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Abstract. In 1967, Ross and Stromberg published a theorem about pointwise limits
of orbital integrals for the left action of a locally compact group G on (G, ρ), where ρ is the
right Haar measure. We study the same kind of problem, but more generally for left actions
of G on any measure space (X,µ), which leave the σ-finite measure µ relatively invariant,
in the sense that sµ = ∆(s)µ for every s ∈ G, where ∆ is the modular function of G. As
a consequence, we also obtain a generalization of a theorem of Civin on one-parameter
groups of measure preserving transformations.

The original motivation for the circle of questions treated here dates back to classi-
cal problems concerning pointwise convergence of Riemann sums of Lebesgue integrable
functions.

1. Introduction. The study of almost everywhere convergence of Rie-
mann sums is an old problem, with many ramifications (see [RW06] for a
recent survey). Let us consider the interval [0, 1[, identified with the torus
T = R/(2πZ), and let ρ be the normalized Lebesgue measure on T. Let
f : [0, 1[ → C be a measurable function. For n ∈ N∗ and x ∈ T, the corre-
sponding Riemann sum of f is defined by

Rnf(x) =
1
n

n−1∑
j=0

f(x+ j/n).

When f is Riemann integrable, for any x ∈ T we have

(1.1) lim
n
Rn(f)(x) =

1�

0

f(t) dρ(t).

When f is Lebesgue integrable, it is easily seen that (Rn(f)) converges in
mean to

	1
0 f dρ (see for instance [RW06, §2]). On the other hand, the study

of almost everywhere convergence is much more subtle. The first result on

2010 Mathematics Subject Classification: Primary 47A35; Secondary 37A15, 28D05,
28C10, 26A42.
Key words and phrases: ergodic theory, transformation groups, Haar measures, Riemann
and Lebesgue integrals, lattices.

DOI: 10.4064/cm118-2-4 [401] c© Instytut Matematyczny PAN, 2010



402 C. ANANTHARAMAN-DELAROCHE

this subject seems to date back to the paper [Jes34] of Jessen. Jessen’s
theorem states that if (nk) is a sequence of positive integers such that nk
divides nk+1 for every k then, for any f ∈ L1(T), we have, for almost every
x ∈ T,

(1.2) lim
k
Rnkf(x) =

1�

0

f(t) dρ(t).

Soon after, Marcinkiewicz and Zygmund [MZ37] on one hand, and Ursell
[Urs37] independently, gave examples of functions f ∈ L1(T) for which (1.1)
fails to hold almost everywhere. For instance, given 1/2 < δ < 1,

f : x ∈ ]0, 1] 7→ |x|−δ

is such an example (see [Urs37, Rud64]). Rudin [Rud64] was even able to
provide many examples of bounded measurable functions f (characteristic
functions indeed) such that, for almost every x ∈ T, the sequence (Rnf(x))
diverges. Moreover, Rudin’s paper highlighted deep connections between
pointwise convergence of Riemann sums along a given subsequence (nk)
of integers and arithmetical properties of the subsequence, a question now
widely developed. The following different important question has also been
considered by many authors: under which kind of regularity conditions on f
does the associated sequence (Rn(f)) of Riemann sums converge a.e.? (see
[RW06] for these questions and many related ones).

In this paper, we deal with another sort of problem, namely we study
possible extensions of Jessen’s result to general locally compact groups and
dynamical systems.

Let us first return to Jessen’s theorem and give another formulation of it.
Denote by G the group T and set Gk = Z/(nkZ). Then (Gk) is an increasing
sequence of closed subgroups of G, whose union is dense in G. If ρk is the
Haar probability measure on Gk, Jessen’s result reads as follows: for every
f ∈ L1(T),

lim
k→∞

�

Gk

f(t+ x) dρk(t) =
�

G

f dρ a.e.

Under this form, this theorem has been extended by Ross and Stromberg
to locally compact groups. An assumption about the behaviour of the mod-
ular functions of the subgroups is needed (see [RS67] and Corollary 3.12
below). It is automatically satisfied in the abelian case.

More generally, we are interested in the following questions. Let G y
(X,µ) be an action of a locally compact group G on a measure space (X,µ),
where µ is σ-finite, and let (Gn)n∈N be an increasing sequence of closed
subgroups of G with dense union.
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(i) Find conditions on the action and on the (right) Haar measures
ρn of Gn and ρ of G so that for every f ∈ L1(X,µ) and every n,
t ∈ Gn 7→ f(tx) is ρn-integrable for almost every x ∈ X.

(ii) If (i) holds, study the pointwise convergence of the sequence of or-
bital integrals �

Gn

f(tx) dρn(t).

(iii) Identify the pointwise limit, in case it exists.

A necessary condition for (i) to be satisfied is that, for every Borel subset
B of X with µ(B) < +∞, every n ∈ N, and almost every x ∈ X,

ρn({t ∈ Gn ; x ∈ t−1B}) =
�

Gn

1B(tx) dρn(t) < +∞.

When µ is finite, say a probability measure, condition (i) implies that the
groups Gn are compact. If we normalize their Haar measures by ρn(Gn) = 1,
the reversed martingale theorem implies that, for f ∈ L1(X,µ), the sequence
of orbital integrals converges pointwise and in mean (see [Tem92, Cor. 3.5,
p. 219] and Proposition 3.1 below). This fact is well-known. Moreover, the
limit is the conditional expectation of f with respect to the σ-field of G-
invariant Borel subsets of X. Of course, Jessen’s theorem is a particular
case.

When µ is only σ-finite, we cannot use the reversed martingale theo-
rem any longer and we shall need other arguments. As already said, Ross
and Stromberg studied the case of the left action G y (G, ρ). They nor-
malized the right Haar measures ρn and ρ in such a way that for every
f ∈ Cc(G) (the space of continuous functions with compact support on G),
we have limn ρn(f) = ρ(f). This is always possible, due to a result of Fell
(see [Bou63, Chap. VIII, §5], and [RS67] for more references). Morever, Ross
and Stromberg assumed that for every n, the modular function of Gn is the
restriction of the modular function of G. We shall name this property the
modular condition (MC). Under these assumptions, Ross and Stromberg
proved that for every f ∈ L1(G, ρ), one has, for almost every x ∈ G,

lim
n

�

Gn

f(tx) dρn(t) =
�

G

f(tx) dρ(t) =
�

G

f(t) dρ(t) (1).

Later, Ross and Willis [RW97] provided an example showing that the mod-
ular condition does not always hold. They also proved that the Ross–Strom-
berg theorem always fails when the modular condition is not satisfied.

(1) We adopt the following convention: each time we write an integral
	
f , either f is

non-negative, or it is implicitly assumed that f is integrable.
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Therefore, in our paper we shall always assume that the increasing se-
quence (Gn) of closed subgroups of G has a dense union and satisfies the
modular condition (MC). We shall denote by ∆ the modular function of G,
so that λ = ∆ρ, where λ is the left Haar measure of G. We also assume that
G acts on (X,µ) in such a way that µ is ∆-relatively invariant under the
action, in the sense that sµ = ∆(s)µ for s ∈ G. An important example is
the left action G y (G, ρ).

Under these assumptions, we give a necessary and sufficient condition
for the pointwise limit theorem to be satisfied.

Theorem (3.13). The following two properties are equivalent:

(a) X is a countable union of Borel subsets Bk of finite measure such
that for every k and almost every x ∈ X, we have

ρ({t ∈ G ; x ∈ t−1Bk}) =
�

G

1Bk(tx) dρ(t) < +∞.

(b) For every f ∈ L1(X,µ) and for almost every x ∈ X,

lim
n

�

Gn

f(tx) dρn(t) =
�

G

f(tx) dρ(t).

A crucial intermediate step is the above mentioned Ross–Stromberg the-
orem. For completeness, we provide a proof of this result, partly based on
one of the ideas contained in [RS67].

We give examples where our Theorem 3.13 applies. In particular, as an
easy consequence we get our second main result:

Theorem (3.18). Consider G y (X,µ), where now the σ-finite measure
µ is invariant. Let (Gn)n∈N be an increasing sequence of lattices in G whose
union is dense. Fix a Borel fundamental domain D for G0 and normalize ρ
by ρ(D) = 1 (2). Then, for every G0-invariant function f ∈ L1(X,µ) and
for almost every x ∈ X, we have

lim
n

1
|Gn ∩D|

∑
t∈Gn∩D

f(tx) =
�

D

f(tx) dρ(t),

where |Gn ∩D| is the cardinality of Gn ∩D.

This gives a simple way to extend a result of Civin [Civ55], who treated
the case G = R by a different method, apparently not directly adaptable to
more general locally compact groups G.

2. Notation and conventions. In this paper, locally compact spaces
are implicitly assumed to be Hausdorff and σ-compact. A measure space

(2) Note that our assumptions imply the unimodularity of G.
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(X,µ) is a Borel standard space equipped with a (non-negative) σ-finite
measure µ.

Let G be a locally compact group. We denote by ∆ its modular function,
and by λ and ρ respectively its left and right Haar measures, so that λ =
∆ρ. By an action of G on a measure space (X,µ) we mean a Borel map
G×X → X, (t, x) 7→ tx, which is a left action and leaves µ quasi-invariant.
In fact, we shall need the following stronger property:

Definition 2.1. Given an action G y (X,µ), we say that µ is ∆-
relatively invariant if sµ = ∆(s)µ for all s ∈ G.

Note that this property is satisfied for the left action G y (G, ρ).
In all our statements, we shall consider an increasing sequence (Gn) of

closed subgroups of G with dense union. Then ∆n, ρn, λn = ∆nρn will be
the modular function and Haar measures of Gn, respectively. We shall have
to choose appropriate normalizations of ρ and ρn, n ∈ N. For a compact
group, we usually choose its Haar measure to have total mass one (but see
Remark 2.3 below).

As already mentioned in the introduction, there is also a natural nor-
malization of the Haar measures as follows (see [Bou63, Chap. VIII, §5]
and [RS67]).

Definition 2.2. Let G be a locally compact group and ρ a right Haar
measure on G. Let (Gn) be an increasing sequence of closed subgroups whose
union is dense in G. There is an essentially unique normalization of the right
Haar measures ρn of the Gn such that, for every continuous function f on
G with compact support, we have limn ρn(f) = ρ(f). In this case, we shall
say that the sequence (ρn) of right Haar measures is normalized with respect
to ρ. We shall also say that it is a Fell normalization.

Remark 2.3. When G is compact, the Fell normalization is the classical
normalization, where the Haar measures are probability measures. On the
other hand, when the Gn are compact whereas G is not, it is easily seen that
the Fell normalization implies that limn ρn(Gn) = +∞. For instance, let G
be a countable discrete group which is the union of an increasing sequence
(Gn) of finite subgroups (e.g. the group S∞ of finite permutations of the
integers). Then, if ρ is the counting measure on G, the normalization of
the sequence ρn with respect to ρ is the sequence of counting measures, for
which we have ρn(Gn) = |Gn|, the cardinality of Gn.

Finally, another property of the sequence (Gn) will be fundamental in
this paper. It was already present in the work of Ross and Stromberg [RS67]
and later shown to be crucial (see [RW97]).

Definition 2.4. Let G be a locally compact group and (Gn) an in-
creasing sequence of closed subgroups of G. We say that (Gn) satisfies the
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modular condition (MC) if, for every n, the modular function ∆n of Gn is
the restriction to Gn of the modular function ∆ of G.

Let us explain the interest of this condition. An action G y (X,µ)
leaving the measure µ ∆-relatively invariant has the following property: for
every Borel function f : X × G → R∗+ (or any µ ⊗ λ-integrable function
f : X ×G→ C), we have

�

X×G
f(tx, t) dµ(x) dρ(t) =

�

X×G
f(x, t) dµ(x)dλ(t)(2.1)

=
�

X×G
f(x, t−1) dµ(x) dρ(t).

This property will be essential throughout this paper, and we shall need it
to remain satisfied for all the restricted actions Gn y (X,µ). This requires
that the restriction of ∆ to Gn is the modular function of Gn.

3. Limit theorems

3.1. Compactness assumptions. In this section, the Haar measure
of every compact group will have total mass one.

Proposition 3.1. Let G be a locally compact group, acting in a mea-
sure preserving way on a probability space (X,µ). Let (Gn) be an increas-
ing sequence of compact subgroups of G whose union is dense in G. Let
f ∈ L1(X,µ).

(a) For a.e. x ∈ X, we have limn→∞
	
Gn
f(tx) dρn(t) = E(f | I)(x),

where E(f | I) is the conditional expectation of f with respect to the
σ-field I of G-invariant Borel subsets of X.

(b) If moreover G is compact, then we have limn→∞
	
Gn
f(tx) dρn(t) =	

G f(tx) dρ(t) for almost every x ∈ X.

Proof. (a) Observe first that t ∈ Gn 7→ f(tx) is ρn-integrable for almost
every x, since

�

X

( �

Gn

|f(tx)| dρn(t)
)
dµ(x) =

�

X

|f(x)| dµ(x) < +∞.

We set Rn(f)(x) =
	
Gn
f(tx) dρn(t). Obviously, this function is Gn-invariant

and µ-integrable. Moreover, let A be a Gn-invariant Borel subset of X. Then�

A

Rn(f)(x) dµ(x) =
�

X×Gn

1A(x)f(tx) dµ(x) dρn(t)

=
�

X×Gn

1A(t−1x)f(x) dµ(x) dρn(t) =
�

A

f(x) dµ(x),
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since A is Gn-invariant. Therefore Rn(f) is the conditional expectation of
f with respect to the σ-field Bn of Borel Gn-invariant subsets of X. The
sequence (Bn) of σ-fields is decreasing. The reversed martingale theorem
[Nev72, p. 119] states that the sequence (Rn(f)) converges µ-a.e. and in
mean to the conditional expectation of f with respect to the σ-field B∞ =⋂
n Bn of (

⋃
nGn)-invariant Borel subsets of X. Since

⋃
nGn is dense in G

and µ is finite, B∞ is also the σ-field of G-invariant Borel subsets of X.
(b) is obvious since E(f | I)(x) =

	
G f(tx) dρ(t) for almost every x ∈ X

when G is compact.

Remark 3.2. Let µ be a σ-finite measure on a Borel space (X,B), and let
(Bn) be a decreasing sequence of σ-fields. Assume that (X,Bn, µ) is σ-finite
for every n. For f ∈ L1(X,B, µ), the conditional expectation E(f | Bn) is
well defined, as a Radon–Nikodým derivative. In [Jer59], Jerison has proved
that limn→∞ E(f | Bn)(x) exists almost everywhere. Moreover, if (X,B∞, µ)
is σ-finite, the limit is E(f | B∞). Otherwise, one may write X as the disjoint
union of two elements V,W of B∞, where V is a countable union of elements
of B∞ of finite measure while any subset of W that belongs to B∞ has
measure 0 or ∞. By [Jer59, §2.6], limn→∞ E(f | Bn)(x) = 0 a.e. on W .

This observation can be used to prove that Proposition 3.1 still holds un-
der the weaker assumption that µ is σ-finite. Indeed, it is enough to prove
that when H is any compact group acting in measure preserving way on
a σ-finite measure space (X,B, µ), then (X,BH , µ) is still σ-finite, where
BH is the σ-field of Borel H-invariant subsets. To show this, consider a
strictly positive function f ∈ L1(X,B, µ). As seen in the proof of Propo-
sition 3.1, the function x 7→ R(f)(x) =

	
H f(tx) dρ(t) is H-invariant and

µ-integrable, and we deduce that (X,BH , µ) is σ-finite from the fact that
R(f) is strictly positive everywhere. Finally, for every f ∈ L1(X,B, µ), the
conditional expectation E(f | BH) may be defined and we obviously have
R(f)(x) = E(f | BH).

We shall give another proof of Proposition 3.1(b), for a compact group
G and a σ-finite measure µ, in Corollary 3.14.

In the rest of the paper we are interested in the more general situation
where µ is a σ-finite measure on X and the subgroups Gn are not assumed
to be compact. In particular, G is not always unimodular.

3.2. General case: local results. Let G y (X,µ) be a measure G-
space. When the measure µ is not finite, it may be useful to study the
restriction of the action to every Borel subset B of X such that µ(B) < +∞,
even if B is not G-invariant (3). We extend to X every function defined on B,
by giving it the value 0 on X\B. In particular, we have L1(B,µ) ⊂ L1(X,µ).

(3) The restriction of µ to the Borel subspace B will be denoted by the same letter.
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Note that Borel functions of the form

x 7→ ρ({t ∈ G ; tx ∈ B}) =
�

G

1B(tx) dρ(t)

are G-invariant. This crucial fact will be used repeatedly and without men-
tion.

Theorem 3.3. Let (Gn) be an increasing sequence of closed subgroups of
a locally compact group G with dense union and satisfying condition (MC).
Let G y (X,µ) be an action leaving the measure ∆-relatively invariant.
Let B be a Borel subset of X with µ(B) < +∞. For a.e. x ∈ B and every
n ∈ N, assume that 0 < ρn({t ∈ Gn ; tx ∈ B}) < +∞, where ρn is a right
Haar measure on Gn. Then, for every f ∈ L1(B,µ), the averaging sequence
of functions

x ∈ B 7→ 1
ρn({t ∈ Gn ; tx ∈ B})

�

Gn

f(tx) dρn(t)

converges, almost everywhere on B and in L1 norm, to an element of
L1(B,µ).

Proof. We first check that for every n and almost every x ∈ B, the
function t ∈ Gn 7→ f(tx) is ρn-integrable. This is a consequence of the
following computation (where we use equality (2.1) as well as the right-
invariance of ρn):

�

B

1
ρn({s ∈ Gn ; sx ∈ B})

( �

Gn

|f(tx)| dρn(t)
)
dµ(x)

=
�

X×Gn

1B(x)
|f(tx)|

ρn({s ∈ Gn ; sx ∈ B})
dµ(x) dρn(t)

=
�

X×Gn

1B(tx)
|f(x)|

ρn({s ∈ Gn ; sx ∈ B})
dµ(x) dρn(t)

=
�

B

|f(x)| 1
ρn({s ∈ Gn ; sx ∈ B})

( �

Gn

1B(tx) dρn(t)
)
dµ(x)

=
�

B

|f(x)| dµ(x) < +∞.

In addition, we see that x ∈ B 7→
	
Gn
f(tx) dρn(t)/ρn({s ∈ Gn ; sx ∈ B}) is

µ-integrable on B. Denote by Rn(f) this function defined on B.
LetOn(B) be the equivalence relation on B induced by the Gn-action: for

x, y ∈ B, x ∼On(B) y if there exists t ∈ Gn with x = ty. We denote by Bn(B)
the σ-field of Borel subsets of B invariant under this equivalence relation.
Observe that Rn(f) is invariant under On(B). It is also straightforward to
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check that Rn(f) is the conditional expectation of f with respect to Bn(B).
Then again the conclusion follows from the reversed martingale theorem.

Concerning the pointwise convergence of sequences of orbital integrals,
we immediately get:

Corollary 3.4. Under the assumptions of the previous theorem, the
following conditions are equivalent:

(a) limn→∞ ρn({t ∈ Gn ; tx ∈ B}) exists a.e. on B;
(b) for every f ∈ L1(B,µ), limn→∞

	
Gn
f(tx) dρn(t) exists a.e. on B.

3.3. General case: global results. In order to study the problem
globally, we shall need the following lemma, ensuring the integrability of
orbital functions.

Lemma 3.5. Let G y (X,µ) be an action leaving the measure ∆-relative-
ly invariant. The following two conditions are equivalent:

(i) X =
⋃
Bk, where every Bk is a Borel subset of X, with µ(Bk) <

+∞, such that for almost every x ∈ X,

ρ({t ∈ G ; tx ∈ Bk}) < +∞.
(ii) For every f ∈ L1(X,µ), fx : t 7→ f(tx) belongs to L1(G, ρ) for a.e.

x ∈ X.

Proof. (ii)⇒(i) is obvious: write X as a countable union of Borel subsets
Bk of finite measure and take f = 1Bk .

(i)⇒(ii). Let f ∈ L1(X,µ)+. It suffices to show that for every k and a.e.
x ∈ Bk, the function t 7→ f(tx) is ρ-integrable. We set

A =
{
x ∈ X ;

�

G

1Bk(tx) dρ(t) = 0
}
.

Note that A is G-invariant.
We first check that for a.e. x ∈ Bk ∩ A, we have

	
G f(tx) dρ(t) = 0.

Indeed,�

Bk∩A

�

G

f(tx) dρ(t) dµ(x) =
�

X×G
1Bk∩A(tx)f(x) dρ(t) dµ(x)

=
�

X

f(x)
( �

G

1Bk∩A(tx) dρ(t)
)
dµ(x) = 0.

The first equality uses relation (2.1) and the last one follows from the ob-
servation that 1Bk∩A(tx) 6= 0 implies x ∈ A since A is G-invariant. Hence,	
G f(tx) dρ(t) = 0 a.e. on Bk ∩A.

Now let us consider the integral
�

Bk\A

1
ρ({s ∈ G ; sx ∈ Bk})

( �

G

f(tx) dρ(t)
)
dµ(x).



410 C. ANANTHARAMAN-DELAROCHE

It is equal to
�

X×G
1Bk\A(x)

1
ρ({s ∈ G ; sx ∈ Bk})

f(tx) dµ(x) dρ(t)

=
�

X×G
1Bk\A(tx)

1
ρ({s ∈ G ; sx ∈ Bk})

f(x) dµ(x) dρ(t)

=
�

X\A

f(x)
( �

G

1Bk\A(tx)
ρ({s ∈ G ; sx ∈ Bk})

dρ(t)
)
dµ(x)

≤
�

X\A

f(x) dµ(x) < +∞,

since for every x such that tx ∈ Bk \A we have x ∈ G(Bk \A) = GBk \A,
and �

G

1Bk\A(tx) dρ(t) ≤
�

G

1Bk(tx) dρ(t) = ρ({s ∈ G ; sx ∈ Bk})

with
0 < ρ({s ∈ G ; sx ∈ Bk}) < +∞ a.e. on X \A.

It follows that
	
G f(tx) dρ(t) < +∞ for almost every x ∈ Bk \A.

Remark 3.6. The assumption of this lemma holds for instance when
G acts on (X,µ), where µ is a ∆-relatively invariant Radon measure on a
locally compact space X, the action being continuous with closed orbits and
compact stabilizers. Indeed, in this situation, for x ∈ X, the natural map
G/Gx → Gx, where Gx is the stabilizer of x, is a homeomorphism. Then if
B is an open relatively compact subset of X, the set {t ∈ G ; tx ∈ B} is open
and relatively compact in G and the conclusion follows. Particular cases are
proper actions, and more generally integrable actions [Rie04].

We shall now give a condition sufficient to guarantee the pointwise con-
vergence of sequences of orbital integrals for every f ∈ L1(X,µ). Note that
the integrability of the functions appearing in the statement below follows
from Lemma 3.5.

Theorem 3.7. Let (Gn) be an increasing sequence of closed subgroups
in G with dense union and satisfying condition (MC). Let G y (X,µ) be an
action leaving the measure ∆-relatively invariant. Assume that X =

⋃
Xk

where (Xk) is an increasing sequence of Borel subspaces such that for all k:

(i) µ(Xk) < +∞;
(ii) ρn({t ∈ Gn ; tx ∈ Xk}) > 0 for almost every x ∈ Xk and every n;

(iii) there exists ck > 0 such that for almost every x ∈ X,

sup
n
ρn({t ∈ Gn ; tx ∈ Xk}) ≤ ck.
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The following conditions are equivalent:

(a) for every k, limn ρn({t ∈ Gn ; tx ∈ Xk}) exists for a.e. x ∈ Xk;
(b) the pointwise limit limn

	
Gn
f(tx) dρn(t) exists a.e. on X, for every

f ∈ L1(X,µ);
(c) there exists a dense subset D of L1(X,µ) such that the pointwise

limit limn

	
Gn
f(tx) dρn(t) exists a.e. on X, for every f in D.

Remark 3.8. Assume that for every x ∈ Xk and every n,

(3.1) ρn({t ∈ Gn ; tx ∈ Xk}) ≤ ck.
Then assumption (iii) of the above theorem is fulfilled. Indeed, by invariance,
if (3.1) holds for x ∈ Xk, it also holds for x ∈ GnXk. On the other hand, if
x /∈ GnXk then

{t ∈ Gn ; tx ∈ Xk} = ∅,
and therefore ρn({t ∈ Gn ; tx ∈ Xk}) = 0 ≤ ck.

For the proof of Theorem 3.7, we need the following lemma which repeats
arguments from [RS67, Lemma 3].

Lemma 3.9. Let (Gn) be an increasing sequence of closed subgroups in G,
with dense union and satisfying condition (MC). Let G y (X,µ) be an ac-
tion leaving the measure ∆-relatively invariant. Let Xk ⊂ X satisfy condi-
tions (i) and (iii) of the previous theorem and let f : X → R+ be a Borel
function. For x ∈ X, set

f?(x) = sup
n

�

Gn

f(tx) dρn(t),

and for α > 0, set Qα = {x ∈ X ; f?(x) > α}. Then

(3.2) αµ(Qα ∩Xk) ≤ ck
�

Qα

f dµ.

Proof. For n ∈ N, we set φn(x) =
	
Gn
f(tx) dρn(t) and we introduce the

subsets

En = {x ∈ X ; φn(x) > α}, Dn = {x ∈ X ; sup
1≤l≤n

φl(x) > α}.

We fix an integer N . It is enough to show that

αµ(DN ∩Xk) ≤ ck
�

DN

f dµ,

since Qα is the increasing union of the sets DN , N ≥ 1.
We decompose DN into the disjoint union

⋃N
n=1 Fn, where

Fn = En ∩
N⋃

l=n+1

Ecl .
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Observe that GnEn = En, and therefore GnFn = Fn for every n. We have

αµ(Fn ∩Xk) ≤
�

Fn∩Xk

φn(x) dµ(x) ≤
�

X×Gn

1Fn∩Xk(x)f(tx) dµ(x) dρn(t)

≤
�

X×Gn

1Fn∩Xk(tx)f(x) dµ(x) dρn(t)

≤
�

X

f(x)
( �

Gn

1Fn∩Xk(tx) dρn(t)
)
dµ(x).

For 1Fn∩Xk(tx) to be non-zero, it is necessary that x ∈ Gn(Xk ∩ Fn) =
GnXk ∩ Fn. It follows that

αµ(Fn ∩Xk) ≤
�

Fn

f(x)
( �

Gn

1Fn∩Xk(tx) dρn(t)
)
dµ(x) ≤ ck

�

Fn

f(x) dµ(x).

The conclusion is then an immediate consequence of the fact that DN is the
disjoint union of the subsets Fn, 1 ≤ n ≤ N .

Remark 3.10. As a particular case, we shall use the following assertion.
Let G y (X,µ) be a G-action such that µ is ∆-relatively invariant. Let Xk

be a Borel subset of X with µ(Xk) < +∞. Assume the existence of ck such
that for almost every x ∈ X, ρ({t ∈ G ; tx ∈ Xk}) ≤ ck. Let f : X → R+ be
a Borel function. For α > 0, set Q̃α = {x ∈ X ;

	
G f(tx) dρ(t) > α}. Then

αµ(Q̃α ∩Xk) ≤ ck
�

Q̃α

f dµ.

Proof of Theorem 3.7. (b)⇒(a) is obvious. Let us show that (a)⇒(c).
Let f ∈ L1(X,µ) be null outside Xk. Fix p > k. By Theorem 3.3, we know
that

lim
n

	
Gn
f(tx) dρn(t)

ρn({s ∈ Gn ; sx ∈ Xp})
exists a.e. on Xp.

If (a) holds, we immediately get the existence of limn

	
Gn
f(tx) dρn(t) almost

everywhere on Xp and therefore on the union X of the Xp. Now, observe that
such functions f , supported in some Xk, form a dense subspace of L1(X,µ).

Finally, let us prove that (c) implies (b). We introduce

Λ(f)(x) = lim
N→+∞

( sup
n,m≥N

|φn(f)(x)− φm(f)(x)|).

We fix an integer p, and we shall show that Λ(f)(x) = 0 for almost every
x ∈ Xp. This will end the proof. Take g ∈ D. We have Λ(g) = 0 a.e. on X
and

Λ(f) = Λ(f)− Λ(g) ≤ Λ(f − g) ≤ 2|f − g|?.
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Given α > 0, it follows from Lemma 3.9, that

µ({x ∈ Xp ; Λ(f)(x) > α}) ≤ µ({x ∈ Xp ; |f − g|? > α/2}) ≤ 2cp
α
‖f − g‖1.

Since we can choose g so that ‖f − g‖1 is as close to 0 as we wish, we see that
µ({x ∈ Xp ; Λ(f)(x)>α}) = 0, from which we get µ({x ∈ Xp ; Λ(f)(x)>0})
= 0.

We apply Theorem 3.7 to the following situation where, in addition, it
is possible to identify the limit.

Theorem 3.11. Let G act properly on a locally compact σ-compact space
X and let µ be a ∆-relatively invariant Radon measure on X. Let (Gn) be an
increasing sequence of closed subgroups, whose union is dense in G and which
satisfies the modular condition (MC). Assume that the sequence (ρn) of Haar
measures is normalized with respect to ρ. Then, for every f ∈ L1(X,µ) and
a.e. x ∈ X,

(3.3) lim
n→∞

�

Gn

f(tx) dρn(t) =
�

G

f(tx) dρ(t).

Proof. Let (Xk) be an increasing sequence of open relatively compact
subspaces of X with X =

⋃
Xk. Of course, since the action is proper, we

have
0 < ρn({t ∈ Gn ; tx ∈ Xk}) < +∞

for every x ∈ Xk. Let us show that condition (iii) of Theorem 3.7 is also
fulfilled. Set Kk = {t ∈ G ; tXk ∩Xk 6= ∅}. This set is relatively compact.
We choose a continuous function ϕ on G, with compact support such that
1Kk ≤ ϕ. We have

∀n ∈ N, ∀x ∈ Xk, ρn({t ∈ Gn ; tx ∈ Xk}) ≤ ρn(ϕ).

Since limn ρn(ϕ) = ρ(ϕ) < +∞, there exists a constant ck such that

∀n ∈ N, ∀x ∈ Xk, ρn({t ∈ Gn ; tx ∈ Xk}) ≤ ck.

Now, (iii) of Theorem 3.7 is satisfied, by Remark 3.8. Clearly, we may also
choose ck such that, as well, ρ({t ∈ G ; tx ∈ Xk}) ≤ ck for all x ∈ X.

The required integrability conditions for (3.3) follow from Lemma 3.5.
The existence of the limit is an immediate consequence of Theorem 3.7, ap-
plied to the space D = Cc(X) of continuous functions with compact support
in X. We use the fact that for every x ∈ X and f ∈ Cc(X), the function
t 7→ f(tx) is continuous with compact support. Hence, due to the normal-
ization of the ρn, we have the existence of limn

	
Gn
f(tx) dρn(t). Here, we

even know that the limit is
	
G f(tx) dρ(t) for every x.
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It remains to identify the limit for every f ∈ L1(X,µ). We set

Λ̃(f)(x) = lim
N→∞

(
sup
n≥N

∣∣∣ �
Gn

f(tx) dρn(t)−
�

G

f(tx) dρ(t)
∣∣∣).

As in the proof of Theorem 3.7, we fix p, and we only need to show that
Λ̃(f)(x) = 0 for almost every x ∈ Xp. Let g be a continuous function with
compact support on X. We have

Λ̃(f)(x) = Λ̃(f)(x)− Λ̃(g)(x) ≤ Λ̃(f − g)(x)

≤ lim
N

(
sup
n≥N

∣∣∣ �
Gn

(f(tx)− g(tx)) dρn(t)
∣∣∣)+

∣∣∣ �
G

(f(tx)− g(tx)) dρ(t)
∣∣∣

≤ |f − g|? +
�

G

|f(tx)− g(tx)| dρ(t).

Given α > 0, we have

µ({x ∈ Xp ; Λ̃(f)(x) > α}) ≤ µ({x ∈ Xp ; |f − g|? > α/2})

+µ
(
{x ∈ Xp ;

�

G

|f(tx)− g(tx)| dρ(t) > α/2}
)

≤ 4cp
α
‖f − g‖1.

The last inequality follows from Lemma 3.9 and Remark 3.10. Now, we
approximate f by a sequence (fn) of continuous functions with compact
support. This gives µ({x ∈ Xp ; Λ̃(f)(x) > α}) = 0. The conclusion is ob-
tained by letting α go to 0.

As a particular case, we obtain the following result of Ross and Strom-
berg. In contrast to their proof, we do not use the theorem of Edwards and
Hewitt ([EH65, Theorem 1.6]) on pointwise limits of sublinear operators
whose ranges are families of measurable functions.

Corollary 3.12 ([RS67]). Let G be a locally compact group, and (Gn)
be an increasing sequence of closed subgroups whose union is dense in G
and which satisfies the modular condition (MC). Assume that the sequence
(ρn) of Haar measures is normalized with respect to ρ. Then, for every f ∈
L1(G, ρ),

lim
n

�

Gn

f(tx) dρn(t) =
�

G

f(t) dρ(t) a.e.

Proof. We apply Theorem 3.11 to G y (G, ρ).

We can now state our main theorem.

Theorem 3.13. Let G y (X,µ) be an action on a measure space, leav-
ing the measure ∆-relatively invariant. Let (Gn) be an increasing sequence
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of closed subgroups whose union is dense in G and which satisfies the mod-
ular condition (MC). Assume that the sequence (ρn) of Haar measures is
normalized with respect to ρ. The following properties are equivalent:

(a) X is a countable union of Borel subsets Bk of finite measure such
that for every k and almost every x ∈ X,

(3.4) ρ({t ∈ G ; tx ∈ Bk}) =
�

G

1Bk(tx) dρ(t) < +∞.

(b) For every f ∈ L1(X,µ) and almost every x ∈ X,

lim
n

�

Gn

f(tx) dρn(t) =
�

G

f(tx) dρ(t).

Proof. Assumption (b) contains the assertion that for every f ∈ L1(X,µ)
and almost every x ∈ X, the function fx : t 7→ f(tx) is ρ-integrable. Thus,
obviously (b) implies (a).

Let us show that (a) implies (b). Let f ∈ L1(X,µ)+. By Lemma 3.5,
there exists a conull subset E ⊂ X such that for every x ∈ E, the function
fx : t 7→ f(tx) is in L1(G, ρ). We apply to fx the previous corollary. There
exists a conull subset Ax in G such that for every s ∈ Ax:

(i) for n ∈ N, t ∈ Gn 7→ fx(ts) is ρn-integrable;
(ii) limn

	
Gn
fx(ts) dρn(t) =

	
G fx(t) dρ(t).

Denote by D the set of all (s, x) ∈ G×X for which:

• t ∈ Gn 7→ f(tsx) = fx(ts) is ρn-integrable for all n,
• t ∈ G 7→ f(tsx) = fx(ts) is ρ-integrable,
• lim

	
Gn
f(tsx) dρn(t) =

	
G f(tsx) dρ(t).

Then D is a Borel subset of G×X. Moreover,

D ⊃ {(s, x) ; x ∈ E, s ∈ Ax}.
It follows, by using twice the Fubini–Tonelli theorem, that D is conull, and
that for almost every s ∈ G, we have, for almost all x ∈ X:

(1) fsx is ρn-integrable for n ∈ N, and is ρ-integrable;
(2) limn

	
Gn
f(tsx) dρn(t) =

	
G f(tx) dρ(t).

Choose such an s and let C(s) be a conull subset of X for which (1) and (2)
occur. Then for any y ∈ sC(s), which is also conull, we have the required
properties.

Corollary 3.14. Let G be a compact group acting on a measure space
(X,µ) in such a way that the σ-finite measure µ is invariant. Let (Gn)
be an increasing sequence of closed subgroups of G whose union is dense
in G. Choose the Haar measures to have total mass 1. Then for every
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f ∈ L1(X,µ),

lim
n→∞

�

Gn

f(tx) dρn(t) =
�

G

f(tx) dρ(t) a.e.

Theorem 3.13 also applies to several other situations. We have already
mentioned in Remark 3.6 the case of continuous actions with closed orbits
and compact stabilizers. We now give another example of application.

Corollary 3.15. Let G be a locally compact σ-compact group acting on
a measure space (X,µ) in such a way that the σ-finite measure µ is invariant.
Let (Gn) be an increasing sequence of closed subgroups of G whose union is
dense in G and which satisfies the modular condition (MC). Assume that
the sequence (ρn) of Haar measures is normalized with respect to ρ. Let
f ∈ L1(G×X, ρ⊗ µ). Then for ρ⊗ µ almost every (s, x) ∈ G×X,

lim
n→∞

�

Gn

f(ts, tx) dρn(t) =
�

G

f(ts, tx) dρ(t).

Proof. We apply Theorem 3.13 to Bk = Uk × Vk, where (Uk)k is a se-
quence of relatively compact open subsets of G with

⋃
Uk = G, and where

(Vk)k is a sequence of Borel subsets of X, of finite measure, with
⋃
Vk = X.

It suffices to observe that

{t ∈ G ; t(s, x) ∈ Uk × Vk} ⊂ {t ∈ G ; ts ∈ Uk}
and

ρ({t ∈ G, t(s, x) ∈ Bk}) ≤ ρ({t ∈ G ; ts ∈ Uk}) < +∞.
Corollary 3.16. Let G y (X,µ) and (Gn) be as in the previous corol-

lary. Let h ∈ L1(X,µ) and let E be a Borel subset of G with ρ(E) < +∞.
Then, for almost every s ∈ G,

lim
n→∞

�

Es∩Gn

h(tx) dρn(t) =
�

Es

h(tx) dρ(t) a.e.

Proof. We apply the previous corollary with f(t, x) = 1E(t)f(x).

Example 3.17. Let G = R act on R by left translations, and for n ∈ N,
take Gn = Z/2n. The Haar measure on Gn is normalized by giving the
weight 1/2n to each point, and we take for µ the Lebesgue measure ρ on R,
normalized by ρ([0, 1]) = 1. Let E be a Borel subset of R with ρ(E) < +∞.
Corollary 3.16 gives that for every f ∈ L1(R, ρ) and almost every s ∈ R,

lim
n→∞

1
2n

∑
{k ; k/2n∈E+s}

f

(
k

2n
+ x

)
=

�

E+s

f(t+ x) dρ(t) a.e.

Let us take E = Q for example. For every s irrational, the above equality
holds (both sides are 0). On the other hand, for s ∈ Q and f = 1[0,1], this
equality is false for every x.
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3.4. An extension of a theorem of Civin. We are now interested in
the following problem: LetG y (X,µ) as before, that is, the σ-finite measure
µ is ∆-relatively invariant. We are given an increasing sequence of closed
subgroups of G with dense union and satisfying the modular condition. Let
E be a Borel subset of X with ρ(E) < +∞, and let f ∈ L1(X,µ). Find
conditions under which

lim
n

�

Gn∩E
f(tx) dρn(t) =

�

E

f(tx) dρ(t)

almost everywhere.
In [Civ55], Civin has considered the particular case where G = R, Gn =

Z/2n as in Example 3.17. Let (t, x) 7→ t+ x be a measure preserving action
of R on a measure space (X,µ). Civin’s result states that if f ∈ L1(X,µ)
satisfies f(1 + x) = f(x) a.e., then for almost every x ∈ X,

lim
n→∞

�

Gn∩[0,1[

f(t+ x) dρn(t) = lim
n→∞

1
2n

2n∑
k=1

f

(
k

2n
+ x

)
=

1�

0

f(t+ x) dρ(t).

More generally, we have:

Theorem 3.18. Let (Gn)n∈N be an increasing sequence of lattices of G
(therefore G is unimodular) with dense union, and let D be a fundamental
domain for G0. Let G y (X,µ) be a measure preserving action. Assume
that the Haar measure of G is normalized so that the volume of D is 1.
Let f ∈ L1(X,µ) be such that, for every t ∈ G0, f(tx) = f(x) almost
everywhere. Then

lim
n

1
|Gn ∩D|

∑
t∈Gn∩D

f(tx) =
�

D

f(tx) dρ(t) for a.e. x ∈ X.

Proof. We normalize the Haar measure on Gn by giving each point the
measure 1/|Gn ∩D|. This gives a normalized sequence of Haar measures
with respect to ρ. Corollary 3.16 shows that, for almost every s ∈ G,

lim
n

1
|Gn ∩Ds|

∑
t∈Gn∩Ds

f(tx) =
�

Ds

f(tx) dρ(t) a.e.

For every t ∈ Gn ∩Ds, there exists a unique g ∈ G0 such that gt ∈ D. Due
to the G0-invariance of f , we have f(tx) = f(gtx) and therefore

1
|Gn ∩Ds|

∑
t∈Gn∩Ds

f(tx) =
1

|Gn ∩D|
∑

t∈Gn∩D
f(tx) a.e.

On the other hand, by [Bou63, Corollaire, p. 69], the G0-invariance of f
implies that the integral

	
Ds f(tx) dρ(t) does not depend on the choice of

the fundamental domain: we have
	
Ds f(tx) dρ(t) =

	
D f(tx) dρ(t).
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[Bou63] N. Bourbaki, Éléments de mathématique. Fascicule XXIX. Livre VI: Intégra-
tion. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations,
Act. Sci. Indust. 1306, Hermann, Paris, 1963.

[Civ55] P. Civin, Abstract Riemann sums, Pacific J. Math. 5 (1955), 861–868.
[EH65] R. E. Edwards and E. Hewitt, Pointwise limits for sequences of convolution

operators, Acta Math. 113 (1965), 181–218.
[Jer59] M. Jerison, Martingale formulation of ergodic theorems, Proc. Amer. Math. Soc.

10 (1959), 531–539.
[Jes34] B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann.

of Math. (2) 35 (1934), 248–251.
[MZ37] J. Marcinkiewicz and A. Zygmund, Mean values of trigonometrical polynomials,

Fund. Math. 28 (1937), 131–166.
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