]ε,λ if |t| ≤ 1,
|t|ρ|f |ρ + |t|2λ+ε[f ]ε,λ if |t| > 1.

(2.28)

In view of (2.27) and (2.26) we have

(2.29) ((ΠT,t −ΠT )h)(tx)

=
1
2π

2π�

0

(
(ξeis + 1− Tt)−1(Tt − T )h

)
(tx) ds

=
1
2π

2π�

0

(
(ξeis + 1− Pt)−1(((Tt − T )h) ◦ δt)

)
(x) ds.

A straightforward application of (2.29), Proposition 2.6, and inequalities
(2.28), (2.10) and (2.11) yields
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‖((ΠT,t −ΠT )h) ◦ δt‖ρ,ε,λ

≤ 1
2π

2π�

0

‖((ξeis + 1− Pt,v)−1(((Tt − T )h) ◦ δt))‖ρ,ε,λ ds

≤ D(|((Tt − T )h) ◦ δt|ρ + [((Tt − T )h) ◦ δt]ε,λ)
≤ D(|(Tt − T )h|ρ + |t|ε[(Tt − T )h]ε,λ)

≤ D(C2|t|δ + |t|εC1|t|δ−ε) ≤ C|t|δ

for every |t| ≤ t0, and the proof is finished.

2.3. Proof of the limit theorem

Condition 2.30. Assume that 0 < ε < 1, λ > 0, λ + 2ε < ρ = 2λ and
2λ+ ε < α as in Proposition 2.6 and additionally

• If 0 < α ≤ 1, take any 0 < β < 1/2 such that ρ+ 2β < α.
• If 1 < α ≤ 2, take any λ > 0 such that ρ = 2λ < 1 and ρ+ 1 < α.

Theorem 2.31. Let h be the eigenfunction of the operator T defined as
in Lemma 2.5. If 0 < α < 1, then

lim
t→0

k(t)− 1
|t|α

= Cα =
�

R
(eix − 1)h(x)Λ(dx).(2.32)

• If α = 1 and ξ(t) =
	
R

tx
1+t2x2 ν(dx), then

(2.33) lim
t→0

k(t)− 1− iξ(t)
|t|

= C1 =
�

R

(
(eix − 1)h(x)− ix

1 + x2

)
Λ(dx).

• If 1 < α < 2 and m =
	
R x ν(dx), then

(2.34) lim
t→0

k(t)− 1− itm
|t|α

= Cα =
�

R
((eix − 1)h(x)− ix)Λ(dx).

• If α = 2 and m =
	
R x ν(dx), then

(2.35) lim
t→0

k(t)− 1− itm
|t|2
∣∣log |t|

∣∣ = 2C2 = −1
2

�

{±1}

(1 + 2E(W ))σΛ(dw).

Proof. Notice that ΠT,t(h)◦δt is an eigenfunction of Pt corresponding to
the eigenvalue k(t) and we have

(k(t)− 1) · ν(ΠT,t(h) ◦ δt) = ν((eit(·) − 1) · (ΠT,t(h) ◦ δt)),(2.36)

where ν is the stationary measure for P . In view of Condition 2.30 and
Theorem 2.7, for 0 < α < 2 we have

lim
t→0

1
|t|α

�

Rd
(eitx − 1)(ΠT,t(h)(tx)−ΠT (h)(tx)) ν(dx) = 0.(2.37)
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If α = 2, then

lim
t→0

1
t2
∣∣log |t|

∣∣ �

Rd
(eitx − 1)(ΠT,t(h)(tx)−ΠT (h)(tx)) ν(dx) = 0.(2.38)

Furthermore, if 0 < δ ≤ 1 with δ < α then in view of Theorem 2.7 we obtain

ν(ΠT,t(h) ◦ δt − 1) ≤ D|t|δ.(2.39)

A straightforward application of an argument from [3] extends the conver-
gence in (1.5) to measurable functions f such that Λ(Dis(f)) = 0 and

sup
x∈Rd

|x|−α
∣∣log |x|

∣∣1+ε|f(x)| <∞ for some ε > 0,(2.40)

where Dis(f) is the set of all discontinuities of f . To prove (2.32), write

1
|t|α

�

Rd
(eitx − 1)ΠT,t(h)(tx) ν(dx)

=
1
|t|α

�

Rd
(eitx − 1) · (ΠT,t(h)(tx)−ΠT (h)(tx)) ν(dx)

+
1
|t|α

�

Rd
(eitx − 1)ΠT (h)(tx) ν(dx).

The first summand above tends to 0, by (2.37). Since f(x) = (eix − 1)h(x)
satisfies (2.40) the second term tends to Cα =

	
R(eix − 1)h(x)Λ(dx), hence

in view of (2.39) we obtain

lim
t→0

k(t)− 1
|t|α

= lim
t→0

1
ν(ΠT,t(h) ◦ δt)|t|α

�

Rd
(eitx − 1)h(tx) ν(dx) = Cα.

This finishes the proof of (2.32). In a similar way we can show (2.33)–(2.35);
for more details we refer to [2] and [11].

Proof of Theorem 1.7. Case 0 < α < 1. In order to prove (1.8) notice
that by Proposition 2.6 we have

∆n
α(t) = E(eitnS

x
n) = (Pntn(1))(x) = knv (tn)(ΠP,tn(1))(x) + (QnP,tn(1))(x),

where tn = tn−1/α for n ∈ N. Again Proposition 2.6 ensures that ‖QnP,tn‖Bρ,ε,λ
→ 0 as n→∞ because ‖QP,t‖Bρ,ε,λ < 1. By Theorem 2.31 we have

lim
n→∞

n · (k(tn)− 1) = lim
n→∞

tα · k(tn)− 1
tαn

= tαCα,

hence

lim
n→∞

kn(tn) = lim
n→∞

(1 + k(tn)− 1)
n

k(tn)−1
·(k(tn)−1) = exp(tαCα).

This proves the pointwise convergence of ∆n
α to Υα. Continuity of Υα at 0

follows from the Lebesgue dominated convergence theorem. Now we give an
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explicit formula for Cα. First notice that
∞�

0

eitx − 1
tα+1

dt = xαϑα for x > 0,

where

ϑα =
∞�

0

eit − 1
tα+1

dt = −Γ (1− α)
α

e−iαπ/2.

Then

Cα =
�

R
(eix − 1)h(x)Λ(dx) = C+

�

R

∞�

0

(eix(y+1) − eixy) dx

xα+1
η(dy)

= C+ϑαE((W + 1)α −Wα) = C+ϑα(1− E(Mα))E((W + 1)α)
= αcϑαE((W + 1)α) 6= 0.

In all cases below convergence is obtained as in the first case. We only give
formulas for the constants Cα.

Case α = 1. Convergence in (1.9) is obtained as in the previous case (see
also [11]). Now we give a formula for C1. Observe that

C1 =
�

R

(
(eix − 1)h(x)− ix

1 + x2

)
Λ(dx)

=
�

R

�

R

[(
eix(y+1) − 1− ix(y + 1)

1 + x2(y + 1)2

)
−
(
eixy − 1− ixy

1 + x2y2

)
+ i

(
x(y + 1)

1 + x2(y + 1)2
− xy

1 + x2y2
− x

1 + x2

)]
η(dy)Λ(dx),

and
�

R

�

R

[(
eix(y+1) − 1− ix(y + 1)

1 + x2(y + 1)2

)
−
(
eixy − 1− ixy

1 + x2y2

)]
η(dy)Λ(dx)

= C+

�

R

∞�

0

[(
eix(y+1)−1− ix(y + 1)

1 + x2(y + 1)2

)
−
(
eixy−1− ixy

1 + x2y2

)]
dx

x2
η(dy)

= C+ϑ1E((W + 1)−W ) = C+ϑ1,

where ϑ1 =
	
R
(
eix − 1− ix

1+x2

)
dx
x2 = −π

2 + iκ for some κ > 0. Moreover,

i
�

R

�

R

(
x(y + 1)

1 + x2(y + 1)2
− xy

1 + x2y2
− x

1 + x2

)
η(dy)Λ(dx)

= −iC+E((W + 1) log(W + 1)−W logW ).

Now it is easy to see that

C1 = C+ϑ1 − iC+E((W + 1) log(W + 1)−W logW ).
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Case 1 < α < 2. As in the first case, we obtain

Cα = C+ϑα(1− E(Mα))E((W + 1)α) = αcϑαE((W + 1)α) 6= 0,

where

ϑα =
∞�

0

eit − 1− it
tα+1

dt =
Γ (2− α)
α(α− 1)

e−iαπ/2.

Case α = 2. Observe that

C2 = −1
4

�

{±1}

(1 + 2E(W ))σΛ(dw) = −1
4
C+(1 + 2E(W ))

= −1
4
C+E((W + 1)2 −W 2)

= −1
4
C+(1− E(M2))E((W + 1)2) = − c

2
E((W + 1)2) 6= 0.

3. Local limit theorem. Recall that S is the stationary solution of the
recursion (1.1). We prove the following

Theorem 3.1. Assume that |E(eitS)| = ξ < 1 for all t 6= 0. Then the
spectral radius satisfies r(Pt) < 1.

Proof. Suppose for a contradiction that r(Pt) = 1 for some t 6= 0. This
implies that for some f ∈ Bρ,ε,λ and z ∈ C such that |z| = 1 we have
Ptf(x) = zf(x), since the essential spectral radius satisfies re(Pt) ≤ % < 1,
where % > 0 was defined in Proposition 2.6. We will show that f = 0, which
gives a contradiction.

First notice that f is bounded. Indeed, |f(x)| ≤ limn→∞ P
n(|f |)(x) =

ν(|f |). Suppose that f 6= 0. By the previous inequality we can assume that
f 6= 0 on supp ν and |f | = 1. Observe that for all x ∈ supp ν and n ∈ N we
have znf(x) = eitS

x
nf(Xx

n) P-a.s., hence

znf(x) = eitS
x
n−1eitX

x
nf(Xx

n) = eitS
x
n−1f(Xx

n−1)e
itXx

n
f(Xx

n)
f(Xx

n−1)

= zn−1f(x)eitX
x
n
f(Xx

n)
f(Xx

n−1)
.

This implies that

Pnt f(x) = E(eitS
x
nf(Xx

n))(3.2)

= zn−1f(x)E(eitX
x
n) + zn−1f(x)E

(
eitX

x
n

(
f(Xx

n)
f(Xx

n−1)
− 1
))

.



CONVERGENCE TO STABLE LAWS AND LOCAL LIMIT THEOREM 717

Now we obtain

(3.3)
∣∣∣∣E( f(Xx

n)
f(Xx

n−1)
− 1
)∣∣∣∣

≤ [f ]ε,λE
(
|Xx

n −Xx
n−1|ε

(
1 + |Xx

n |
)λ(1 + |Xx

n−1|)λ
)

≤ [f ]ε,λE
(
(L1 · . . . · Ln−1)ε|ψn(x)− x|ε(1 + |Xx

n |)λ(1 + |Xx
n−1|)λ

)
≤ C[f ]ε,λ(1 + |x|)2λ+εθn

for some 0 < θ < 1. Fix ε > 0 such that 1 − ξ − ε > 0 and observe that
|E(eitX

x
n − eitS)| < ε < 1 − ξ for sufficiently large n ∈ N. Now using (3.2)

and (3.3), for fixed x ∈ supp ν we have

1 = |znf(x)| ≤ |E(eitX
x
n − eitS)|+ |E(eitS)|+

∣∣∣∣E( f(Xx
n)

f(Xx
n−1)

− 1
)∣∣∣∣

≤ ε+ ξ + C[f ]ε,λ(1 + |x|)2λ+εθn,

so

1 ≤ C

1− ξ − ε
[f ]ε,λ(1 + |x|)2λ+εθn < 1

for sufficiently large n ∈ N, and this contradiction shows that f has to be
zero.

Let

Θ = {ψ : R→ R : ψ(x) = mx+ q + n(x)
for some (m, q, n) ∈ R+ × R+ × R+ and n(x) ≤ nφ(x) for every x ∈ R},

where φ is a fixed nondecreasing nonnegative function such that φ(x) = o(x)
as x → ±∞. The measure µ is a probability measure on Θ. We give a
criterion for the stationary solution S for (1.1) to satisfy |E(eitS)| < 1.

Proposition 3.4. Assume that R+ × R+ × R+ 3 (m, q, n) 7→ ψ(x) =
mx + q + n(x) ∈ R is continuous for every x ∈ R and the functions ψ are
invertible on supp ν. Then |E(eitS)| < 1 for all t 6= 0.

Proof. It suffices to show that the measure ν has no atoms. Suppose
that the set X of atoms of ν is not empty. Let A = {x ∈ X : ν({x}) =
maxz∈X ν({z}) = a}. The set A = {x1, . . . , xn} is finite because ν is a
probability measure. Since the measure ν is µ-stationary, we have

na = ν(A) =
�

Θ

�

R
1A(ψ(x)) ν(dx)µ(dψ) =

n∑
k=1

�

Θ

�

R
1ψ−1(xk)(x) ν(dx)µ(dψ).

Notice that for every ψ ∈ Θ and x ∈ R, ν({ψ−1(x)}) ≤ a and
n∑
k=1

�

Θ

(a− ν({ψ−1(xk)}))µ(dψ) = 0.
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Hence ν({ψ−1(xk)}) = a µ-a.e. for all 1 ≤ k ≤ n and so ψ(A) = A µ-a.e. But
we want more. We prove that ψ(A) = A for every ψ ∈ suppµ. It is enough
to show that ψ(A) ⊆ A for every ψ ∈ suppµ. Suppose that there exist ψ0 ∈
suppµ and x0 ∈ A such that ψ0(x0) 6∈ A. Let A1 = {ψ ∈ Θ : ψ(x0) ∈ Ac}, so
that ψ0 ∈ A1. Moreover, A1 is open in Θ (since A is closed) and µ(A1) = 0,
contrary to ψ0 ∈ suppµ. Now let LµΘ be the closed semigroup generated by
suppµ. Observe that A is LµΘ-invariant. On the other hand, supp ν ⊆ A (see
Theorem 1.7 of [11]), but A is finite, which contradicts (1.4). This finishes
the proof.

Proof of Theorem 1.12. Let κ = 1/α. We have dn = 0 if α ∈ (0, 1), and
dn = mn if α ∈ (1, 2). A straightforward application of Theorem 10.7 of [1]
allows us to check only that

lim
n→∞

nκE(h(Sxn − dn)) =
1
2π

�

R
h(t) dt ·

�

R
Υα(t) dt

for every integrable function h whose Fourier transform is compactly sup-
ported. By the Fourier inversion formula we have

E(h(Sxn − dn)) =
1
2π

�

R
E(eit(S

x
n−dn))ĥ(t) dt =

1
2π

�

R
e−itdnPnt (1)(0)ĥ(t) dt.

Now take J = supp ĥ and N = [−δ, δ]. By Theorem 3.1, r(Pt) < 1 for t 6= 0
by Lemma 3.19 of [2] with f = 1 there exists β > 0 such that r(Pt) < 1− β
for t ∈ J \N , hence

lim
n→∞

nκ
∣∣∣ �

J\N

e−itdnPnt (1)(0)ĥ(t) dt
∣∣∣ ≤ lim

n→∞
Cnκ(1− β)n = 0.

Notice that

(3.5) lim
n→∞

nκ

2π

�

N

e−itdnPnt (1)(0)ĥ(t) dt

= lim
n→∞

nκ

2π

�

N

e−itdn(kn(t)ΠP,t(1)(0) +QnP,t(1)(0))ĥ(t) dt

= lim
n→∞

nκ

2π

�

N

e−itdnkn(t)ΠP,t(1)(0)ĥ(t) dt.

To get the last equality observe that by Proposition 2.6 there exists 0 < % < 1
such that ‖QP,t‖Bρ,ε,λ ≤ % for t ∈ N , so

lim
n→∞

nκ

2π

∣∣∣ �
N

e−itdnQnP,t(1)(0)ĥ(t) dt
∣∣∣ ≤ lim

n→∞
Cnκ%n = 0.

To compute the limit in (3.5) we change the variable t 7→ n−κt in (3.5) to
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obtain

(3.6) lim
n→∞

nκ

2π

�

N

(e−itmk(t))nΠP,t(1)(0)ĥ(t) dt

= lim
n→∞

1
2π

�

{t∈R : |t|<δnκ}

(e−in
−κtmk(n−κt))nΠP,n−κt(1)(0)ĥ(n−κt) dt.

By Theorem 2.31 for α ∈ (0, 1) ∪ (1, 2) we have k(t) = 1 + itm+ |t|α(Cα +
o(1)) with <Cα < 1. Therefore it is easy to see that there exists D > 0
such that |e−itmk(t)| ≤ e−D|t|α . This inequality and the Lebesgue dominated
convergence theorem allow us to pass to the limit in the integrand of (3.6).
Hence the limit in (3.6) is equal

1
2π

�

R
h(t) dt ·

�

R
Υα(t) dt =

1
2π

ĥ(0) ·
�

R
Υα(t) dt.
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