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A CHARACTERIZATION OF SOBOLEV SPACES
VIA LOCAL DERIVATIVES

BY

DAVID SWANSON (Louisville, KY)

Abstract. Let 1 ≤ p <∞, k ≥ 1, and let Ω ⊂ Rn be an arbitrary open set. We prove
a converse of the Calderón–Zygmund theorem that a function f ∈ W k,p(Ω) possesses an
Lp derivative of order k at almost every point x ∈ Ω and obtain a characterization of
the space W k,p(Ω). Our method is based on distributional arguments and a pointwise
inequality due to Bojarski and Hajłasz.

1. Introduction. Let Ω ⊂ Rn be an open set and let 1 ≤ p < ∞. The
Sobolev space W k,p(Ω), k ≥ 1, consists of all functions f ∈ Lp(Ω) whose
distributional partial derivatives of all orders up to and including k are also
elements of Lp(Ω). In other words, for every multi-index σ with |σ| ≤ k there
exists Dσf ∈ Lp(Ω), termed the order σ weak derivative of f , satisfying

(1.1)
�

Ω

f(Dσϕ) dx = (−1)|σ|
�

Ω

(Dσf)ϕdx

for all ϕ ∈ C∞0 (Ω). The space W k,p(Ω) is a Banach space with respect to
the norm

(1.2) ‖f‖Wk,p(Ω) =
∑
|σ|≤k

‖Dσf‖Lp(Ω).

Sobolev spaces and their variants are widely used in applications such as
the study of partial differential equations and calculus of variations. An
important and interesting problem is to determine minimal conditions on f
which guarantee the validity of (1.1).

A related concept is that of local differentiability. Given x ∈ Rn and
k ≥ 1, the space T k,p(x) consists of all f ∈ Lp(Rn) for which there exists a
polynomial P k−1

x with degree less than k satisfying

(1.3) sup
r>0

r−kp
�

B(x,r)

|f(y)− P k−1
x (y)|p dy <∞.
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Here we use the notation

(1.4)
�

E

g dy =
1
|E|

�

E

g dy

for the integral average of g over the set E. If f ∈ T k,p(x), the quantities
fσ(x) are defined for |σ| ≤ k − 1 as the coefficients of P k−1

x when expressed
as a polynomial centered at x:

(1.5) P k−1
x (y) =

∑
|σ|≤k−1

fσ(x)
(y − x)σ

σ!
.

A function f ∈ T k,p(x) is said to have a local Lp derivative of order k
at x if there exists a polynomial P kx with degree not exceeding k with the
additional property that

(1.6) lim
r→0+

r−kp
�

B(x,r)

|f(y)− P kx (y)|p dy = 0.

Calderón and Zygmund [5] showed that if f ∈W k,p(Rn), then f has a local
Lp derivative of order k at almost every x ∈ Rn, where the polynomial P kx
is precisely the order k Taylor polynomial of f at x. It was later proved by
Ziemer [15] that the limit is uniform outside open sets of small Lebesgue
measure. In general, there is no converse to either the Calderón–Zygmund
or Ziemer theorems: it is possible for a function f to satisfy (1.6) almost
uniformly, yet fail to satisfy (1.1). A simple example is the indicator function
of the unit ball in Rn.

Many function spaces may be characterized using local derivatives pro-
vided that an appropriate integrability condition is placed on the quantity
in (1.3); see e.g. [3], [4], [13], [14, Section 1.7]. Such spaces are said to be
definable via local approximations. Recently, Shvartsman [11] has shown that
functions in certain Sobolev spaces W k,p(Rn), Besov spaces Bp,q

s (Rn), and
Lizorkin–Triebel spaces F p,qs (Rn) may be characterized via local approxima-
tion, and used these characterizations to address the problem of extending
a function f defined on a regular subset of Rn to one of these spaces.

In the case of Sobolev spaces, known characterizations ofW k,p(Ω) require
that p > 1. Nevertheless, certain partial converses do exist in case p = 1.
Bagby and Ziemer [1] proved that if f ∈ T k,1(x) for every x ∈ Rn, and
fσ ∈ L1(Rn) for every |σ| ≤ k, then in fact f ∈ W k,1(Rn). Moreover,
this fact remains true if f ∈ T k,1(x) for all x outside a Borel set B whose
n−1-dimensional integral-geometric measure is zero. See [16, Chapter 3] for
further details.

The purpose of the present article is to obtain a characterization of the
space W k,p(Ω) using local derivatives which is valid for arbitrary open sets
Ω ⊂ Rn and for all 1 ≤ p < ∞. In order to work with functions defined on
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the open set Ω rather than the whole space Rn we will use a variant of the
space T k,1(x) which coincides with the definition above when Ω = Rn.

Definition 1.1. Let x ∈ Ω and let

(1.7) δ(x) = dist(x,Ω).

For each k ≥ 1 we denote by T k,1Ω (x) the space of all f ∈ L1
loc(Ω) for which

there exists a polynomial P k−1
x with degree less than k satisfying

sup
0<r<δ(x)

r−k
�

B(x,r)

|f(y)− P k−1
x (y)| dy <∞.

Given f ∈ T k,1Ω (x) we define

(1.8) Φrf (x) = r−k
�

B(x,r)

|f(y)− P k−1
x (y)| dy <∞, 0 < r < δ(x).

The main result is stated next. We write U ⊂⊂ Ω to indicate that U ⊂ Ω.

Theorem 1.2. Let 1 ≤ p < ∞ and let f ∈ L1
loc(Ω). The following are

equivalent:

(1) f ∈W k,p(Ω),
(2) f ∈ T k,1Ω (x) for almost all x ∈ Ω, where

(a) fσ ∈ Lp(Ω) for all |σ| ≤ k − 1,
(b) there exists h ∈ Lp(Ω) with the property that

lim inf
r→0+

�

Q

Φrf (x) dx ≤
�

Q

h dx

for every open n-cube Q ⊂⊂ Ω.
Moreover, the quantities

‖f‖Wk,p(Ω) and
∑
|σ|≤k−1

‖fσ‖Lp(Ω) + inf ‖h‖Lp(Ω)

are equivalent, where the infimum is taken over all h ∈ Lp(Ω) satisfying
condition (2)(b).

2. Preliminaries. Henceforth we assume that Ω ⊂ Rn is an arbitrary
open set and that 1 ≤ p < ∞. We denote by Ca,b,... a constant whose
particular value depends only on a, b, . . . and no other parameters. For each
g ∈ L1

loc(Ω), we identify g with its representative satisfying

(2.1) g(x) = lim
r→0+

�

B(x,r)

g(y) dy

at all points x ∈ Ω where the limit exists. It will be convenient to regard g
as undefined at all other points.
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Definition 2.1. Let U ⊂ Rn be an open set and let ε > 0. Define

Uε = {x ∈ U : dist(x, ∂U) > ε},
U ε = {x ∈ Rn : dist(x, U) < ε}.

Definition 2.2. A regularizing kernel is a nonnegative function ψ ∈
C∞0 (B(0, 1)) with integral 1. Corresponding to a regularizing kernel ψ we
define the family {ψε}ε>0 of regularizers by

ψε(x) =
1
εn
ψ

(
x

ε

)
,

and for a locally integrable function f : Ω → R we define the family {fε} of
regularizations of f by

fε(x) = f ∗ ψε(x), x ∈ Ωε.
We recall the following standard results concerning the regularizations

of f (cf. [9], [16]):

Proposition 2.3. Let f ∈ L1
loc(Ω).

(1) fε ∈ C∞(Ωε) for each ε > 0 and fε(x)→ f(x) for almost all x ∈ Ω.
(2) If f ∈ W k,p(Ω) then Dσ(fε) = (Dσf)ε = f ∗ Dσψε for each multi-

index |σ| ≤ k and

‖fε − f‖Wk,p(Ω′) → 0 as ε→ 0+

for every open set Ω′ ⊂⊂ Ω.

The following result was proved by Calderón and Zygmund (cf. [5], [16]).

Proposition 2.4. Let k ≥ 1. There exists a regularizing kernel ψ which
commutes with polynomials in the sense that

Pε = P ∗ ψε = P

for every polynomial P whose degree does not exceed k.

Definition 2.5. Let f ∈ W k,p(Ω) and let m ≤ k. The order m Taylor
polynomial of f at a point x ∈ Ω is

(2.2) Tmx f(y) =
∑
|σ|≤m

Dσf(x)
(y − x)σ

σ!
,

provided that each Dσf(x) is defined as in (2.1).

A simple consequence of Proposition 2.3 is that if f ∈ W k,p(Ω), then
T kx fε(y)→ T kx f(y) as ε→ 0+ for almost all x ∈ Ω and all y ∈ Rn.

Definition 2.6. Let B ⊂ Rn be a ball and let α > 0. The Riesz potential
IαBf of a function f : B → R is defined for x ∈ Rn by

IαBf(x) =
�

B

|f(y)|
|x− y|n−α

dy.
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Throughout the paper we denote by Dkf(z) the family {Dσf(z)}|σ|=k
and by |Dkf |(z) its Euclidean norm. The following Riesz potential estimate
involving |Dkf | is due to Bojarski and Hajłasz [2] and is of fundamental
importance.

Proposition 2.7. Suppose that f ∈W k,p(Ω) and x ∈ Ω. If x is a point
where T k−1

x f is defined and B is a ball of radius r containing x, then

|f(y)− T k−1
x f(y)| ≤ Cn,k

(
IkB|Dkf |(y) +

k−1∑
m=0

rmIk−mB |Dkf |(x)
)

for almost all y ∈ B.

Finally, we recall the following Riesz potential estimate due to Hed-
berg [8].

Proposition 2.8. Suppose that f : Rn → R is measurable, x ∈ Rn,
r > 0, and α < n. Then

IαB(x,r)f(x) ≤ Cα,nrαMf(x),

where Mf is the Hardy–Littlewood maximal function of f .

3. A criterion for weak differentiability. The following well-known
proposition will be useful for localizing our arguments.

Proposition 3.1. Let f : Ω → R. If f ∈W k,p(Q) for every open n-cube
Q ⊂⊂ Ω, then Dσf is well defined in Ω for each multi-index |σ| ≤ k, and if
each Dσf ∈ Lp(Ω), then f ∈W k,p(Ω).

The proof of Theorem 1.2 relies on the following general characterization
of the Sobolev space W k,p(Ω).

Theorem 3.2. Let f ∈ L1
loc(Ω), let k ≥ 1, and let 1 ≤ p < ∞. Then

f ∈W k,p(Ω) if and only if there exists g ∈ Lp(Ω) with the property that

(3.1)
∣∣∣ �
Q

fDσϕdx
∣∣∣ ≤ ‖ϕ‖∞ �

Q

g dx

for every multi-index σ with |σ| ≤ k, open n-cube Q ⊂⊂ Ω, and ϕ ∈ Ck0 (Q).
Moreover, the quantities

‖f‖Wk,p(Ω) and inf ‖g‖Lp(Ω)

are equivalent, where the infimum is taken over all g satisfying (3.1).

Proof. The necessity follows from (1.1) with

g =
∑
|σ|≤k

|Dσf |,
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in which case we see that

inf ‖g‖Lp(Ω) ≤ ‖f‖Wk,p(Ω).

As for sufficiency, suppose that g ∈ Lp(Ω) satisfies (3.1). Let Q ⊂⊂ Ω
be an open n-cube. In light of Proposition 3.1 it suffices to show that f ∈
W k,p(Q) and that |Dσf | is comparable to m for each multi-index σ with
|σ| ≤ k. For all such σ define the functional Lσ : Ck0 (Q)→ R by

(3.2) Lσ(ϕ) =
�

Q

fDσϕdx,

so that L is a continuous linear functional on Ck0 (Q) satisfying

(3.3) |Lσ(ϕ)| ≤ ‖ϕ‖∞
�

Q

g dx.

Let us write
X = {ϕ ∈ C(Q) : u|∂Q = 0}.

Since Ck0 (Ω) is dense inX with respect to the topology of uniform conver-
gence, Lσ may be uniquely extended to a continuous linear functional on X
satisfying (3.3) for all ϕ ∈ X. The Riesz representation theorem (cf. [10,
Thm. 6.19]) guarantees the existence of a signed Borel measure µσ on Q
with finite total variation such that

Lσϕ =
�

Ω

ϕdµσ

for all ϕ ∈ X. The total variation |µσ|(U) of µσ on an open set U ⊂ Q is
given by

sup
{ �

Q

ϕdµσ : ϕ ∈ X, ‖ϕ‖∞ ≤ 1
}

= sup
{ �

U

ϕdµσ : ϕ ∈ Ck0 (U), ‖ϕ‖∞ ≤ 1
}
,

and by the argument just given we see that

(3.4) |µσ|(Q′) ≤
�

Q′

g dx

for every open subcube Q′ ⊂ Q. For an arbitrary open set U ⊂ Q, one may
employ a Whitney decomposition of U (cf. [12, p. 169]) to find a sequence
{Qj} of open subcubes of U with the property that

(3.5) U =
⋃
j
Qj and

∑
j

χ
Qj
≤ Cn,
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where Cn depends only on n. It follows from (3.4) and (3.5) that

|µσ|(U) ≤ Cn
�

U

g dx.

The outer regularity of the Lebesgue measure implies that µσ is absolutely
continuous with respect to the Lebesgue measure onQ. The Radon–Nikodým
theorem (cf. [10, Thm. 6.10]) implies in turn the existence of hσ ∈ L1(Q)
with the property that dµσ = hσ dx, and consequently

(3.6)
�

Q

fDσϕdx =
�

Q

hσϕdx

for all ϕ ∈ Ck(Q). Therefore, Dσf exists in the weak sense and Dσf =
(−1)|σ|hσ. It follows from (3.2), (3.3), and (3.6) that |Dσf | ≤ Cng in Ω,
hence Dσf ∈ Lp(Ω). Since this holds for all |σ| ≤ k, Proposition 3.1 implies
that f ∈W k,p(Ω) and that

‖f‖Wk,p(Ω) ≤ Cn,k‖g‖Lp(Ω)

as desired. Finally, take the infimum over all g satisfying (3.1).

4. An integral estimate. Recall the definition of Φrf from (1.8) above.
The following lemma gives an estimate of Φrf corresponding to f ∈W k,p(Ω)
in terms of the highest order derivatives of f . The proof relies on Propositions
2.7 and 2.8.

Lemma 4.1. Suppose that k ≥ 1 and that f ∈ W k,p(Ω). Then f ∈
T k−1
Ω (x) for almost all x ∈ Ω, and if Q is an n-cube with Q ⊂⊂ Ω then

�

Q

Φrf (x) dx ≤ Cn,k
�

Qr

|Dkf(x)| dx

for all 0 < r < dist(Q, ∂Ω).

Proof. Suppose that f ∈W k,p(Ω). Let x ∈ Ω be a point where T k−1
x f is

defined and let 0 < r < δ(x). Proposition 2.7 implies

�

B

|f(y)− T k−1
x f(y)| dy ≤ Cn,k

( �

B

IkB|Dkf |(y) dy +
k−1∑
m=0

rmIk−mB |Dkf(x)|
)
.

Tonelli’s theorem and Proposition 2.8 imply
�

B

IkB|Dkf |(y) dy =
�

B

�

B

|Dkf(z)|
|y − z|n−k

dz dy =
�

B

|Dkf(z)| dz
�

B

1
|y − z|n−k

dy dz

= Cn,kr
k
�

B

|Dkf(z)| dz,
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so we have

(4.1) Φrf (x) ≤ Cn,k
( �

B(x,r)

|Dkf(z)| dz+
k−1∑
m=0

rm−k
�

B(x,r)

|Dkf(z)|
|x− z|n−k+m

dz

)
.

A second application of Proposition 2.8 implies

sup
0<r<δ(x)

Φrf (x) ≤ Cn,kM |Dkf |(x).

Since |Dkf | ∈ Lp(Ω), this quantity is finite almost everywhere (including
the case p = 1, in which it fails to be integrable) and thus f ∈ T k,1Ω (x) for
almost all x ∈ Ω.

Now let Q ⊂⊂ Ω and let 0 < r < dist(Q, ∂Ω). Tonelli’s theorem implies
�

Q

�

B(x,r)

|Dkf(z)| dz dx ≤
�

Qr

|Dkf(z)|
�

Q

Cnr
−nχ

B(x,r)(z) dx dz

because x ∈ Q implies B(x, r) ⊂ Qr. Since χB(x,r)(z) = χ
B(z,r)(x) it follows

that �

Q

Cnr
−nχ

B(x,r)(z) dx ≤
�

Rn

Cnr
−nχ

B(z,r)(x) dx = 1.

Therefore �

Q

�

B(x,r)

|Dkf(z)| dz dx ≤
�

Qr

|Dkf(z)| dz.

Similarly, we have

�

Q

rm−k
�

B(x,r)

|Dkf(z)|
|x− z|n−k+m

dz dx

=
�

Qr

|Dkf(z)|
�

Q

rm−k

|x− z|n−k+m
χ
B(x,r)(z) dx dz

≤ Cn
�

Qr

|Dkf(z)|
�

B(z,r)

rm−k

|x− z|n−k+m
dx dz,

where

rm−k
�

Rn

1
|x− z|n−k+m

χ
B(z,r)(x) dx = rm−k

�

B(z,r)

1
|x− z|n−k+m

dz = Cn,k−m

by Proposition 2.8. Therefore we may integrate (4.1) over U to obtain
�

Q

Φrf (x) dx ≤ Cn,k
�

Qr

|Dkf(z)| dz.
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5. The proof of Theorem 1.2, necessity. Assume that f ∈W k,p(Ω).
The fact that f ∈ T k,1Ω (x) for almost all x ∈ Ω is well known and proved
in Lemma 4.1. If Q ⊂⊂ Ω, then one may apply Lemma 4.1 and e.g. the
dominated convergence theorem to obtain

lim inf
r→0+

�

Q

Φrf (x) dx ≤ Cn,k
�

Q

|Dkf(z)| dz.

Writing h = Cn,k|Dkf | we deduce that

(5.1) lim inf
r→0+

�

Q

Φrf (x) dx ≤
�

Q

h dx

for every open n-cube Q ⊂⊂ Ω, and the definition of the W k,p norm implies∑
|σ|≤k−1

‖fσ‖Lp(Ω) + inf ‖h‖Lp(Ω) ≤ Cn,k‖f‖Wk,p(Ω)

where the infimum is taken over all h satisfying (5.1).

6. The proof of Theorem 1.2, sufficiency. Conversely, assume that
f ∈ L1

loc(Ω) satisfies condition (2) of Theorem 1.2. Let ψ be a regularizing
kernel as in Proposition 2.4 which satisfies ψε ∗ P = P for every polynomial
P with degree not exceeding k, and let {fε}ε>0 be the corresponding family
of regularizations of f . We will verify the hypothesis of Theorem 3.2 by
adapting the method in [6].

Define
g = h+

∑
|σ|≤k−1

fσ.

Let Q ⊂⊂ Ω be an open n-cube, let ϕ ∈ Ck0 (Q), and let σ be a multi-index
with |σ| ≤ k. Choose ε0 > 0 sufficiently small so that Q ⊂ Ωε0 . Then
0 < ε < ε0 implies�

Q

fεD
σϕdx = (−1)|σ|

�

Q

(Dσfε)ϕdx = (−1)|σ|
�

Q

(f ∗Dσψε)ϕdx.

Since �

Q

fDσϕdx = lim
ε→0

�

Q

fεD
σϕdx,

it follows that

(6.1)
∣∣∣ �
Q

fDσϕdx
∣∣∣ ≤ ( lim inf

ε→0+

�

Q

|f ∗Dσψε| dx
)
‖ϕ‖∞.

Now let x ∈ Ω be a point where f ∈ T k,1Ω (x) and let P k−1
x be the

corresponding polynomial. Since P k−1
x commutes with ψε it follows that
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DσP k−1
x = Dσ(P k−1

x ∗ ψε) = P k−1
x ∗Dσψε and

f ∗Dσψε = (f − P k−1
x ) ∗Dσψε +DσP k−1

x .

Using the elementary estimate |Dσψε| ≤ Cnε−n−|σ|χB(0,ε) we have

|f ∗Dσψε(x)| ≤ Cnε−|σ|
�

B(x,ε)

|f(y)− Px(y)| dy + |DσP k−1
x (x)|

= Cnε
k−|σ|Φεf (x) + |DσP k−1

x (x)|,
for almost every x ∈ Ω. Consequently,�

Q

|f ∗Dσψε(x)| dx ≤ Cnεk−|σ|
�

Q

Φεf (x) dx+
�

Q

|DσP k−1
x (x)| dx.

If |σ| < k then DσP k−1
x (x) = fσ(x), hence

lim inf
ε→0+

�

Q

|f ∗Dσψε(x)| dx ≤
�

Q

|fσ| dx.

On the other hand, if |σ| = k then DσP k−1
x = 0 and

lim inf
ε→0+

�

Q

|f ∗Dσψε(x)| dx ≤ Cn lim inf
ε→0+

�

Q

Φεf (x) dx ≤ Cn
�

Q

h dx.

In either case it follows that

lim inf
ε→0+

�

Q

|f ∗Dσψε(x)| dx ≤ Cn
�

Q

g dx.

In light of (6.1), Theorem 3.2 implies that f ∈W k,p(Ω) and

‖f‖Wk,p(Ω) ≤ Cn,k‖g‖Lp(Ω) ≤ Cn,k
( ∑
|σ|≤k−1

‖fσ‖Lp(Ω) + ‖h‖Lp(Ω)

)
.

Finally, take the infimum over all admissible h to obtain

‖f‖Wk,p(Ω) ≤ Cn,k
( ∑
|σ|≤k−1

‖fσ‖Lp(Ω) + inf ‖h‖Lp(Ω)

)
as desired.
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