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Abstract. Let Aff(T) be the group of isometries of a homogeneous tree T fixing
an end of its boundary. Given a probability measure on Aff(T) we consider an associated
random process on the tree. It is known that under suitable hypothesis this random process
converges to the boundary of the tree defining a harmonic measure there. In this paper
we study the asymptotic behaviour of this measure.

1. Introduction. Let T be a homogeneous tree. We denote by Aff(T)
the group of affine transformations of the tree T, that is, the group of isome-
tries of the tree that fix an end ω of the boundary. The group Aff(T) is an
analogue of the real affine group acting on the hyperbolic plane H2 by isome-
tries and fixing a boundary point. However, due to the graph structure of the
tree, which is less rigid than H2, the study of the affine group of the tree is
much more difficult. This group contains on the one hand the affine group of
p-adic numbers Aff(Qp) (i.e. the group of matrices of the form

[
a b
0 1

]
, where

a, b are p-adic numbers and a is non-zero), is which in some sense similar to
Aff(R), but on the other hand it contains groups having completely different
structure like the lamplighter group or automata groups (see [3] for further
information on the structure of Aff(T)).

Given a probability measure µ on Aff(T) we consider the right random
walk on Aff(T), i.e. the sequence of random variables Rn = X1 · · ·Xn, where
Xi are i.i.d. with law µ. Choosing a point o ∈ T one can define the random
process Rn · o on the tree. It has been proved by Cartwright, Kaimanovich
and Woess [3] that under some mild conditions (the most important being
the ’drift’), which will be explained in detail in Section 2, this random process
converges a.s. to some random element of the boundary ∂∗T = ∂T \ {ω}.
We denote the law of this random variable by ν. Then ν is the harmonic
measure of the random walk, i.e.
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ν(f) = µ ∗ ν(f) =
�

Aff(T)

�

∂∗T
f(γu) ν(du)µ(dγ)

for any f ∈ C(∂∗T). Moreover, under some further hypothesis the Poisson
boundary has also been identified. Recently Brofferio [1] has proved the
renewal theorem for this random walk.

The main goal of this paper is to describe in more detail the asymptotic
properties of the harmonic measure ν. More precisely, we fix a point f of the
boundary, associate with it a distance | · | and we prove that ν({u ∈ ∂∗T :
|u| > t}) for large t is of the order of t−α for some α > 0. For this purpose
we adapt to our setting the techniques introduced by Kesten [9] (see also
Goldie [5]), who studied stationary measures on R for random walks on the
affine group of R. Our main result is stated in Theorem 4.1.

2. The affine group of a tree

2.1. A tree. A homogeneous tree T = Tq+1 of degree q+1 is a connected
graph without cycles whose vertices have exactly q + 1 neighbours each.
For any couple of vertices x and y there exists exactly one sequence x =
x0, x1, . . . , xk = y of successive vertices without repetition, denoted by xy.
In this situation we say that the distance between x and y is equal to k and
we write d(x, y) = k. A geodesic ray is an infinite sequence x0, x1, x2, . . .
of successive neighbours without repetition. Two rays are equivalent if they
differ only by finitely many vertices. An end is an equivalence class of this
relation, and the set of all ends will be denoted by ∂T. For u ∈ ∂T and x ∈ T
there exists a unique geodesic ray xu which represents u.

ω

f ∧ u

o

f u

−1

0

1

2

∂∗T

We choose and fix once for all an end ω and define ∂∗T = ∂T \ {ω}. For
x, y ∈ T∪∂∗T we denote by x∧ y the first common vertex of xω and yω, i.e.
x ∧ y = z if xω ∩ yω = zω. On T ∪ ∂∗T we have a partial order associated
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with the end ω: x � y if x = x ∧ y. We may imagine the oriented tree as a
genealogical tree where ω is a mythical ancestor, and every vertex has one
ancestor and q children.

Let us fix a reference vertex o in T called the origin. The height function
h from T to Z is

h(x) := d(x, x ∧ o)− d(o, x ∧ o),
also known as the Busemann function.

For any three vertices x, y, z ∈ T we have x∧y ∈ yω and z∧y ∈ yω, which
implies x ∧ y � z ∧ y or z ∧ y � x ∧ y. Therefore we get x ∧ y ∧ z = x ∧ y or
x∧y∧z = y∧z. For x � y we have h(x) ≤ h(y) and h(x∧y) ≥ h(x∧y∧z) =
min(h(x ∧ z), h(z ∧ y)). The function h induces an ultra-metric distance Θ
on T ∪ ∂∗T: for x, y ∈ T ∪ ∂∗T we define

Θ(x, y) :=
{
q−h(x∧y) if x 6= y,

0 if x = y.

2.2. The affine group. Every isometry of (T, d) has a natural extension
to ∂∗T so we can define the affine group of the tree T as the stabilizer of ω,

Aff(T) := {g ∈ Aut(T) : gω = ω}.
Then Aff(T) is the subgroup of all isometries which preserve the order. The
group Aff(T) is equipped with the topology of pointwise convergence. The
neighbourhood base of the identity consists of sets of the form Gx1∩· · ·∩Gxk

,
where Gx = {g ∈ Aff(T) : gx = x}. The base of an arbitrary element g
consists of sets of the form g(Gx1∩· · ·∩Gxk

). Since Gx is open and compact,
Aff(T) is a locally compact totally disconnected group.

All elements of the affine group preserve the order and the distance,
therefore

h(x)− h(y) = h(gx)− h(gy)

for any couple x, y ∈ T and g ∈ Aff(T). So we may define a homomorphism
φ of Aff(T) into Z by

φ(g) = h(gx)− h(x) = h(go),

and by the remark above the definition does not depend on the particular
choice of x and o. Moreover,

Θ(gx, gy) = q−h(gx∧gy) = q−φ(g)Θ(x, y).

The horocyclic group of the tree is the subgroup of the affine group that
fixes the height

Hor(T) := kerφ = {g ∈ Aff(T) : h(gx) = h(x), ∀x ∈ T}.
Let us fix a σ ∈ Aff(T) such that φ(σ) = 1. Every element g ∈ Aff(T) has
a unique decomposition as a product of an element of the horocyclic group
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and a power of σ,
g = (gσ−φ(g))σφ(g).

Thus we get a decomposition of the affine group into a semidirect product
of Hor(T) and Z:

Hor(T) o Z ∼= Aff(T), (β,m) 7→ βσm,

where the action of Z on Hor(T) is given by mβ = m(β) := σmβσ−m, and
multiplication in the affine group is given by

(β1,m1)(β2,m2) = β1σ
m1β2σ

m2 = β1σ
m1β2σ

−m1σm1+m2

= (β1m1β2,m1 +m2).

Notice that the decomposition of Aff(T) depends on the choice of the ele-
ment σ.

We say that a subgroup Γ of Aff(T) is exceptional if Γ ⊆ Hor(T) or if
Γ fixes an element of ∂∗T. In this paper we will always consider closed and
nonexceptional subgroups Γ . It has been shown [3] that Γ is nonexceptional
if and only if it is unimodular. In this case the limit set ∂Γ of Γ , i.e. the set
of accumulation points of an orbit Γo in ∂T, is uncountable and ω ∈ ∂Γ .
Moreover, for u ∈ ∂Γ \ {ω} the orbit Γu is dense in ∂Γ (see [3]).

2.3. Length functions. Notice that there exists a unique f = fσ ∈ ∂∗T
such that σ(fσ) = fσ. Indeed, for c = o ∧ σo the sequence c, σc, σ2c, . . .
represents the unique end of ∂∗T fixed by σ.

Then σ acts by translation on fω. For the sake of simplicity we suppose
that o ∈ fω. We consider two length functions: one on the boundary ∂∗T,
|u| = Θ(u, f), and the second one on the affine group, ‖γ‖ = Θ(γf, f). Observe
that the group Z is contained in the kernel of ‖ · ‖ and for any γ = (β,m) ∈
Aff(T) we have ‖γ‖ = ‖β‖.

Lemma 2.1. For any element γ = (β,m) ∈ Aff(T) we have
1
2
d(γo, o) ≤ log+

q ‖β‖+ |m| ≤ 2d(γo, o).

Proof. Notice that

logq ‖β‖ = logq Θ(βf, f) = logq Θ(βσmf, f) = logq Θ(γf, f) = −h(γf ∧ f).

Case 1. If logq ‖β‖ ≤ 0 then h(γf ∧ f) ≥ 0. This means that the
geodesic (β,m)fω connects with fω below the center o. Since γo ∈ γfω we
get d(γo, o) = |m| and the statement is now obvious.

Case 2. If logq ‖β‖ > 0 then the point c = γf ∧ f is above the center o.
Since d(βo, γo) = |m| we get

d((β,m)o, o) ≤ d(βo, o) + d((β,m)o, βo) = 2 logq ‖β‖+ |m|.
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On the other hand,

logq ‖β‖+ |m| = 2d(c, o)− d(c, o) + d(βo, (β,m)o)

≤ 2d(c, o) + |d(c, o)− d(βo, (β,m)o)|
= 2d(c, o) + |d(c, βo)− d(βo, (β,m)o)|
≤ 2d(c, o) + d(c, (β,m)o) ≤ 2d(o, (β,m)o),

which finishes the proof of the lemma.

3. Random walk on Aff(T). Let µ be a probability measure on Aff(T).
We will assume that the closed semigroup Γ generated by the support of µ
is non-exceptional. For simplicity we will also assume that φ(Γ ) = Z.

Let (Xn)n≥1 be a sequence of i.i.d. Γ -valued random variables with law µ.
The right random walk on Γ with law µ is a sequence of random variables

R0 = Id, Rn+1 = RnXn+1.

We denote by µ the image of the measure µ on Z, i.e. µ(k) = µ(φ−1{k}).
Then

φ(Rn) = φ(X1) + · · ·+ φ(Xn)

is a sum of i.i.d. random variables with law µ. If the measure µ has a first
moment then we denote by m1 its mean,

m1 =
∑
k∈Z

kµ(k) =
�

Γ

φ(γ)µ(dγ).

It has been proved by Cartwright, Kaimanovich and Woess [3] that if the
projected random walk on Z has a drift, i.e. m1 > 0 and

	
Γ d(γo, o)µ(dγ)

< ∞, then (Rno) converges almost surely to some random variable R with
values in the boundary of the tree ∂∗T. Moreover, it is known that R does
not depend on the choice of the starting point. We write ν for the law of the
limit R. As the random variable X−1

1 R is the limit of (X2 · · ·Xno) it has
the same law as R,

XR d= R for independent X and R.

This means that the measure ν is µ-stationary, i.e. µ ∗ ν = ν, where

µ ∗ ν(f) =
�

Γ

�

∂Γ

f(γu) ν(du)µ(dγ)

for f ∈ C(∂Γ ). Thus, for such a function f , the function

g(γ) =
�

∂Γ

f(γu) ν(du)

is bounded and µ-harmonic, i.e.

g ∗ µ(α) =
�

Γ

g(αγ)µ(dγ) = g(α) for every α ∈ Γ.
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Conversely, if the measure µ is sufficiently nice then all bounded harmonic
functions g are of this form for some f .

Theorem 3.1 ([3]). Let µ be a probability measure on a closed subgroup
Γ of Aff(T). Suppose that µ is irreducible, spread out and has finite first
moment,

	
Γ d(γo, o)µ(dγ) < ∞. If m1 > 0, then the space (∂∗T, ν) is the

Poisson boundary of (Γ, µ), i.e. every bounded harmonic function g on the
closed subgroup Γ is of the form

g(γ) =
�

∂∗Γ

f(γu) ν(du)

for some f ∈ L∞(∂Γ ).

4. Asymptotic behaviour of ν. Our main result is the following:

Theorem 4.1. Let (Q,M) be a Γ -valued random variable with law µ.
Assume:

E[M ] = m1 > 0;(4.2)

there is α > 0 such that E[q−αM ] =
∑

n∈Z q
αnP[M = −n] = 1;(4.3)

E[‖Q‖α] <∞;(4.4)

E[−Mq−αM ] = m2 ∈ (0,∞).(4.5)

Then
lim
k→∞

qαkν{u ∈ ∂∗T : |u| > qk} = C+,

where C+ is positive and given by the formula

(4.6) C+ =
1
m2

∑
n∈Z

(P[|R| ≥ qn]− P[|MR| ≥ qn])qαn.

The result above is an analogue of Kesten’s Theorem [9]. He studied a
Markov process on the real line generated by a random walk on the real
affine group. However, his proof was complicated and it was later simplified
by Grincevičjus [6] and Goldie [5]. Here we follow their approach.

Notice that condition (4.4) implies E[log+
q ‖Q‖] < ∞, so in view of

Lemma 2.1, hypotheses (4.2) and (4.4) imply existence of the limit random
variable R.

For simplicity, we write ku for σku. In the proof we will use the following
lemma:

Lemat 4.7. Under assumptions (4.2)–(4.5) we have∑
k∈Z

qαk|P[|R| ≥ qk]− P[|MR| ≥ qk]| <∞.
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Proof. For (Q,M) and R independent random variables with law µ and
ν respectively we will show that

(4.8) E
[∣∣|(Q,M)R|α − |MR|α

∣∣] <∞.
Notice that

|(Q,M)R| = Θ(QσMR, f) ≤ Θ(QσMR, Qf) ∨Θ(Qf, f)
= Θ(σMR, f) ∨Θ(Qf, f) = |MR| ∨ ‖Q‖,

hence

(4.9) |(Q,M)R|α ≤ |MR|α ∨ ‖Q‖α ≤ |MR|α + ‖Q‖α.

Similarly we estimate |MR|:

|MR| = Θ(σMR, f) ≤ Θ(σMR, Q−1f) ∨Θ(Q−1f, f)
= Θ(QσMR, f) ∨Θ(f, Qf) = |(Q,M)R| ∨ ‖Q‖

and

(4.10) |MR|α ≤ |(Q,M)R|α ∨ ‖Q‖α ≤ |(Q,M)R|α + ‖Q‖α.

Comparing (4.9) with (4.10) we obtain∣∣|(Q,M)R|α − |MR|α
∣∣ ≤ ‖Q‖α

and (4.4) immediately implies (4.8).
Consider the real-valued random variablesX= |(Q,M)R| and Y = |MR|.

Then∑
k

qαk|P[X ≥ qk]− P[Y ≥ qk]|

≤
∑
k

qαk(P[X ≥ qk > Y ] + P[Y ≥ qk > X])

but∑
k∈Z

qαkP[X ≥ qk > Y ] =
∑
k∈Z

qαkE[1[X≥qk>Y ]] = E
[ ∑
Y <qk≤X

qαk
]

= E
[ logq X∑
k=logq Y+1

(qα)k
]

= E
[
qα(logq Y+1) 1− qα(logq X−logq Y )

1− qα
1[Y <X]

]

=
qα

qα − 1
E[(Xα − Y α)1[X>Y ]].

Exactly in the same way we obtain∑
k∈Z

qαkP[Y ≥ qk > X] =
qα

qα − 1
E[(Xα − Y α)1[Y >X]]
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and finally∑
k

qαk|P[X ≥ qk]− P[Y ≥ qk]| ≤ qα

qα − 1
E|Xα − Y α|,

and by (4.8) the above value is finite. Since X and |R| have the same law,
we conclude the proof.

Proof of Theorem 4.1: existence of the limit. Let Πk = M1 + · · · + Mk

and define a probability measure µ̆ by µ̆(n) = µ(−n). Observe that

P[|R| ≥ qk] =
n∑
j=1

(P[|Πj−1R| ≥ qk]− P[|ΠjR| ≥ qk]) + P[|ΠnR| ≥ qk]

=
n∑
j=1

(P[|Πj−1R| ≥ qk]− P[|Πj−1MR| ≥ qk]) + P[|ΠnR| ≥ qk]

=
n∑
j=1

∑
u∈Z

(P[|R| ≥qk−u]− P[|MR| ≥ qk−u])P[Πj−1 = −u] + P[|ΠnR| ≥ qk]

=
n−1∑
j=0

f ∗ µ̆∗j(k) + P[|ΠnR| ≥ qk],

where
f(n) = P[|R| ≥ qn]− P[|MR| ≥ qn].

Therefore

qαkP[|R| ≥ qk] =
n−1∑
j=0

qαkf ∗ µ̆∗j(k) + qαkP[|ΠnR| ≥ qk](4.11)

= fα ∗
n−1∑
j=0

µ∗jα (k) + qαkP[|ΠnR| ≥ qk],

for µα(n) = qαnµ̆(n) and fα(n) = qαnf(n). By (4.3), µα is a probability
measure on Z, and according to (4.5) it has a positive first moment m2.

In view of Lemma 4.7, the function fα is integrable, hence by the Le-
besgue theorem

lim
n→∞

fα ∗
n−1∑
j=0

µ∗jα (k) = fα ∗
∞∑
j=0

µ∗jα (k).

Moreover, since |ΠnR| = q−(M1+···+Mn)|R| and by (4.2), limn→∞
∑n

i=1Mi

=∞ a.e.,
lim
n→∞

qαkP[|ΠnR| ≥ qk] = 0.
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So, taking the limit in (4.11) as n goes to ∞, we obtain a renewal equation:

(4.12) qαkP[|R| ≥ qk] = fα ∗
∞∑
j=0

µ∗jα (k).

Therefore by the renewal theorem (Feller [4, Chapter XI, (9.2)]) we have

lim
k→∞

qαkP[|R| ≥ qk] = lim
k→∞

fα ∗
∞∑
j=0

µ∗jα (k) =
1
m2

∑
n∈Z

fα(n).

Finally, we obtain

(4.13) lim
k→∞

ν{u ∈ ∂∗T : |u| > qk}qαk = C+

where C+ is as in (4.6).

In order to prove that C+ is positive we will use the techniques introduced
by Grincevičjus [6], [7]. The crucial step is the following well-known fact:

Lemat 4.14 (Feller [4, Chapter XII, (5.13)]). Suppose that Xi are i.i.d.
random variables on Z with negative expectation and there exists a positive
constant α such that E[eαX1 ] = 1 and E[X1e

αX1 ] > 0. Then

lim
n→∞

eαtP
[

max
n

n∑
i=1

Xi > t
]

= C0

and the constant C0 is strictly positive.

For simplicity we will introduce some notation. First we define the partial
products

Rn = (Q1,M1) · . . . · (Qn,Mn),
Rj,n = (Qj+1,Mj+1) · . . . · (Qn,Mn);

then of course Rn = RjRj,n. Next we define the limit of the partial products

Rj,∞ = lim
n→∞

Rj,nf.

In view of [3], the limit above is well defined and has the same distribution
as R. Moreover R = RjRj,∞.

Proof of Theorem 4.1: positivity of the limiting constant. The proof for-
mally follows the same scheme as that of Lemma 4.19 in [2].

Fix some u0 ∈ supp ν. Then for any open ball U with centre u0 and radius
δ we have ε := P[R ∈ U ] > 0 and we can write
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P[ inf
u∈U
|Rnu|>qk for some n]=

∑
n

P[max
i<n

inf
u∈U
|Riu|≤qk and inf

u∈U
|Rnu|>qk]

=
1
ε

∑
n

P[max
i<n

inf
u∈U
|Riu| ≤ qk and inf

u∈U
|Rnu| > qk]P[Rn,∞ ∈ U ]

=
1
ε

∑
n

P[max
i<n

inf
u∈U
|Riu| ≤ qk and inf

u∈U
|Rnu| > qk and Rn,∞ ∈ U ]

≤ 1
ε

∑
n

P[max
i<n

inf
u∈U
|Riu| ≤ qk and inf

u∈U
|Rnu| > qk and |R| > qk]

≤ 1
ε

P[|R| > qk].

Let
Un = Θ(Rnu0, Rn−1u0).

For sufficiently large k we have
P[|R| > qk] ≥ εP[ inf

u∈U
|Rnu| > qk for some n]

≥ εP[|Rnu0| − q−Πnδ > qk for some n]

≥ εP[Un − (q−Πn + q−Πn−1)δ > 2qk for some n]

= εP[q−Πn−1(Θ((Qn,Mn)u0, u0)− (q−Mn + 1)δ) > 2qk for some n]

≥ εP[Θ((Q,M)u0, u0)− (q−M + 1)δ > η]P[max
n

q−Πn > 2qk/η]

≥ C0P[Θ((Q,M)u0, u0)− (q−M + 1)δ > η]q−αk.

It is enough to find η and δ which guarantee the positivity of the constant
above. Since the group generated by µ is non-exceptional (Q,M) does not
fix u0 and we can find positive numbers η and θ such that

P[Θ((Q,M)u0, u0) > 2η] = θ > 0.

Moreover, for sufficiently large N we have
P[q−M ≥ N ] ≤ θ/2.

If we set δ = η/(N + 1) we get
P[Θ((Q,M)u0, u0)− (q−M + 1)δ > η]

≥ P[Θ((Q,M)u0, u0) > 2η and q−M < N ]

≥ P[Θ((Q,M)u0, u0) > 2η]− P[q−M ≥ N ] ≥ θ/2,
which finishes the proof.

5. Examples. In this section we present two examples of concrete groups
acting on homogeneous trees and being non-exceptional subgroups of the
affine group of the tree. Next we formulate our main result in terms of these
groups.
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5.1. p-adic affine group. For a given prime number p, every rational
number w can be written in the form

w = pk
a

b
where a, b, k ∈ Z, (a, b) = 1 and p - ab. For such w we define its evaluation

υp(w) := k

and the ultra-metric norm
|w|p := p−υp(w).

The field Qp of p-adic rationals is the completion of Q equipped with the
ultra-metric distance d(u,w) = |u−w|p. There exists a relationship between
the p-adic rationals and an oriented tree of degree p+ 1. Observe that every
ball D(u, pk) with centre u and radius pk contains p balls with radius pk−1

and centres u+ ipk, where 0 ≤ i ≤ p− 1. Hence the set of all balls equipped
with natural order given by inclusion forms a homogeneous tree of degree p.

If we take the origin o := D(0, 1) then the corresponding height function
h will be given by

h(D(u, pk)) = −k.
We may identify isometrically the boundary ∂∗T of the tree with Qp: the de-
creasing sequence {D(u, p−k)}k∈N corresponds to u =

⋂
k∈ND(u, p−k) in Qp.

We denote by Aff(Qp) the set of all p-adic affine mappings, i.e. of the form
u 7→ gu = au + t, for g = 〈t, a〉, where a ∈ Q∗p and t ∈ Qp. Then the group
can be realized as the group of matrices

Aff(Qp) =
{[

a t
0 1

]
: a ∈ Q∗p and t ∈ Qp

}
.

All the elements of Aff(Qp) map balls onto balls preserving the inclusion
order, so they constitute a closed and non-exceptional subgroup of Aff(T).
The mapping 〈t, a〉 transforms a ball D(0, 1) onto some ball with radius |a|p,
hence h(〈t, a〉) = υp(a). If we take σ = 〈0, p〉, then its unique fixed point fσ

is 0, and with such a choice of σ we get the following decomposition:
Aff(Qp) = Hor(Qp) o Z, 〈t, a〉 = (〈t, ap−k〉, k), where

Hor(Qp) =
{[

a t
0 1

]
∈ Aff(Qp) : |a| = 1

}
.

Notice that |u| = |u|p and ‖〈t, ap−k〉‖ = |〈t, ap−k〉0| = |t|p. Now we can
apply Theorem 4.1 to the p-adic affine group and obtain

Corollary 5.1. Let A, T,R be Qp-valued random variables with A 6= 0.
Suppose that R and (T,A) are independent and satisfy AR+ T

d= R. If

• E[υp(A)] < 0;
• E[|A|αp ] = 1 for some positive α;
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• E[|T |αp ] <∞;
• E[|υp(A)||A|p] <∞;
• P[Au+ T = u] < 1 for any u ∈ Qp;
• P[υp(A) = 1] > 0,

then
lim
k→∞

P[|R|p > pk]pαk = C > 0.

5.2. Lamplighter group. Another example of a subgroup of Aff(T) is
the lamplighter group

G = Zq o Z,
i.e.

G = Σq o Z
where Σq = {η ∈ ZZ

q : supp η is finite} is a group with pointwise multipli-
cation, and Z acts on Σq by the formula k(η)(i) = η(i − k). For any k ∈ Z
we can introduce an equivalence relation k∼ on Σq such that η k∼ ξ if and
only if η(i) = ξ(i) for i ≤ k. We will denote by ηk the equivalence class of an
element η with respect to the relation k∼. In a natural way we can identify
the tree T of degree q + 1 with the set

{ηk : η ∈ Σq and k ∈ Z}
such that ηk+1 is an ancestor of ηk. Then the lamplighter group G acts on
Tq by isometries:

(η, n)ξk = (η(nξ))k+n.

The bottom boundary ∂∗T can be identified with the set

{τ ∈ ZZ
q : supp τ ⊆ (k,∞) for some k ∈ Z}.

Then taking o = 00 (the equivalence class of the constantly zero function
with respect to the relation 0∼) and σ := (0,−1) we get f = 0. Since the
random variables Φn = (Υ1, N1) · · · (Υn, Nn)o converge almost surely in both
pointwise and Θ topology to the same limit, by Kaimanovich [8] (∂∗T, ν) is
the Poisson boundary of (Γ, µ), where ν is given by

ν(U) = P[ lim
n→∞

Φn ∈ U ].

Every (η, n) we can be written as (η, 0)(0, 1)n, so φ((η, n)) = n. Then

Θ(f, g) = q−min{k:f(k)6=g(k)},

so |f | = q−min{k:f(k)6=0} and ‖(η, 0)‖ = |η|.
Applying Theorem 4.1 we obtain

Corollary 5.2. If a random variable (Υ,N) with law µ satisfies

• E[N ] > 0;
• there is α > 0 such that E[q−αN ] = 1;
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• E[q−min{k:Υ (k)6=0}α] <∞;
• E[Nq−αN ] = m ∈ (0,∞);
• P[(Υ,N)f = f ] < 1 for any f ∈ ∂∗T;
• P[N = 1] > 0;

then
lim
k→∞

ν({f : supp f * (−k,∞)})qαk = C > 0.
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