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LOCAL ADMISSIBLE CONVERGENCE OF HARMONIC
FUNCTIONS ON NON-HOMOGENEOUS TREES

BY

MASSIMO A. PICARDELLO (Roma)

Abstract. We prove admissible convergence to the boundary of functions that are
harmonic on a subset of a non-homogeneous tree equipped with a transition operator that
satisfies uniform bounds suitable for transience. The approach is based on a discrete Green
formula, suitable estimates for the Green and Poisson kernel and an analogue of the Lusin
area function.

1. Introduction. A well known property of the boundary behaviour of
harmonic functions in the upper half-plane R2

+ is the following. For any z
in the boundary R of R2

+ and any α > 0, denote by Γα(z) the cone with
vertex z, i.e.,

Γα(z) = {(x, y) ∈ R2
+ : |x− z| < αy}.

If f(x, y) is defined in an R2
+-neighbourhood of a boundary point z, then

f has non-tangential (or admissible) limit at z, say equal to l, if, for every
α > 0, f(x, y) → l whenever (x, y) → z and (x, y) ∈ Γα(z). Moreover, f
is called non-tangentially (or admissibly) bounded at z if, for some α, f is
bounded in Γα(z) (by a constant which depends on α and z). Then, if f is
harmonic in R2

+, the non-tangential boundedness of f and the existence of
its non-tangential limits are almost everywhere equivalent: this result is due
to Privalov [18]; a weaker form, that holds globally for positive harmonic
functions, was proved in [8] and is often called the Fatou non-tangential
convergence theorem.

Here is the local version of this statement. For any measurable subset E
of R, let Ẽ be the union of cones in R2

+ (of the same arbitrary width) with
vertex in E. Then the local admissible convergence theorem asserts that,
if f is defined in Ẽ and harmonic, then, at almost every point of E, f is
non-tangentially bounded if and only if its non-tangential limit exists.
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The area integral introduced by Lusin gives another characterization of
non-tangential boundedness of a harmonic function, referred to as the Lusin
area theorem in [14]. For every α > 0 the area integral of f is a function
defined on R as �

Γα(z)

‖∇f‖2.

The area theorem says that, almost everywhere, this integral is finite if and
only if f has admissible limit: it was proved by Marcinkiewicz and Zygmund
[14] and Spencer [20].

The general version of the local admissible convergence theorem and
the area theorem for Euclidean half-spaces is due to A. P. Calderón [4] and
E. M. Stein [21] (see also [22, Chapter VII]). Stein’s approach uses the Green
formula to transform the area integral of a harmonic function over smooth
compact domains into an integral over their boundary curves.

The local admissible convergence theorem and the area theorem have a
natural extension to the Poincaré half-plane or hyperbolic disc [6]. Observe
that in the hyperbolic metric the cone Γα(z) becomes a tube around a
geodesic whose end point is z. Stein’s approach has been adapted to general
symmetric spaces of rank one in [13]. Further extensions to negatively curved
Riemannian manifolds are in [15].

A natural discrete counterpart of semisimple symmetric spaces of non-
compact type of rank one is given by homogeneous and semihomogeneous
trees (see [19]). A natural Laplace operator on a homogeneous tree is the
nearest neighbour isotropic transition operator. Its 1-eigenspace consists of
harmonic functions defined on the vertices of homogeneous trees (used in [9]
to study representation theory of groups of automorphisms of trees). Non-
tangential convergence of harmonic functions on homogeneous trees has been
studied in [11]. The Lusin area theorem has recently been extended to ho-
mogeneous trees [1], again by making use of the Green formula, proved in [7]
in the context of more general (not necessarily homogeneous) trees.

Homogeneous trees are homogeneous spaces of suitable automorphism
groups related to semisimple p-adic groups. But in order to state Lusin’s
theorem on a tree, we do not need any group action. Indeed, the area func-
tion has been introduced in [12] on general locally finite trees, not necessarily
homogeneous. Its use to obtain results on the boundary behaviour of har-
monic functions on a large class of trees was briefly mentioned at the end
of [12]. The aim of that reference is to study Hp spaces of harmonic func-
tions on trees. Harmonicity is defined with respect to a nearest neighbour
transition operator P whose transition probabilities are bounded away from
0 and 1

2 (these uniform bounds insure transience). The points at infinity
are the geodesic rays in the tree originating at a fixed reference vertex. The
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area function is given by the series of squares of weighted differences (with
weights given by P ) of values of f in tubes around a geodesic ray (that is,
in a tubular neighbourhood determined by a point at infinity). See more
details in Subsection 2.4 below. The methods of [12] are probabilistic and
potential-theoretic, based upon hitting probabilities, martingales and their
Poisson transform. An independent, more geometric approach, based upon
good lambda inequalities, is followed in [7]; it makes use of a natural adap-
tation to the discrete setting of trees of the Green formula (a tool typical of
differential analysis).

Taking advantage of tools that do not require any homogeneity, in this
paper we study the local boundary behaviour of harmonic functions on a
tree T that is non-homogeneous but regular (in the sense of Subsection
2.2 below) and extend the Lusin area theorem to this environment, by us-
ing, as in [1], the Green formula of [7]. Our proof follows the arguments
of [1]; we refer the reader to this reference for its links to the proof in
the classical, continuous setting. We need estimates for the area function
in the tubular subset W (E) of T generated by a measurable subset E of
the boundary. These estimates are obtained on appropriate slabs (finite sets
that exhaust W (E)), by transporting the inequalities to the boundary of
the slabs via the Green formula. We emphasize the following two facts:
the harmonic function is not assumed positive, and we look for conditions
equivalent to the existence of its boundary limits locally, on a measurable
subset of the boundary Ω of T . Indeed, the function does not really need
to be harmonic everywhere, but only in a compact neighbourhood of E in
T ∪ Ω; for the sake of simplicity, however, all our statements are given for
functions harmonic on all of T (indeed, the local admissible convergence
theorem is not much more difficult than the global result, a fact also noted
in [17] in the context of negatively curved manifolds). Instead, for positive
harmonic functions on trees, global admissible convergence is not hard to
prove: see [11], and particularly its Theorem 2 for the non-homogeneous
environment.

Compared to the approach for the half-space or for homogeneous trees,
some peculiar differences arise in the present context. For instance, now the
Green kernel is not harmonic in the second variable, but only conjugate
harmonic. This fact makes it more difficult to extend to the interior of
the slabs estimates valid for their boundaries, because we cannot use the
maximum principle for harmonic functions.

A part of the proof can be derived from estimates for the area functions
given in [7], but the arguments of [7] are more difficult than needed here
(they are based on good lambda inequalities aimed at Lp estimates, not just
pointwise estimates almost everywhere). Unfortunately, the result follows by
the argument of this reference, but not directly from its statement, which
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includes an additional condition aimed at a deeper result. We include the
proof here, with a different exposition to make reading easier.

Simpler pointwise estimates of the same type, based on the analogy with
the results of [2, 3, 15] in continuous settings, were also obtained in [16]: its
arguments are phrased in classical probabilistic terms instead of the com-
binatorial probability and potential theory of the parallel approach of [12].
The results in [16] deal with radial convergence and are global rather than
local, but, as seen later in the case of manifolds in [17], both these restric-
tions could be easily bypassed. On the other hand, in contrast to the spirit
of the present paper, the analogy between trees and symmetric spaces (that
is, the Green formula and differential forms) is not considered in [16].

2. Notation and main result

2.1. Trees. We follow most of the terminology established in [1]. Here
is a review. A tree T is a connected, simply connected, locally finite graph.
With abuse of notation we shall also write T for the set of vertices of the
tree. In contrast with [1], here we do not assume that T is homogeneous:
the number of edges joining at every vertex of T may vary, but stays finite
(because of some other forthcoming assumptions, it will turn out to be
bounded). For x, y ∈ T we write x ∼ y if x, y are neighbours. For any
x, y ∈ T there exist a unique n ∈ N and a unique minimal finite sequence
(z0, . . . , zn) of distinct vertices such that z0 = x, zn = y and zk ∼ zk+1

for all k < n; this sequence is called the geodesic path from x to y and is
denoted by [x, y]. The integer n is called the length of [x, y] and is denoted
by d(x, y); d is a metric on T . We fix a reference vertex o ∈ T and call it the
origin. The choice of o induces a partial ordering in T : x ≤ y if x belongs
to the geodesic from o to y. For x ∈ T , the length |x| of x is defined as
|x| = d(o, x). For any vertex x and any integer k ≤ |x|, xk is the vertex of
length k in the geodesic [o, x]. The sector S(x) generated by a vertex x 6= o
is the set of vertices v such that x ∈ [o, v].

For k ∈ N let Sk be the circle {x ∈ T : |x| = k}, and Bk the ball
{x ∈ T : |x| ≤ k}.

Let Ω be the set of infinite geodesics starting at o. In analogy with the
previous notation, for ω ∈ Ω and n ∈ N, ωn is the vertex of length n in the
geodesic ω. For x ∈ T the interval U(x) ⊂ Ω, generated by x, is the set
U(x) = {ω ∈ Ω : x = ω|x|}. The sets U(ωn), n ∈ N, form an open basis at
ω ∈ Ω. Equipped with this topology, Ω is compact and totally disconnected.

2.2. Very regular transition operators. On the vertices of T we
consider a very regular transition operator, that is, an operator P with
transition probabilities p(u, v) that do not vary too much, in the following
sense:
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(H1) P is a nearest neighbour operator, that is, p(u, v) = 0 unless the
vertices u and v are neighbours;

(H2) for some constants δ−, δ+, with 0 < δ± < 1/2, and for all neigh-
bours u and v, the following inequality holds:

δ− ≤ p(u, v) ≤ 1/2− δ+.
Observe that the lower bound p(u, v) ≥ δ− yields a bound on the ho-

mogeneity degree (that is, the number of neighbours) at each vertex: this
number is bounded by 1/δ−. Instead, the upper bound p(u, v) ≤ 1/2 − δ+
implies that, once a reference vertex o is fixed, the probability of moving for-
ward is larger than the probability of moving backwards, and so it is clear
that the random walk induced by P is transient (the random vertex Xn

at time n of the random walk induced by P moves definitively out of ev-
ery finite set almost surely). A rigorous proof of transience was given by
W. Woess and the author in [12, Appendix]. Therefore this upper bound
provides a uniform estimate for the backward and forward flows, that is,
for transience; we remark that this uniform condition is sufficient but not
necessary for transience, but it is very natural in this context.

Remark 1. For the sake of simplicity, from now on we shall take δ+ = δ−
and shall call this constant δ, even if this leads to the unnecessary restriction
δ ≤ 1/4; deriving more precise formulas involving two different constants is
a simple matter that does not add anything important to our results and is
left to the interested reader.

2.3. Harmonic measure. For every positive integer n, the family
{U(x) : |x| = n} is a partition of Ω into finitely many open and closed
sets. These sets generate a σ-algebra on the boundary Ω of T . Taking ad-
vantage of transience, we define a measure ν on every set E in this σ-algebra
by

(2.1) ν(E) = Pr[X∞ ∈ E],

where the limit random boundary point X∞ = limn→∞Xn exists almost
surely because of transience (since there are no absorbing states). The mea-
sure ν extends to a regular Borel probability measure on Ω, called the bound-
ary hitting distribution, or harmonic measure.

2.4. Harmonic functions, the area function and local admissible
convergence. First of all, let us define the Laplace operator ∆ = P − I,
where I is the identity operator. The transposed operator of the transition
operator P is denoted by P ∗; that is, for all vertices x, y,

p∗(x, y) = p(y, x).

The conjugate Laplacian is the transpose operator ∆∗ = P ∗ − I.
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Definition 1. A function f : T → R is harmonic at x ∈ T if Pf(x) ≡∑
y∼x p(x, y) f(y) = f(x). A function is harmonic on T if it is harmonic

at every x ∈ T ; equivalently, ∆f = 0. A function is conjugate harmonic if
∆∗f = 0.

Denote by Λ the set of all the oriented edges (i.e., ordered pairs of neigh-
bours). For σ ∈ Λ denote by b(σ) the beginning vertex of σ and by e(σ)
the ending vertex: σ = [b(σ), e(σ)]. The choice of a reference vertex o ∈ T
(see 2.1) gives rise to a positive orientation on edges: an edge σ is positively
oriented if b(σ) is the predecessor of e(σ).

The beginning and ending vertices induce two maps b : Λ → T and
e : Λ → T defined as above. These maps induce two different liftings, f ◦ b
and f ◦ e, for any f : T → R.

Definition 2. For any function f : T → R, the gradient ∇f : Λ→ R is

∇f(σ) = f(e(σ))− f(b(σ)).

For x ∈ T , let Λ(x) = {σ ∈ Λ : b(σ) = x} be the star of x.

Definition 3. For x ∈ T ,

‖∇f(x)‖2 ≡
∑

σ∈Λ(x)

p(σ)|∇f(σ)|2.

Remark 2. For future reference, we observe that, for every edge σ, one
has p(σ) > δ by the regularity assumption (H2), hence

(2.2) |∇f(σ)| ≤ 1√
p(σ)

‖∇f(x)‖ < 1√
δ
‖∇f(x)‖.

For x ∈ T and ω ∈ Ω we consider the distance d(x, ω) = minj∈N d(x, ωj).

Definition 4. Let α ≥ 0 be an integer. The tube Γα(ω) around the
geodesic ω ∈ Ω is

Γα(ω) = {x ∈ T : d(x, ω) ≤ α}.
Definition 5. The area function of f on T is the function on Ω defined

by

Aαf(ω) =
( ∑
x∈Γα(ω)

‖∇f(x)‖2
)1/2

.

Observe that if f ∈ L1(T ), then Aαf(ω) <∞ for every α and ω, because
T has bounded homogeneity degree.

Definition 6. A function f on T has non-tangential limit at ω ∈ Ω if,
for every integer α ≥ 0, lim f(x) exists as |x| → ∞ and x ∈ Γα(ω).

We say that f has non-tangential limit up to width β if the above limit
exists for all 0 ≤ α ≤ β.
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A function f on T is non-tangentially bounded at ω ∈ Ω if, for some
M > 0, one has |f(x)| ≤M for x ∈ Γ0(ω).

Observe that this definition of non-tangential boundedness is equivalent
to saying that, for some non-negative integer α = α(ω), f is bounded on a
tube of width α around the geodesic Γ0(ω) (by a different constant depend-
ing on α). This of course does not mean that, for a given ω, boundedness of
f on the geodesic ray Γ0(ω) is equivalent to boundedness on a tube of pos-
itive radius around ω; nevertheless, as a consequence of our main theorem
below, we shall see that this is true for almost all ω.

Definition 7. The cone Wα(E) over a measurable subset E of Ω is

Wα(E) =
⋃
ω∈E

Γα(ω).

For any integer s > 0 let W s
α(E) =

⋃
ω∈E Γα(ω) ∩ [s;∞) (here, with abuse

of notation, we denote by [m, k] the corona of vertices of T whose length is
between m and k).

The main goal of this paper is the following extension of the Lusin area
theorem [14, 20] to non-homogeneous trees. This theorem has been proved
for homogeneous trees in [1].

Main Theorem. Let E be a measurable subset of Ω and f a harmonic
function on T . Then the following are equivalent:

(i) f is non-tangentially bounded at almost every ω ∈ E;
(ii) f has non-tangential limit at almost every ω ∈ E;

(iii) A0f(ω) <∞ for almost every ω ∈ E;
(iv) for every fixed α ≥ 0, Aαf(ω) <∞ for almost every ω ∈ E.

The same statement holds if f is harmonic on a connected subset of T whose
boundary contains E, or more precisely on some tube Wβ(E), provided that
α ≤ β in (iv) and, in (ii), f is assumed to be non-tangentially bounded up
to width β.

By the remark at the end of Definition 6, in this discrete setting condition
(iii) in the theorem is equivalent to the more familiar statement that for
almost every ω there is some integer α such that Aαf is finite at ω.

3. Estimates for the Green and Poisson kernels. The proof of the
Main Theorem needs some probabilistic estimates that we develop in this
section. Some results are taken without proof from [12].

Let F (u, v) be the probability that the random walk starting at u with
law P hits v: that is, if Xn is the random vertex visited at time n, then

F (u, v) = Pr[∃n > 0 : Xn = v, Xj 6= v ∀j < n |X0 = u].
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Since a nearest neighbour random walk from u to v must visit every in-
termediate vertex, a standard stopping time argument yields the following
multiplicativity rule: if u0, u1, . . . , un are consecutive vertices in a geodesic
ray, then

(3.1) F (u0, un) =
n∏
i=1

F (ui−1, ui).

Of course, the nth operator power Pn has entries Pn(u, v) given by the
probability p(n)(u, v) of moving from u to v in n steps.

The Green kernel G(u, v) of the transition operator is the expected num-
ber of visits to v of the random walk starting at u:

(3.2) G(u, v) =
∞∑
n=0

Pn(u, v) =
∞∑
n=0

p(n)(u, v).

Remark 3. For each v ∈ T , the Green kernel G(x, v) is harmonic with
respect to x at every vertex x 6= v, and conjugate harmonic with respect to
v at every v 6= x.

Indeed, fix v and write γ(x) = G(x, v) ≡
∑∞

n=0 P
n(x, v) and δv(x) = 1

if x = v and 0 otherwise. Then

Pγ(x) =
∑
y∼x

p(x, y)γ(y) =
∑
y∼x

p(x, y)
∞∑
n=0

p(n)(y, v)

=
∞∑
n=0

∑
y∼x

P (x, y)Pn(y, v) =
∞∑
n=0

Pn+1(x, v) = γ(x)− δv(x)

(indeed, P 0 is the identity operator that has entries 1 on the diagonal and
zero otherwise).

The same argument shows that G is conjugate harmonic in the second
variable v except at v = x.

G(u, v) has a natural meaning in combinatorics: it is the weighted num-
ber of finite paths from u to v. The stopping time argument mentioned
above now yields (as in [5, Proposition 2.5])

(3.3) G(u, v) = F (u, v)G(v, v) for all u 6= v.

Given two positive functions f and g, we write f ≈ g if f < Cg and
g < Cf for some constant C.

Proposition 3.1 ([12, Corollary 1, Proposition 2]). If P is very regular,
then we have the following equivalence of functions of x ∈ T :

ν(U(x)) ≈ F (o, x) ≈ G(o, x).

We now obtain upper and lower bounds on F . The lower bound is ob-
vious: given any two neighbours u and v, the regularity assumption (H2)
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yields
F (u, v) > p(u, v) ≥ δ.

For the upper bound, for all u ∼ v the multiplicativity rule (3.1) gives,
for all u ∼ v,

F (v, u) =
p(v, u)

1−
∑

w∼v,w 6=u p(v, w)F (w, v)

[12, identity (4)]. Since p(v, u) < 1
2 − δ by (H2),

∑
w∼v, w 6=u p(v, w) = 1 −

p(v, u) < 1− δ by (H1) and F (w, v) ≤ 1, this means that, for u ∼ v,

F (u, v) <
1/2− δ

δ
.

Unfortunately, as already observed, δ < 1/4 and so the right hand side of
the last inequality is larger than 1, not useful for the goal of establishing
exponential decay of the hitting probabilities F (u, v) when the distance
between u and v grows.

Here we have used the fact that the sum
∑

w∼v,w 6=u p(v, w) is the com-
plement to 1 of the remaining transition probability p(u, v), which is larger
than δ by (H1). A more accurate analysis can be based on the comparison
of the transition operator on vertices v with a transition operator on the
integers |v|. For the latter operator, the previous sum reduces to one term
only, bounded above by 1/2− δ by (H2); so its complement to 1 is bounded
below by 1/2 + δ. This yields the stronger estimate

F (u, v) <
1/2− δ
1/2 + δ

.

proved rigorously by W. Woess and the author in the Appendix of [12].
Again by the same stopping time argument we see that the function

F (u, v) (regarded as a function over geodesic arcs) is multiplicative (it splits
as a product over the constituent edges, as noted in [5] and [9, identity (1)],
among many other references). Therefore the previous estimate now yields
the following result.

Corollary 3.2 ([12, Proposition 2]). If the transition operator P is
very regular, with δ as in (H2), then for all vertices u, v at distance n,

δn < F (u, v) <
(

1/2− δ
1/2 + δ

)n
and G(u, v) <

(
1/2− δ
1/2 + δ

)n
G(v, v).

Moreover, νu(U(v)) := Pr[X∞ ∈ U(v) | x0 = u] satisfies the rule

νu(U(v)) = F (u, v)
1− F (v, u)

1− F (u, v)F (v, u)
.

Therefore the harmonic measure ν satisfies the following inequalities: for
some 0 < ε < 1 (namely, ε = (1/2−δ)/(1/2+δ)) and for all vertices x in T
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and v in the sector S(x) at distance d(v, x) from x,

ν(U(v)) < (1− ε)d(v,x)ν(U(x)).

By Proposition 3.1, the Green function G on T is equivalent to the
function g(x) = ν(U(x)) introduced in [1]. Therefore the statements that
yield bounds involving g translate directly into the corresponding results
for G. We now list these statements, taken from [1, Section 4]; however, we
first clarify our notation as follows:

Definition 8 (Variants of the Green kernel). For every x ∈ T ,

G(x) = G(o, x),(3.4a)
g(x) = ν(U(x)),(3.4b)

and for every measurable subset E ⊂ Ω,

(3.4c) gE(x) = ν(U(x) ∩ E).

Definition 9. For every x, v ∈ T the Martin kernel K(x, v) is

K(x, v) ≡ G(x, v)
G(o, v)

=
F (x, v)
F (o, v)

.

For every x ∈ T and ω ∈ Ω the Poisson kernel K(x, ω) is defined as

K(x, ω) ≡ lim
v→∞

G(x, v)
G(o, v)

= lim
v→∞

F (x, v)
F (o, v)

(the second identity follows from (3.3)). As a consequence of Remark 3, for
every ω ∈ Ω, K(·, ω) is harmonic on T .

Corollary 3.3. Denote by {xj : j = 0, . . . , |x|} the vertices in the
geodesic arc [o, x].

(i) If v ∈ S(x) then (
1/2 + δ

1/2− δ

)|x|
< K(x, v) < δ−|x|.

The same inequalities are satisfied by K(x, ω) if ω ∈ U(x).
(ii) If v ∈ S(xj) \ S(xj+1), with j = 0, . . . , |x| − 1, then

δ|x|−j
(

1/2 + δ

1/2− δ

)j
< K(x, v) < δ−j

(
1/2− δ
1/2 + δ

)|x|−j
.

The same inequalities are satisfied by K(u, ω) if ω ∈ U(xj)\U(xj+1).
(iii) If x < y and v /∈ S(x) then

K(y, v)
K(x, v)

<

(
1/2− δ
1/2 + δ

)d(x,y)
.

The same inequalities hold for K(y, ω)/K(x, ω) if ω /∈ U(x).
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Proof. By the multiplicativity rule (3.1) and (3.3), for every x ∈ T and
for every j as above, the fraction G(x, v)/G(o, v) = F (x, v)/F (o, v) is con-
stant with respect to v for all v in S(xj) \ S(xj+1), that is, it depends only
on the bifurcation index j = N(x, v), which is the number of edges in com-
mon of the finite geodesic arcs [o, x] and [o, v]. Therefore the same estimates
that hold for K(x, v) when v ∈ S(x) or v ∈ S(xj) \ S(xj+1) also hold for
K(x, ω) when ω ∈ U(x) or ω ∈ U(xj) \ U(xj+1). For the same reason, if
v ∈ S(x), then F (x, v)/F (o, v) = 1/F (o, x), and part (i) follows from Corol-
lary 3.2. If, more generally, v ∈ S(xj)\S(xj+1), with j = 0, . . . , |x|−1, then
K(x, v) = F (x, xj)/F (o, xj), and the same argument yields part (ii).

We prove part (iii) for ω /∈ S(x) (the argument for v /∈ U(x) is the same).
Let m be the bifurcation index m = N(x, ω). Then, if x < y, one has

K(y, ω)/K(x, ω) =
F (y, xm)
F (0, xm)

/F (x, xm)
F (0, xm)

= F (y, x) <
(

1
2

+ δ

)d(x,y)
,

by the multiplicativity rule (3.1) and Corollary 3.2.

Therefore the Poisson kernel, being a locally constant function on Ω,
belongs to Lp(Ω) for every x ∈ T , for 1 ≤ p ≤ ∞.

The Poisson integral of a function h in L1(Ω) is defined by

Kh(x) =
�

Ω

h(ω)K(x, ω) dν

where ν is the harmonic measure introduced in (2.1). More generally, by
integrating measures on Ω against the Poisson kernel one obtains harmonic
functions on T ; this integral representation is called the Poisson represen-
tation. The measure ν on Ω represents the harmonic function with constant
value 1: the Poisson integral of the constant function 1 on Ω is the function 1
on T . The measure ν is also called the Poisson measure and its support Ω
is the Poisson boundary of T .

The following terminology is convenient:

Definition 10. For any vertex x and any integer k ≤ |x|, xk denotes
the vertex of length k in the geodesic [o, x].

Then the Poisson kernel, by its Definition 9, Corollary 3.3 and [10, Corol-
lary 10-22], has the following properties:

(a) K(xk+k1 , ω) <
(1/2−δ

1/2+δ

)k1K(xk, ω) for each ω 6∈ U(xk);
(b)

	
ΩK(x, ω) dν = 1 for every x ∈ T .

Lemma 3.4. Let ε > 0 and h ∈ L∞(Ω). Fix y ∈ T with |y| = k0 and let
U = U(y). Assume that h(ω) > r + ε for all ω ∈ U and some r ∈ R. Then
there exists R > 0 such that Kh(x) > r when x ≥ y and |x| ≥ k0 +R. The
constant R depends only on ε and ‖h‖∞.
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Proof. Write η = (1/2− δ)/(1/2 + δ) and

Kh(x) ≡
�

Ω

h(ω)K(x, ω) dν =
�

U

h(ω)K(x, ω) dν +
�

Ω\U

h(ω)K(x, ω) dν.

As x ≥ y and |x| ≥ k0 + R, then, by property (a) above, for each
ω 6∈ U , K(x, ω) ≤ ηRK(y, ω). Therefore, if R is sufficiently large and we
set M = ‖h‖∞,∣∣∣ �

Ω\U

h(ω)K(x, ω) dν
∣∣∣ ≤MηR

�

Ω\U

K(y, ω) dν ≤MηR <
ε

2
.

Moreover, by (b) and the hypothesis h(ω) > r + ε in U ,
�

U

h(ω)K(x, ω) dν(ω) > (r + ε)
(

1−
�

Ω\U

K(x, ω) dν(ω)
)
.

By (a), the integral on the right hand side is bounded by ηR whenever y ≤ x
and |x| ≥ k0 +R. Hence�

U

h(ω)K(x, ω) dν(ω) > (r + ε)(1− ηR).

By assumption, r + ε < M . Therefore Kh(x) > (r + ε)(1 − ηR) −MηR >
r + ε− 2MηR = r, if R has been chosen large enough that MηR < ε/2.

4. Proof of the Main Theorem. The proof of the Main Theorem
is rather long; we prove the chain of its implications as separate theorems.
Note that (ii)⇒(i) and (iv)⇒(iii) are trivial. Then it is enough to show that
(i)⇒(iv), (i)&(iii)⇒(ii) and (iii)⇒(i).

We prove first that (i) implies (iv).

Theorem 4.1. For every measurable set E ⊂ Ω, and every harmonic
function f non-tangentially bounded almost everywhere on E, the area func-
tion of f of every width α ≥ 0 is finite almost everywhere on E.

The proof requires some definitions and results on difference operators
on trees, developed in [7], which we outline here.

Definition 11 (Variants of the gradient). For every edge σ = [u, v] and
all functions f on the vertices of T , we set p(σ) = p(u, v). We have already
introduced the definition of gradient as

∇f(σ) = (f ◦ e− f ◦ b)(σ).

We extend the gradient to functions on edges:

∇f(σ) = f(σ∗)− f(σ),

where σ∗ = [e(σ), b(σ)] is the edge with the opposite orientation of σ. More-
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over, we set

∂f(σ) = p(σ)∇f(σ),
∂∗f(σ) = p∗(σ)∇f(σ),
Df(σ) = p(σ) f ◦ e(σ)− f ◦ b(σ),

D†f = p∗(σ) f ◦ e(σ)− f ◦ b(σ).

In other words,

Df([u, v]) = p(u, v)f(v)− f(u),(4.1)

D†f([u, v]) = p(v, u)f(v)− f(u).(4.2)

A straightforward computation leads to the following result, a discrete
analogue of a well known differential identity in Rn.

Lemma 4.2.
∇f2 = 2f ◦ b∇f + (∇f)2.

Remark 4. Identity (4.2) is slightly different from the corresponding
identity for D because, by definition of transition operator,

∑
t∼v p(v, t) ≡ 1

but in general
∑

t∼v p(t, v) 6= 1: the latter sum is constantly 1 for an isotropic
transition operator on a homogeneous tree, because in this case P ∗ = P ,
but it is different from 1 already in the simplest non-trivial case, when P
is isotropic and the tree is semi-homogeneous (i.e., with two alternating
degrees of homogeneity). However, we have already observed that, since P
is uniformly bounded below by δ > 0, the homogeneity degree (i.e., the
number of neighbours) at every vertex is bounded by 1/δ; therefore we have
the bound

(4.3)
∑
t∼v

p(t, v) ≤ 1
δ
.

Definition 12. The boundary ∂Q of a subset Q ⊂ T is ∂Q = {σ ∈ Λ :
b(σ) ∈ Q, e(σ) 6∈ Q}. The trace b(A) of a subset A ⊂ Λ is b(A) = {b(σ) :
σ ∈ A}. For Q ⊂ T , the set b(∂Q) = {x ∈ Q : y 6∈ Q for some y ∼ x} is also
called the frontier of Q.

The Green formula, well known in the continuous setup, has been ex-
tended to the discrete context of trees in [7].

Proposition 4.3 (The Green formula). If f and h are functions on T
and Q is a finite subset of T , then∑

Q

(h∆f − f∆∗h) =
∑
∂Q

(h ◦ bDf − f ◦ bD†h)

=
∑
∂Q

(h ◦ b ∂f − f ◦ b ∂∗h− h ◦ b f ◦ b∇P ).
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Proposition 4.4 (The Green identity). For all real-valued functions f
on T and for every x ∈ T ,

∆(f2)(x) = ‖∇f(x)‖2 + 2f(x)∆f(x).

Proof of Theorem 4.1. We first prove the following:

Claim. If f is harmonic on T and bounded, then ‖Aαf‖L2(E) <
C‖f‖L∞(W0(E)) for some constant C > 0 independent of f .

It was proved in [12, Theorem 5] that Aαf and Aβf are equivalent in
the L2 norm for every α, β. Therefore it is enough to restrict attention to
A0f . Then

‖A0f‖2L2(E) =
�

E

∑
y∈Γ0(ω)

∑
v∼y

p(v, y) |f(v)− f(y)|2 dν(ω)(4.4)

=
�

E

∑
y∈W0(E)

‖∇f(y)‖2χΓ0(ω)(y) dν(ω)

=
∑

y∈W0(E)

‖∇f(y)‖2
�

E

χΓ0(ω)(y) dν(ω)

=
∑

y∈W0(E)

ν(U(y) ∩ E)‖∇f(y)‖2

=
∑

y∈W0(E)

gE(y)‖∇f(y)‖2

(notation as in (3.4c)).
We know from Proposition 3.1 that gE < CG for some positive con-

stant C. Let us set Bn = {y : |y| ≤ n}. It follows from the last identity, the
Green identity (Proposition 4.4), the Green formula (Proposition 4.3) and
the fact that the Green function g is conjugate harmonic except at o that

‖A0f‖2L2(E) = lim
n→∞

∑
y∈Bn∩W0(E)

gE(y)‖∇f(y)‖2

< C lim
n→∞

∑
y∈Bn∩W0(E)

G(y)∆(f2)(y)

= C lim
n→∞

∑
y∈Bn∩W0(E)

G(y)∆(f2)(y)− (f2)(y)∆∗G(y)

= C lim
n→∞

∑
σ=[y−,y]∈∂Bn∩W0(E)

(G(y−)D(f2)(σ)(f2)(y−)D†G(σ)).

Now from (4.1) we see that, for every edge σ = [u, v],

G ◦ b(σ)Df2(σ) = G(u)p(u, v)(f2(v)− f2(u))
= G(u)p(u, v)(f(v)− f(u))(f(v) + f(u)).
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Therefore ∑
σ∈∂Bn∩W0(E)

|G ◦ b(σ)Df2(σ)| ≤ (2‖f‖2L∞(W0(E)))
∑
|y|=n

G(y).

Moreover, clearly,∑
σ∈∂Bn∩W0(E)

f2 ◦ b(σ) |D†g|(σ) ≤ ‖f‖2L∞(W0(E))

∑
∂Bn

|D†g|.

It follows from (4.2) and (4.3) that |D†g(σ)| ≤ Cg(b(σ)) for some constant
C > 0. Therefore

∑
b(∂Bn) |D†g| is bounded by C

∑
b(∂Bn) g. Now, by Propo-

sition 3.1, the latter sum is bounded, and the claim is proved.
In particular, if f is bounded in Wα(E) then Aαf is finite almost every-

where in E.
Let us now consider the assumption of the Theorem: f is non-tangentially

bounded almost everywhere on W0(E). Let

Ek = {ω ∈ E : |f | < k on Γ0(ω)}.
The assumption is equivalent to E =

⋃
k Ek except for a null set. For ε > 0

choose K such that the set E(K) =
⋃
k≤K Ek satisfies the inequality ν(E \

E(K)) < ε. On E(K) the function f is bounded by K, hence Aαf is finite
by the claim and the remarks after it. Since ε is arbitrary, Aαf is finite
almost everywhere in E.

Next, we prove that (iii) and (i) imply (ii). For this we need some prepa-
ration. We start with the solution of the Dirichlet problem on a connected
region of a tree, which, surprisingly, does not seem to be in print anywhere
in its full form. The boundary FQ of a connected subset Q ⊂ T is the set of
infinite geodesic rays contained in Q (the boundary at infinity F∞Q) and of
those vertices in Q that belong to an edge whose other vertex is outside Q
(the finite part of the boundary). A function on FQ is measurable if it is
measurable on F∞Q with respect to the Borel σ-algebra of Ω (on the finite
part of the boundary, which is discrete, all functions are measurable). It is
clear that harmonic functions satisfy the maximum principle: if f is har-
monic in Q, the maximum of |f | cannot be attained at an interior vertex.
As a consequence, we have the first part of the next lemma (see also the
final remarks in [23]). The rest of the statement follows from the proof of
[11, Theorem 3] (see also [5, Theorem 3.3]).

Lemma 4.5. Let Q be a connected region in T , and let FQ be its bound-
ary. Every function h in L∞(FQ) has a harmonic continuation f to the
whole of Q whose maximum is attained on FQ. The function f has non-
tangential limit equal to h almost everywhere on the infinite part of the
boundary. Of course, if Q is not connected, the same statement holds sepa-
rately for each connected component.
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The next preliminary result is a uniformization statement, adapted from
[1, Proposition 4.2]. This lemma proves that a certain inclusion holds for
tubes of width β and cones of width α, for every α and β, in a suitable
closed subset D of E (that depends on α, β and ε) such that ν(E \D) < ε.
In [16, Corollary 4], a similar property is proved to hold almost everywhere
in E in the case α = 0 and β = 1. Then an adaptation of [16, Corollary 4]
should actually prove that the inclusion holds almost everywhere in E. But
we do not need this stronger result and do not wish to obtain it by following
the arguments of [16], based upon probability. Indeed, we aim to show that a
proof of our Main Theorem can be given by following entirely the argument
developed in [13] for rank one hyperbolic spaces, based on analysis and
differential geometry.

Lemma 4.6. Let E be a measurable subset of Ω and ε > 0. There exists
a closed set D with D ⊂ E and ν(E \ D) < ε such that for all integers α
and β, there exists an integer s such that Γβ(ω)∩ [s;∞) ⊂Wα(E) for every
ω ∈ D (notation as in Definition 7).

Proof. Since W0(E) ⊂ Wα(E) for every α > 0, it is sufficient to prove
the assertion for α = 0. Denote by ωj the jth vertex of the geodesic ray ω.
Let us make use again of notation as in Definition 7: we denote the corona
of vertices x with |x| ≥ n by [n,∞). Also, for the sake of simplicity, for
|x| > β we denote by x(−β) the vertex of length |x| − β in the geodesic
arc from o to x. Suppose that for some x ∈ Γβ(ω) ∩ [s;∞), with ω ∈ D,
there is no ω′ ∈ E such that x ∈ Γ0(ω′). Then U(x) ∩ E = ∅. Let ωj be
the confluence point of [o, x] and ω; since x ∈ Γβ(ω), we have d(x, ωj) ≤ β.
Moreover, j ≥ |x| − β ≥ s− β (since ω ∈ U(x(−β))), |x| ≥ s, U(ωj) ⊃ U(x)
and

ν(U(ωj) ∩ E)
ν(U(ωj))

≤ ν(U(ωj))− ν(U(x))
ν(U(ωj))

≤ 1− (1− ε)β

where ε is as in Corollary 3.2. The rest of the proof is obtained by contra-
diction as in [1, Proposition 4.2]: we summarize the details here for the sake
of completeness. It is again a consequence of the martingale convergence
theorem, as in [12, p. 225] (see also (4.16)), that

lim
n

ν(E ∩ U(ωn))
ν(U(ωn))

= 1

for almost every ω ∈ E. Then, for every η < 1 and ε > 0, by Egoroff’s
theorem there exists a set D ⊂ E such that ν(E \D) < ε and an integer m,
independent of ω, such that

(4.5)
ν(U(ωj) ∩ E)
ν(U(ωj))

> η
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for j ≥ m and all ω ∈ D (again by the fact that ν is regular we can choose D
closed). So we have a contradiction.

Definition 13. Let k0 > k ∈ N; in what follows we shall take k > k0+R,
where R is the constant of Lemma 3.4. We introduce the slabs

(4.6) Qk = Qk,k0(E) = W0(E) ∩ {k0 ≤ |x| ≤ k}.
The boundary Ik = ∂Qk splits as a disjoint union of its inward, lateral and
outward terminal parts as follows:

(4.7)

I−k = Ik ∩ {σ : |b(σ)| = k0},

I
‖
k = Ik ∩ {σ : k0 < |b(σ)| < k},

I+
k = Ik ∩ {σ : |b(σ)| = k}.

A similar disjoint decomposition holds for the set of boundary vertices:
b(Ik) = b(I−k ) ∪ b(I‖k) ∪ b(I+

k ). Observe that the number of vertices in b(I−k )
(a subset of the circle of radius k0) is independent of k.

Remark 5. Observe that, for every ω ∈ E, the geodesic ray Γ0(ω)
intersects I+

k (and does so only once). This is equivalent to the following
property, to be used later: the vertices ωj ∈ Γ0(ω) are such that max{j :
ωj ∈ Qk,k0(E)} = k.

The estimate for harmonic measures of the next lemma was used in [7]
and [1] but never stated or proved explicitly.

Lemma 4.7. Let E ⊂ Ω be a measurable subset, k > 0, x ∈ b(I‖k)∪ b(I+
k )

and

(4.8) Ω(x) = {ω ∈ U(x) : for all j > |x|, ωj 6∈ b(I‖k) ∪ b(I+
k )}.

Then ν(Ω(x)) ≈ ν(U(x)).

Proof. First of all, observe that if a geodesic ray ω intersects Qk, then
the intersection is contained in the geodesic arc ω ∩ [k0, k] (and if ω ∈ E
then the intersection is ω ∩ [k0, k]—see Remark 5—but we do not need this
here). Therefore, if x ∈ b(I+

k ), then Ω(x) = U(x). Instead, if x ∈ b(I‖k), then
there are vertices y /∈ Qk such that x = y− and Ω(x) is the union of U(y)
over all such y. Therefore Ω(x) ⊂ U(x) and, for each such y, U(y) ⊂ Ω(x).
Then ν(Ω(x)) ≈ ν(U(x)) by Corollary 3.2.

Trivially, Ω(x) = ∅ if x ∈ Ik \ b(I
‖
k) ∪ b(I+

k ), but we shall not need this.
We are now ready to prove the implication (iii)&(i)⇒(ii). This implica-

tion follows from [16, Theorem 5], but, in line with the spirit of the present
paper, we follow an independent and more geometric approach.

Theorem 4.8. Let f be a harmonic function on T and E a measur-
able subset of Ω. Assume that f is non-tangentially bounded on E and
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A0f(ω) < ∞ for almost all ω ∈ E. Then f has non-tangential limit al-
most everywhere on E.

Proof. By Lemma 4.6, it is enough to show that f(x) has radial limits
almost everywhere in E as |x| → ∞; although not strictly necessary for
the proof, this simplifies the argument considerably. The radial convergence
is a consequence of [16, Theorem 5], but we proceed with our independent
argument inspired by differential geometry and line integrals over boundaries
of finite sets.

We know that f is bounded on each Γ0(ω) with ω ∈ E. Without loss of
generality, we may assume that f is uniformly bounded independently of ω,
that is, bounded inW0(E). Indeed, this follows from the same uniformization
procedure already explained at the end of the proof of Theorem 4.1: if f is
non-tangentially bounded almost everywhere on E, the sets Ek introduced
in the proof of Theorem 4.1 are once again an exhausting family of nested
subsets of E. So we can assume, without loss of generality, that f is bounded
on W0(E).

Let ε > 0 be given and let R be the offset given in Lemma 3.4 corre-
sponding to ε and to ‖h‖∞ = ‖f‖L∞(W0(E)).

With δ as in the regularity assumption (H2), let η = δε2/(4R2). For
almost every ω ∈ E there exists an integer k = k(ω) such that∑

Γ0(ω)∩{|x|≥k}

‖∇f(x)‖2 < η.

We would like to have k(ω) constant. We can assume that this is true on an
arbitrarily large subset of E, by the following uniformization argument.

Let Ej = {ω ∈ E :
∑

Γ0(ω)∩{|x|≥j} ‖∇f(x)‖2 < η}. Then the Ej
form an increasing nested family of sets, and ν(E \

⋃
j Ej) = 0. So,

for every ρ > 0, there is an integer k0 so that ν(E \ Ek0) < ρ and∑
Γ0(ω)∩{|x|≥k0} ‖∇f(x)‖2 < η for every ω ∈ Ek0 . For the sake of simplicity,

let us write H instead of Ek0 .
Observe that ‖∇f(x)‖ < √η for every x ∈ Γ0(ω) with ω ∈ H and

|x| ≥ k0. This fact leads to a useful control on the oscillation of f in the
truncated cone W k0(H) introduced in Definition 7. Indeed, if k > k0 + R
and x, y ∈ W k0(H), then x ∈ Γ0(ω) and y ∈ Γ0(ω̃) for some ω, ω̃ ∈ H.
Suppose that |x| = |y| = k. If ω̃ ∈ U(ωk−R), then the geodesic arc γ that
joins x and y lies inside Γ0(ω) ∪ Γ0(ω̃) and its length l(γ) is less than or
equal to 2R. By the triangular inequality and (2.2), we obtain

(4.9) |f(y)− f(x)| ≤ l(γ) max
σ⊂γ
|∇f(σ)| < 2R

1√
δ

max
γ
‖∇f(x)‖ < ε.

Now we need to approximate the boundary values of f by the locally
constant functions on Ω determined by the restriction of f to the forward
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part b(I+
k ) of the vertex-boundary of the slab Qk introduced in Definition 13.

This motivates the following definition:

Definition 14 (Lifting of a function from a finite set to the boundary
of the tree). Let J ⊂ V (T ) be a finite set of vertices. Define fJ on Ω by

(4.10) fJ(ω) =
{

0 if ωj 6∈ ∂(J) for all j,
f(ωm) if m = max{j : ωj ∈ ∂(J)}.

Finally, let Jk = b(I+
k ) and fk = fJk .

We introduce three harmonic functions. The first two are the following:
Fk is the Poisson integral of fk, and Φ the Poisson integral of the character-
istic function χHC of the complement HC of H. The third, h, is the solution
of the Dirichlet problem (Lemma 4.5) in the unbounded corona T \ Bk0−1,
with boundary data 1 on the circle {|x| = k0} and 0 at infinity.

We claim that, for some positive constants A, B independent of k, the
following inequalities hold on Qk:

(4.11) Fk +AΦ+Bh > f − 2ε.

As all functions in this inequality are harmonic, it suffices to prove it on the
boundary b(Ik).

Since h > 0, to prove (4.11) on I+
k , it is enough to show that, for every

ω ∈ H and ω̃ ∈ U(ωk−R), the following inequality holds:

(4.12) (fk +AχHC )(ω̃) > fk(ω)− ε.

Indeed, (4.11) follows from (4.12) and Lemma 3.4 by taking the Poisson
integral with respect to the variable ω̃. To prove (4.12), let x ∈ Qk with
|x| = k and ω ∈ H be such that ωk = x. Let ω̃ ∈ U(ωk−R), and observe
that the distance of ω̃k and x is at most 2R. Consider the two cases ω̃ ∈ H
and ω̃ ∈ HC separately. In the first case, fk(ω̃) > fk(ω) − ε by (4.9), and
(4.11) follows from Lemma 3.4. In the second case, ω̃ ∈ HC , we still have
fk(ω̃) + AχHC (ω̃) > fk(ω) − ε provided A is large enough: it is sufficient
to take A = 2‖f‖W0(H) (we recall the assumption that f is bounded on
W0(E) ⊃W0(H)).

Let us now consider the lateral part of the boundary. Let x ∈ b(I‖k). Then
x = z− for some z that does not belong to Γ0(ω) for any ω ∈ H. This is
equivalent to U(z) ⊂ HC , and so

Φ(x) =
�

Ω

K(x, ω)χHC (ω) dν ≥
�

U(z)

K(x, ω) dν.

As x = z−, we know by Corollary 3.3(i) that K(x, ω) >
(1/2+δ

1/2−δ
)|x| for all
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ω ∈ U(z). On the other hand, by Proposition 3.1 and Corollary 3.2,

ν(U(z)) >
(

1/2 + δ

1/2− δ

)|z|
=
(

1/2 + δ

1/2− δ

)|x|+1

.

Hence
	
U(z)K(x, ω) dν ≈ 1. So Φ(x) is bounded below on b(I‖k) indepen-

dently of k (the same argument shows that it is also bounded above, but we
do not need this).

Note that Fk is bounded in W0(H) because so is assumed to be f . Since
h > 0, the estimate on Φ shows that (4.11) holds on b(I‖k) if A is large
enough, independently of k.

Finally, it is easy to deal with the inward part of the boundary. Indeed,
Φ is the Poisson integral of a characteristic function, therefore 0 ≤ Φ ≤ 1,
and, as just observed, Fk is bounded independently of k. Let x ∈ b(I−k );
then |x| = k0, and, by the way h is defined, h(x) = 1. Therefore (4.11) holds
on b(I−k ) if B is large enough, independently of k. The claim is proved. The
rest of the proof follows closely [1, Theorem 5.2]; we outline the argument.
By applying the claim also to −f , on Qk we have

Fk −AΦ−Bh− 2ε < f < Fk +AΦ+Bh+ 2ε.

The sequence {fk} is uniformly bounded by M = ‖f‖W0(E). By passing
to a subsequence, the Banach–Alaoglu theorem shows that, as k → ∞,	
Ω pfk →

	
Ω pf∞, for some bounded function f∞ and every function p ∈

L1(Ω). Denote by F the Poisson integral of f∞. Since K(x, ω) ∈ L1(Ω) for
every x, it follows that Fk converges pointwise to F . Thus on W k0

0 (H) one
has

F −AΦ−Bh− 2ε < f < F +AΦ+Bh+ 2ε.

The functions F and Φ have non-tangential limits because they are the
Poisson integral of bounded functions and the non-tangential limit of Φ
is 0 almost everywhere in H [11, Theorem 1]. The same is true for h by
Lemma 4.5. It follows that f has radial limit almost everywhere in E.

Finally, we show that that (iii) implies (i).
As observed in Section 1, this part of the Main Theorem is virtually

known: the proof is an adaptation of the proof of [7, Proposition 8] (see
also [1, Theorem 5.2]). To make the exposition (a bit) friendlier than in
that reference, we collect all the geometric arguments, based on the Green
formula, in the following lemma.

Lemma 4.9. Let f be a harmonic function on T and D ⊂ Ω measurable.
Let k, k0 be positive integers, Qk = W0(D) ∩ [k0, k] the slab introduced in
(4.6), and Iout(k) = I

‖
k ∪ I

+
k the outer part of its boundary (notation as in

(4.7)). Assume that ‖∇f‖ is bounded in W0(D) and
∑

x∈Qk ‖∇f(x)‖2 g(x)
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is uniformly bounded with respect to k. Then the L2 norms ‖fk‖2L2(ω) of the

boundary liftings fk = f b(Iout(k)) of Definition 14 are uniformly bounded with
respect to k.

Proof. By suitably renormalizing f we may assume that ‖∇f‖ ≤ 1 in
W0(D) and

∑
x∈Qk ‖∇f(x)‖2 g(x) ≤ 1 for every k. So, since f is harmonic,

the Green identity (Proposition 4.4) yields

0 ≤
∑
Qk

‖∇f(x)‖2 g(x) =
∑
Qk

g∆f2.

Let C ≡
∑

Qk
g∆f2. We have just shown that

(4.13) 0 ≤ C ≤ 1.

By the Green formula (Proposition 4.3)

C =
∑
Ik

(g ◦ b ∂f2 − f2 ◦ b ∂∗g − g ◦ b f2 ◦ b∇p),

where ∂, ∂∗ are as in Definition 11. Now it follows from that definition and
Lemma 4.2 that∑

Ik

(g ◦ b ∂f2 − f2 ◦ b ∂∗g − g ◦ b f2 ◦ b∇P )

=
∑

σ=[x,y]∈Ik

(p(σ)g(x)(∇f2)(σ)− p∗(σ)(g(y)− g(x))f2(x)

− (p∗(σ)− p(σ))g(x)f2(x))

=
∑

σ=[x,y]∈Ik

(p(σ)g(x)(∇f)2(σ) + f2(x)(p(σ)g(x)− p∗(σ)g(y))

+ 2p(σ)g(x)f(x)∇f(σ))

=
∑
Ik

(p g ◦ b(∇f)2 + f2 ◦ b(pg ◦ b− p∗g ◦ e) + 2pg ◦ bf ◦ b∇f).

Let Iin(k) = I−k be as in (4.7). The boundary Ik of Qk splits as Ik =
Iin(k)∪ Iout(k). Then C = C1 +C2 +C3 where C1 =

∑
Ik
−(f2 ◦ b)p∗(σ)∇g,

C2 =
∑

Ik
p(σ)(g ◦ b)(∇f)2 and C3 = 2

∑
Ik
p(σ)(g ◦ b)(f ◦ b)∇f . Moreover,

we let

C−1 =
∑

σ=[x,y]∈Iin(k)

f2(x)(p(σ)g(x)− p∗(σ)g(y))

=
∑
Iin(k)

(f2 ◦ b)(p(σ)g ◦ b− p∗(σ)g ◦ e)

C+
1 =

∑
Iout(k)

(f2 ◦ b)(p(σ)g ◦ b− p∗(σ)g ◦ e),
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C−2 =
∑
Iin(k)

p(σ)(g ◦ b)(∇f)2, C+
2 =

∑
Iout(k)

p(σ)(g ◦ b)(∇f)2,

C−3 = 2
∑
Iin(k)

p(σ)(g ◦ b)(f ◦ b)∇f, C+
3 = 2

∑
Iout(k)

p(σ)(g ◦ b)(f ◦ b)∇f.

Then by (4.13),

0 ≤ C = C+
1 + C−1 + C+

2 + C−2 + C+
3 + C−3 ≤ 1.

From now on, M will denote a generic constant, not always the same but
always independent of k. We observe that C−1 , C−2 and C−3 are uniformly
bounded, since Iin(k) is contained in the bounded set {σ : |b(σ)| = k0}.
Thus the sum on Iin(k) is uniformly bounded: |C−1 +C−2 +C−3 | ≤M . Since
|C−1 | − |C

−
2 | − |C

−
3 | ≤ |C

−
1 + C−2 + C−3 |, it follows that

(4.14) |C−1 | ≤ |C
−
2 |+ |C

−
3 |+M.

Now observe that, if σ ∈ Iout(k), then |e(σ)| = |b(σ)|+1, and so g(e(σ)) =
ν(U(e(σ)) < ν(U(b(σ)) = g(b(σ)); moreover, by Corollary 3.2, g(e(σ)) ≥
(1− ε)g(b(σ)) = 2δ

1/2+δg(b(σ)). By the regularity assumption (H2), we have
p∗(σ) ≤ 1/2 − δ. Let β = 2(1/2 − δ)/(1/2 + δ); note that 0 < β < 1 since
0 < δ < 1/2. Then, for σ = [x, y] ∈ Iout(k),

p∗(σ)g(y) ≤
(

1
2
− δ
)

2δ
1/2 + δ

g(x) = δβg(x) ≤ βp(σ)g(x),

hence, with η = 1
1−β ,

p(σ)g ◦ b ≤ η(p(σ)g ◦ b− p∗(σ)g ◦ e).
By this inequality and (4.14) one has

0 <
∑
Iout(k)

f2 ◦ b g ◦ b ≤ 1
δ

∑
Iout(k)

p(σ) f2 ◦ b g ◦ b

≤ ηC−1 ≤ η
(
M +

∑
Iout(k)

g ◦ b (∇f)2 + 2
∑
Iout(k)

g ◦ b |f ◦ b| |∇f |
)
.

Since ‖∇f(x)‖ ≤ 1 in W0(D), by (2.2) we have |∇f(σ)| ≤ 1/
√
δ for all

x ∈W0(D) and all edges σ starting at x, and so on Iout(k). Then

(4.15)
∑
Iout(k)

f2 ◦ b g ◦ b ≤ η
(
M +

1
δ

∑
Iout(k)

g ◦ b+
1√
δ

∑
Iout(k)

g ◦ b |f ◦ b|
)
.

By [7, Proposition 3],
∑

Iout(k)
g ◦ b ≤

∑
b(Iin(k)) g(x), and the latter sum

is bounded by
∑
|x|=k0 g(x) =

∑
|x|=k0 ν(E(x)) = 1. Moreover, for every

set J of vertices and every positive function h on J ,
∑

∂J h ◦ b ∼
∑

b(∂J) h,
because every edge in ∂J contains a unique beginning vertex in b(∂J), and
conversely every vertex in b(∂J) belongs to at most 1/δ edges in ∂J (see
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Subsection 2.2). Therefore, if we write M ′ = ηM , (4.15) becomes∑
b(Iout(k))

f2g ≤M ′ +M ′
∑

b(Iout(k))

g|f |.

We can bound the last term on the right hand side by Schwarz’s inequality:∑
b(Iout(k))

g|f | ≤
( ∑
b(Iout(k))

g
)1/2( ∑

b(Iout(k))

gf2
)1/2

.

Hence ∑
b(Iout(k))

f2g ≤M ′ +M ′
( ∑
b(Iout(k))

f2g
)1/2

.

This shows that the left hand side is bounded uniformly with respect to k.
On the other hand, fk = 0 outside of b(I+

k ), by Definition 14. Let Ω(x)
be as in (4.8). Then Ω(x) ⊆ U(x) and by Remark 5 we know that E is the
disjoint union of the Ω(x) (here is why we introduced slabs!). Hence, by
Lemma 4.7,

‖fk‖2L2(ω) =
∑

x∈b(Iout(k))

f2(x) ν(Ω(x)) ≤
∑

x∈b(Iout(k))

f2(x) g(x) ≤M ′.

Let xk be as in Definition 10; remember also that x− is the predecessor
of the vertex x.

Theorem 4.10. Let f be a harmonic function on T and E a measurable
subset of Ω. Assume that A0f(ω) < ∞ for almost every ω ∈ E. Then f is
non-tangentially bounded almost everywhere on E.

Proof. Let
Ek = {ω ∈ E : A0f(ω) ≤ k}.

Observe that Ek ⊂ Ek+1, and all the Ek are closed since A0f is lower
semicontinuous [7, p. 259]. The assumption is equivalent to E =

⋃
k Ek

except for a null set. As ν is a regular measure, for every ε > 0 there
exists a closed (hence compact) subset Dε ⊂ E such that ν(E \ Dε) < ε
and a constant L = L(ε) > 0 such that A0f ≤ L on Dε. Moreover, by
the martingale convergence theorem, there exists a closed set D ⊂ Dε with
ν(Dε \D) < ε and an integer m > 0 such that, for all k ≥ m and ω ∈ D,
one has

(4.16) ν(U(ωk) ∩ E) ≥ 1
2
ν(U(ωk))

[1, Lemma 4.1 and (5.2)].
So it is enough to prove the statement for the subset D instead of E;

therefore, without loss of generality, we can assume that A0f is bounded
almost everywhere on E, and by renormalizing f we can assume A0f ≤ 1
almost everywhere on E. Hence ‖∇f(x)‖ ≤ 1 in W0(D).
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From now on, the proof is almost the same as in [7, Proposition 8, p. 266–
270].

Let s ≥ m. With g and gE as in (3.4b), we make the following claim:

(4.17)
∑

W s
0 (D)

‖∇f(x)‖2g(x) ≤ 2.

Let us prove the claim. For ω ∈ E, let χ be the characteristic function
of Γ0(ω). By the same argument of (4.4),∑

y∈W0(E)

gE(y)‖∇f(y)‖2 =
∑

y∈W0(E)

‖∇f(y)‖2
�

E

χ(y) dν(ω)

=
�

E

(A0f(ω))2 dν ≤ ν(E) ≤ 1.

Observe that x ∈ Γ0(ω) if and only if U(x) intersects E. Therefore
	
E χ(x, ω)

= ν{E ∩ U(x)}. If x ∈W s
0 (D), then by (4.16),

ν{E ∩ U(x)} ≥ 1
2
ν(U(x)) = g(x).

Thus
1
2

∑
W s

0 (D)

‖∇f(x)‖2g(x) ≤
�

E

(A0f(ω))2 dν ≤ ν(E) ≤ 1.

This proves the claim. The last inequalities should be compared with those
in [16, Section 7].

We want to prove that f is non-tangentially bounded almost everywhere
in D. For this, we first show that |f | is bounded by the Poisson integral of
a function in L2(Ω, ν). We now approximate the truncated cone W k0

0 (D)
with the slabs Qk = Qk,k0(D) introduced in Definition 4.6. We choose and
fix k0 > 0, so that o /∈ Qk. The claim and the remarks before it show that
the conditions of Lemma 4.9 hold. Although not strictly necessary, it is
convenient to modify now the terminology introduced after Definition 14, in
order to obtain a positive lifting to the boundary, as follows: now we let fk =
|f |b(Iout(k)) be the boundary lifting of |f | restricted to b(Iout(k)) (compare
with Definition 14). So {fk} is a non-negative uniformly bounded sequence
in L2(Ω). Thus there exists a subsequence of {fk} that converges weakly
in L2(Ω) to, say, a non-negative f̃ ∈ L2(Ω). Let Fk be the Poisson integral
of fk, and F̃ the Poisson integral of f̃ . Since the Poisson kernels belongs to
L2(Ω), this means that Fk converges pointwise to F̃ . As already observed,
it is enough to prove that, for an appropriate constant M independent of k,

|f | ≤M +MF̃

for some M . Therefore it suffices to prove that, on Qk,

(4.18) |f | ≤M +MFk.
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By harmonicity and the maximum principle it is sufficient to prove (4.18)
on b(∂Qk) = b(Iin(k)) ∪ b(Iout(k)) (see also the remark in [7, p. 269]).

Since the cardinality of b(Iin(k)) is finite, we can choose M so large that
|f | ≤ M on b(Iin(k)). On the other hand, if Ω(v) is the boundary subset
introduced in (4.8), then

Fk(x) =
�

Ω

fk(ω)K(x, ω) dν =
∑

v∈b(Iout(k))

|f(v)|
�

Ω(v)

K(x, ω) dν ≥ |f(x)|

(remember that now fk ≥ 0 is the boundary lift of |f |).
Observe that if ω ∈ D and x ∈ Iout(k) is the last vertex of the geodesic ω

which belongs to Qk, then ω ∈ Ω(x) ⊆ U(x), and so K(x, ω) = 1/F (o, x)
by Proposition 3.1. Therefore

Fk(x) = |f(x)| ν(Ω(x))
F (o, x)

.

On the other hand, for x ∈ b(Iout(k)) and ω ∈ Ω(x), by Lemma 4.7 and
Proposition 3.1, ν(Ω(x)) ≈ ν(U(x)) ≈ F (o, x) = 1/K(x, ω). Therefore
Fk(x) ≈ |f(x)|. This proves (4.18).

Now, if f̃ were bounded, then F̃ (x) =
	
K(x, ω) f̃(ω) dν(ω) would also be

bounded, because ‖K(x, ·)‖1 = 1 by property (b) before Lemma 3.4. Since
f̃ ∈ L2, f̃ is finite almost everywhere. Then we can repeat the exhaustion
procedure of the beginning of the proof. Let Dk be the subset of D where
|f̃ | < k; the sets Dk are a nested family and

⋃
kDk = D. This means that,

if for every ε > 0 we limit attention to a subset Dε ⊂ D with ν(D \Dε) < ε,
then we can assume that f̃ is bounded, and so f is bounded by (4.18).
Therefore ‖f‖L∞(Γ0(ω)) is finite for almost every ω.

We have finished the proof by showing that the Poisson integral F̃ of the
L2 function f̃ is non-tangentially bounded almost everywhere on Ω. This
fact follows also, via a different argument, by [12, Proposition 5].
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enlightening conversation on the contents of this paper.

REFERENCES

[1] L. Atanasi and M. A. Picardello, The Lusin area function and local admissible
convergence of harmonic functions on homogeneous trees, Trans. Amer. Math. Soc.
360 (2008), 3327–3343.

[2] J. Brossard, Comportement “non-tangentiel” et comportement “brownien” des fonc-
tions harmoniques dans un demi-espace. Démonstration probabiliste d’un théorème
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[20] D. C. Spencer, A function-theoretic identity, Amer. J. Math. 65 (1943), 147–160.
[21] E. M. Stein, On the theory of harmonic functions of several variables, II. Behaviour

near the boundary, Acta Math. 106 (1961), 137–174.
[22] —, Singular Integrals and Differentiability Properties of Functions, Princeton Univ.

Press, Princeton, NJ, 1970.
[23] W. Woess, Catene di Markov e teoria del potenziale nel discreto, Quaderni Un. Mat.

Ital. 41, Bologna, 1996.

Massimo A. Picardello
Dipartimento di Matematica
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