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Abstract. We consider functorially finite subcategories in module categories over
Artin algebras. One main result provides a method, in the setup of bounded derived
categories, to compute approximations and the end terms of relative Auslander–Reiten
sequences. We also prove an Auslander–Reiten formula for the setting of functorially
finite subcategories. Furthermore, we study the category of modules filtered by standard
modules for certain quasi-hereditary algebras and we classify precisely when this category
has finite type. The class of these algebras contains all blocks of Schur algebras S(2, r).

1. Introduction. Functorially finite subcategories in module categories
over Artin algebras have been introduced by Auslander and Smalø [2] to
provide a convenient setting for existence of relative Auslander–Reiten se-
quences in subcategories.

Given a functorially finite subcategory, it is generally not well understood
how to compute approximations, and the end terms of relative Auslander–
Reiten sequences. In this paper, we present a general method, in the setting
of bounded derived categories. This was partly inspired by [3], and it gener-
alizes [9, Theorem 3]. Furthermore, we prove an Auslander–Reiten formula
for the setting of functorially finite subcategories.

One context in which such categories occur naturally are the modules of a
quasi-hereditary algebra which have a filtration by standard modules. Quasi-
hereditary algebras were introduced by Cline, Parshall and Scott in the
study of highest weight categories for semisimple Lie algebras and algebraic
groups [4], and they were studied by Dlab and Ringel [9] and others. Let A
be quasi-hereditary. Then the simple A-modules are labelled as Li for i in
some partially ordered set (I,≤). Of central importance are the standard
modules, denoted by ∆i, and the category F(∆) of modules which have
a filtration where the quotients are standard modules. Then the category
F(∆) is a functorially finite subcategory, and it has relative Auslander–
Reiten sequences [18].
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Our original motivation was to understand this category, especially for
Schur algebras. Modules for the Schur algebra S(n, r) are the same as r-
homogeneous polynomial modules for the general linear group GLn(K) over
an infinite field K.

One would like to know when the quasi-hereditary algebra is ∆-finite,
that is, when the category F(∆) has finitely many indecomposable modules,
up to isomorphism. This question has also been considered in [6], [7] using
techniques of vector space categories. It has also been solved for hereditary
algebras (using any order on the simple modules) in [16] using quadratic
forms.

By Auslander’s Theorem, the algebra is ∆-finite if and only if the rel-
ative Auslander–Reiten quiver of F(∆) has a finite component, and if so
this component contains all indecomposables of the subcategory. It is this
approach that we pursue here.

When A is a Schur algebra, for some blocks it was shown in [12] that
F(∆) has finite type. Furthermore, it was established in [5] that Schur alge-
bras S(2, r) are not ∆-finite unless r is small. In the last part of this paper
we completely classify blocks of Schur algebras S(2, r) which are ∆-finite.

Our result is more general; we deal with classes of quasi-hereditary al-
gebras defined explicitly by quivers and relations (see 3.1.2), over arbitrary
characteristic. We call these algebras Λp,i where p is an odd integer > 1, and
i ≤ 4. We show that the algebra Λp,i is ∆-finite if and only if either i ≤ 2,
or i = 3 and p ≤ 7. Suppose B is a block of some Schur algebra S(2, r) over
a field of characteristic p (now p is a prime), and assume B has k simple
modules. We show that for p = 2, B is ∆-finite if and only k ≤ 4. Further-
more, for p > 2, the block B is ∆-finite if and only if either B has ≤ p + 2
simple modules, or B has p+ 3 simple modules and p ≤ 7. We think this is
surprising: the general theory and past results on Schur algebras S(2, r) do
not have any situation where such a condition on the characteristic occurs,
for odd characteristic.

The tools used in the last part are similar to those used in [12]; unfor-
tunately the general methods of Section 2 are not suitable for the detailed
calculations required in Section 3.

2. General methods. Let A be a finite-dimensional k-algebra (where
k is a field) and let T be a tilting A-module. Let B = EndA(T )op. In this
situation there is a well-known equivalence of triangulated categories

GT = R HomA(T,−) : Db(A)→ Db(B)

between the bounded derived categories of A and B respectively. The module
T is an A-B-bimodule, and a quasi-inverse of GT is given by FT = T ⊗L

B− :
Db(B)→ Db(A). The B-module T ∗ = Homk(T, k) is a cotilting B-module.
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The equivalence above restricts to an equivalence between certain module
categories. Define

Y = AT
⊥ = {N ∈ A -mod | ExtiA(T,N) = 0, i > 0},

Z = ⊥
BT
∗ = {M ∈ B -mod | ExtiB(M,T ∗) = 0, i > 0}.

We get an equivalence HomA(T,−) : Y → Z with quasi-inverse T ⊗B −.

Db(A)
R HomA(T,−) // Db(B)

Y
HomA(T,−) //

?�

OO

Z
?�

OO

In this paper our interest will lie in the following special case. Suppose
A is a quasi-hereditary algebra and T the canonical tilting module. Let
B = EndA(T )op, a quasi-hereditary algebra that is called the Ringel dual
of A. Then Y = FA(∇) and Z = FB(∆), where FA(∇) and FB(∆) denote
the categories of modules with a filtration in costandard A-modules and
standard B-modules respectively (see [18] or Section 3.1.1).

2.1. Approximations. Due to a theorem by Kleiner and Perez [14],
relative almost split sequences can be found by approximating absolute ones.
Approximations of modules are defined as follows.

Definition 1. Suppose X is a subcategory of a category C, and let M
be an object of C. A morphism f : XM →M with XM ∈ X is called a right
X -approximation of M (or an X -precover) if for any morphism g : X →M
with X ∈ X there is a morphism h : X → XM such that g = fh.

X

g

��

h

||y
y

y
y

XM
f // M

It is called a minimal right X -approximation (or an X -cover) if for any
morphism g : XM → XM satisfying fg = f ,

XM
f

''PPPPPP

g

��
M

XM f

77nnnnnn

the morphism g is an isomorphism. The subcategory X is called contravari-
antly finite if every object in C has a right X -approximation. Left X -approxi-
mations (also called X -preenvelopes), minimal left X -approximations (also
called X -envelopes) and covariantly finite subcategories are defined dually.



54 K. ERDMANN ET AL.

The subcategory X is called functorially finite if it is both contravariantly
finite and covariantly finite.

According to [2], a functorially finite and extension closed subcategory
has relative Auslander–Reiten sequences. The extension closed subcategories
Y and Z above are functorially finite according to [1], and hence they have
relative Auslander–Reiten sequences. We next state the theorem by Kleiner
and Perez.

Theorem 2 ([14, 5.4]). Let X be a contravariant and extension closed
subcategory of A -mod. Let Z ∈ X be indecomposable and not Ext-projective
and let η : 0 → τZ → E → Z → 0 be an Auslander–Reiten sequence in
A -mod. Then there exists a unique (up to isomorphism) exact commutative
diagram

ε : 0 // XτZ //

u

��

XE //

v

��

Z // 0

η : 0 // τZ // E // Z // 0

where u : XτZ → τZ and v : XE → E are minimal right X -approximations
of τZ and E respectively.

The exact sequence ε is a direct sum of a relative almost split sequence
0→ τXZ → E′ → Z → 0 and a split sequence 0→ Y = Y → 0→ 0 with Y
Ext-injective.

Despite the name functorially finite subcategory, approximations are usu-
ally not functorial. What is lacking is uniqueness: a minimal right X -appro-
ximation XM → M is unique up to (a non-unique!) isomorphism, but the
map X → XM in the definition is not necessarily unique. For instance, the
subcategory Z is coreflective, that is, the inclusion functor inc : Z → B -mod
has a right adjoint, only in the trivial case when Z = B -mod, in other words
only when T ∗ is injective. Nevertheless, it is always possible to find right
Z-approximations by using the following procedure.

Computing Z-approximations. Suppose M is an object in B -mod.
The following steps will produce a right Z-approximation of M .

1. Find a projective B-resolution of M , call it PM .
2. Put TM = T ⊗B PM , a complex of tilting A-modules. Note that

TM ' F (M).
3. Make an injective A-resolution of the complex TM , call it I•(TM ).
4. Let N = Z0(I•(TM )) and let f be the map f : N → I•(TM ). We

prove below that N ∈ Y.
5. Let g : HomA(T,N)→M be the composition

HomA(T,N) ∼−→ GT (N)
GT f−−−→ GT (I•(TM )) ∼−→ GTFT (M) ∼−→M.
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Theorem 3.

(a) The module N = Z0(I•(TM )) is an object in Y.
(b) The map g : HomA(T,N)→M is a right Z-approximation.

Proof. (a) Suppose

I•(TM ) = · · · → I−2 → I−1 → I0 → I1 → · · ·

and let

K = · · · → I−2 → I−1 → 0 → 0 → · · · ,
L = · · · → 0 → 0 → I0 → I1 → · · · .

Then there is a triangle

K[−1]→ L→ I•(TM )→ K.

We have HomDb(A)(T,K[i]) = 0 for i ≥ 0 and

HomDb(A)(T, I
•(TM )[i]) ' HomDb(B)(B,M [i]) ' ExtiB(B,M) = 0

for i > 0, so HomDb(A)(T, L[i]) = 0 for i > 0. But I•(TM ) has homology
only in non-positive degrees, so L is quasi-isomorphic to N = Z0(I•(TM )).
Therefore

ExtiA(T,N) ' HomDb(A)(T, L[i]) = 0

for i > 0, and it follows that N ∈ Y.
(b) Since B -mod is a full subcategory of Db(B), a map g : XM → M

is a right Z-approximation of M considered as an object in B -mod if and
only if it is a right Z-approximation of M considered as an object in Db(B),
and since FT is an equivalence, this is true if and only if FT g : FT (XM ) →
FT (M) ' I•(TM ) is a right Y-approximation.

A morphism f : Ỹ → I•(TM ) with Ỹ ∈ Y is a right Y-approximation
if and only if for each morphism h : Y → I•(TM ) with Y ∈ Y there is a
morphism j : Y → Ỹ such that h = fj.

Y

h
��

j

{{w
w

w
w

w

Ỹ
f // I•(TM )

As observed in [13, Lemma 4.5], the map f : Z0(I•(TM )) → I•(TM ) has
the factorisation property. From (a) we also have Z0(I•(TM )) ∈ Y, so
f : N → I•(TM ) is a right Y-approximation. Since GT is an equivalence,
we deduce that GT f : GT (N) → GT (I•(TM )) is a right Z-approximation.
The proposition follows.

The non-functorial part of the above method is Step 4. The space of 0-
cycles depends on which particular injective resolution was chosen in Step 3.
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Extra injective summands might be produced, which end up as extra Ext-
injective summands in the approximation. To get a minimal approximation,
unneeded Ext-injective summands must be removed.

Example 4. We illustrate the method on a small example (see again
Section 3.1.1 for the standard notation concerning quasi-hereditary alge-
bras). Let A be the algebra A = kQ/I, where Q is the quiver

1◦
α1 // 2◦
β1

oo
α2 // 3◦
β2

oo

and I is the ideal generated by {α1β1 + β2α2, α2β2}. This algebra is quasi-
hereditary. The indecomposable summands of the canonical tilting module
are as follows:

T1 : 1 T2 : 1

????

2

����

1

T3 : 1

????

2

����
????

1

???? 3

����

2

����

1

The algebra A is Ringel self-dual in such a way that FT (P1) = T3, FT (P2) =
T2 and FT (P3) = T1.

Consider the standard module

∆2 : 2

����

1

The Auslander–Reiten sequence in A -mod ending in ∆2 is

0→ S3
j−→ E

p−→ ∆2 → 0,

where E is the module
E : 2

����
????

1 3

We now want to find the relative Auslander–Reiten sequence ending in ∆2.
Using Theorem 2, it suffices to find a minimal right Z-approximation of E.
We apply our method. The module E has projective resolution

0→ P3 → P2 → P2 → 0.

Tensoring with T we get the complex

0→ T1 → T2 → T2 → 0.
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This complex is quasi-isomorphic to

0→ 0→ ∇2 → T2 → 0.

Taking a pushout with the map i : ∇2 → I2, we get another quasi-isomorphic
complex

0→ 0→ I2 → T2 ⊕ I3 → 0,

so N = T2 ⊕ I3. Since GT (N) = P2 ⊕ T1, we get a right Z-approximation
g : P2 ⊕ T1 → E. This approximation is minimal. From Theorem 2 we get
the commutative diagram

ε : 0 // Ker(pg) //

��

P2 ⊕ T1
//

g

��

∆2
// 0

η : 0 // S3
j // E

p // ∆2
// 0

The module Ker(pg) is given by

Ker(pg) : 1

???? 3

����

2

����

1

Since Ker(pg) is indecomposable, the sequence ε is a relative Auslander–
Reiten sequence.

This general method can in principle always be used, but, as we will see
in the next section, in concrete examples there are often more convenient
ways of finding relative Auslander–Reiten sequences.

2.2. Auslander–Reiten formula in functorially finite subcate-
gories coming from a cotilting module. As in the previous section, let
A be a finite-dimensional algebra and Z := ⊥T be a functorially finite sub-
category of A -mod where AT is a cotilting module. It is known ([1]) that in
the case of algebras of finite global dimension, all functorially finite resolving
subcategories have such an Ext-injective generator T , that is, all functorially
finite subcategories which are closed under extensions and kernels of surjec-
tions and which contain all projective A-modules. We denote by τZM the rel-
ative Auslander–Reiten translate for M ∈ Z, by τM the normal Auslander–
Reiten translate in A -mod and by τDb(A)M the Auslander–Reiten translate
in the bounded derived category Db(A). For M,N,K ∈ A -mod, we let
Hom
K

(M,N) denote the quotient of HomA(M,N) by the ideal KHomA(M,N)

of those morphisms which factor through addK.
We first need the following technical lemma.
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Lemma 5. Let D � B
b

� C be a short exact sequence in A -mod, and
K,N ∈ A -mod such that Hom(N,B) b∗→ Hom(N,C) and Hom(K,B) b∗→
Hom(K,C) are epimorphisms. Then the sequence

Hom
K

(N,D) � Hom
K

(N,B) � Hom
K

(N,C)

is also exact.

Proof. We start with the diagram

KHom(N,B)
��

��
Hom(N,D) // // Hom(N,B)

b∗ // //

����

Hom(N,C)

Hom
K

(N,B)

Since a morphism N → B which factors over K will still factor over K after
composition with b, we obtain induced maps bK∗ and b∗ from KHom(N,B)
to KHom(N,C) and Hom

K
(N,B) to Hom

K
(N,C) respectively. We claim that

bK∗ is onto. Let f ∈KHom(N,C). Then f can be decomposed as f : N u→
K

v→ C. But since Hom(K,B)
b∗
� Hom(K,C), there exists a map w ∈

Hom(K,B) such that v = b ◦ w. Hence f = v ◦ u = b ◦ w ◦ u and bK∗ is
surjective. Now we have the diagram

KHom(N,D) // //

��

��

KHom(N,B)
��

��

bK∗ // // KHom(N,C)
��

��
Hom(N,D) // // Hom(N,B)

b∗ // //

����

Hom(N,C)

����
Hom
K

(N,B)
b∗ // // Hom

K
(N,C)

where the monomorphisms in the upper left corner and the epimorphisms
in the lower right corner follow trivially. The snake lemma then implies that
Ker b∗ is indeed Hom

K
(N,D) as desired.

Theorem 6. The Auslander–Reiten formula holds in Z, i.e. for any
M,N ∈ Z,

Ext1(M,N)∗ ∼= Hom
T

(N, τZM).
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Proof. Let N ↪→ T (N) � N ′ be the first step in an addT -resolution of
N ∈ Z and let M ∈ Z. Then we obtain an exact sequence

Hom(N ′, τM) ↪→ Hom(T (N), τM)→Hom(N, τM) ω→ Hom(M,N ′)∗

→Hom(M,T (N))∗ � Hom(M,N)∗

where the image of ω is Hom
T

(N, τM). Since Ext1(M,T (N)) = 0, the kernel
of the sequence

Hom(M,N ′)∗ → Hom(M,T (N))∗ � Hom(M,N)∗

is Ext1(M,N)∗, hence

(1) Ext1(M,N)∗ ∼= Hom
T

(N, τM).

We now wish to show that Hom
T

(N, τZM) ∼= Hom
T

(N, τM) for M ∈ Z.

We proceed in two steps:

Claim 1. Hom
T

(N,ZτM ) ∼= Hom
T

(N, τM) for M ∈ Z, where r : ZτM →

τM is a right Z-approximation of τM .

Claim 2. Hom
T

(N, τZM) � Hom
T

(N, τM).

Assuming both claims, the statement follows since

Hom
T

(N,ZτM ) ∼= Hom
T

(N, τZM)⊕Hom
T

(N,C)

for some C ∈ Z with Ext1(M,C) = 0. If this direct sum is isomorphic to
Hom
T

(N, τZM) and one summand already surjects onto it, then the other

must be zero and the surjection in Claim 2 is an isomorphism.

Proof of Claim 1. From the definition of right approximation, we obtain
a short exact sequence

Hom(N,Ker r) ↪→ Hom(N,ZτM )
r∗
� Hom(N, τM).

As T ∈ Z, the same holds for T instead of N . Hence we can apply Lemma 5
to obtain an exact sequence

Hom
T

(N,Ker r) ↪→ Hom
T

(N,ZτM )
r∗
� Hom

T
(N, τM).

But r being a right approximation implies Hom
T

(N,Ker r) = 0, whence
Claim 1 holds.

Proof of Claim 2. By Jørgensen [13], τZM is the right Z-approximation
of τDb(A)M , hence we get an epimorphism

Hom(N, τZM) � HomDb(A)(N, τDb(A)M)
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for every N ∈ Z. But τDb(A)M is νP •[1] where P • = · · · f2→ P 2 f1→ P 1 f0→ P 0

is a minimal projective resolution of M and ν is the Nakayama functor.
Since Z is considered to be concentrated in degree zero, we have

HomDb(A)(N, τDb(A)M) ∼= HomA(N,Ker νf0)/J

where J is the ideal generated by those morphisms factoring over νf1,
hence over the injective νP 2. On the other hand, Ker νf0

∼= τM , so that
HomA(N, τM)/J surjects onto Hom

A∗
(N, τM). Composing epimorphisms, we

obtain an epimorphism

Hom(N, τZM) � Hom
A∗

(N, τM).

From the comparison of the usual Auslander–Reiten formula and (1), we see
that for N ∈ Z we have

Hom
A∗

(N, τM) ∼= Hom
T

(N, τM),

therefore Claim 2 holds and the result follows.

3. ∆-finiteness for S(2, r)

Preliminaries for F(∆)

3.1.1. Background. Assume A is a finite-dimensional basic algebra over
some field K, with simple modules Li labelled by a set I ⊂ Z, and let ≤ be
the natural order on I. For i ∈ I let Pi be the indecomposable projective
module with simple quotient Li. Recall that the standard module ∆i is the
largest quotient of Pi with composition factors Lj for j ≤ i. Dually, the
costandard module ∇i is the largest submodule of the injective hull Ii with
composition factors Lj for j ≤ i. We assume A is quasi-hereditary with
respect to the natural order on I. That is, for all i ∈ I the simple module
Li occurs only once as a composition factor of ∆i, and furthermore Pi has
a ∆-filtration where ∆i occurs once, and if ∆j occurs then j ≥ i.

Recall that indecomposable modules which have both a ∆-filtration and
a ∇-filtration are labelled as Ti where i is maximal with ∆i ⊂ Ti. These
are canonical tilting modules, which will be referred to simply as tilting
modules in the following. These are the Ext-injective objects in F(∆), i.e.
Ext1(M,Ti) = 0 for any M in F(∆).

Fix a set {ei} of orthogonal primitive idempotents such that
∑
ei = 1A,

and where Aei = Pi. For i ∈ I, let fi :=
∑

j>i ei, and let

Ā (= Ā>i) = A/AfiA.

Then Ā is quasi-hereditary with respect to {j ∈ I : j ≤ i}, with standard
modules ∆j for j ≤ i. Furthermore, the algebra fAf is quasi-hereditary
with respect to {j : j > i}, with standard modules f∆j . We call Ā a good
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quotient of A, and fAf a good subalgebra of A. Clearly the category F(∆Ā)
of Ā-modules with ∆-filtration is a subcategory of F(∆A), the A-modules
with ∆-filtration. Furthermore, the category F(∆fAf ) is equivalent to a full
subcategory of F(∆A) (see [12, 2.4]). This implies that if A is ∆-finite then
so are Ā and fAf .

Remark 7. One general principle we will often use is the following.
Suppose 0→ τ∆(X)→ E → X → 0

is a relative Auslander–Reiten sequence of Ā-modules. In general, if the
relative Auslander–Reiten sequence of τ∆(X) as a module for A ends in Y
then X = Y/AfiX. If then Ext1(X,∆j) = 0 for j > i then X ∼= Y , so
that the relative AR-sequence for Ā remains a relative Auslander–Reiten
sequence for A (see [12, 3.1]). We will use this frequently, when i is the
largest element in I.

3.1.2. Algebras. We will consider classes of quasi-hereditary algebras
defined by quivers and relations. Take an odd integer p. Then the algebras
will be Λp,i for i ≤ 4. The presentation for Λp,4 and p ≥ 5 is given in detail
below. To obtain Λp,3 one factors out the ideal generated by the idempotent
f9 (with the notation of the previous section). Similarly to obtain Λp,2 one
factors out the ideal generated by f8, and the algebra Λp,1 is obtained by
factoring out the ideal generated by f7. This algebra Λp,1 appears in [12]
and [10] (it is called Dp+1); and Λp,0 is obtained by factoring out the ideal
generated by f6 (this is called Ap in [12] and [10]). We also define Λ3,i :=
f2Λ5,if2 for i = 1, 2, 3, and similarly Λ2,2 = f3Λ5,2f3.

Definition 8. The algebra Λp,4 is defined to be the algebraKQ/I where
Q is the quiver
ω◦

αω // ω+1◦
βω

oo · · · 0◦
α0 // 1◦

δ4
��

β0

oo
α1 // 2◦

δ3
��

α2 //
β1

oo 3◦
α3 //

β2

oo

δ2
��

4◦
β3

oo
α4 //

δ1
��

5◦
β4

oo

9◦

γ4

OO

β̃3 // 8◦

γ3

OO

β̃2 //
α̃3

oo 7◦

γ2

OO

α̃2

oo
β̃1 // 6◦

γ1

OO

α̃1

oo

and I is the ideal generated by

αiβi − βi+1αi+1, α̃iβ̃i − β̃i+1α̃i+1,

αiαi−1, βiβi+1, α̃i+1α̃i, β̃iβ̃i+1,

α4β4, α̃3β̃3,

δiγi

for all i where these expressions make sense, and all possible ρ − µ where
ρ and µ are paths of length 2 around a square starting and ending in the
same vertex. The quiver has p+ 4 = 5 + 2k+ 4 vertices, we label them from
ω := −2k + 1,−2k + 2, . . . , 7, 8, 9.
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We now describe the submodule structures of the projective modules
and the tilting modules. The tilting module Tω is just the simple module
corresponding to ω. The tilting modules Tω+1, . . . , T5 are given by

ω ω + 1

���� ???? 0

����
???? 1

����
???? 4

����
????

ω + 1 ω

???? ω + 2

����
· · · −1

???? 1

����
0

???? 2

����
. . . 3

???? 5

����

ω ω + 1 0 1 4

Up to the module with top 0 these are also the projectives Pω, . . . , P0.
The projective P1 has composition structure

1

����
????

OOOOOOOOO

0

???? 2

����
OOOOOOOOO 9

OOOOOOOOO
????

1 8

???? 1

2

The projectives P2 = T9, P3 = T8, P4 = T7, P5 = T6 have respective
composition structures

2

����
????

OOOOOOOOO 3

����
????

OOOOOOOOO

1

????

OOOOOOOOO 3

����
OOOOOOOOO 8

����
????

OOOOOOOOO 2

????

OOOOOOOOO 4

����
OOOOOOOOO 7

����
????

OOOOOOOOO

2

OOOOOOOOO 9

????

OOOOOOOOO 7

����
OOOOOOOOO 2

����
???? 3

OOOOOOOOO 8

????

OOOOOOOOO 6

����
OOOOOOOOO 3

����
????

8

OOOOOOOOO 1

???? 3

����
7

OOOOOOOOO 2
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3.1.3. Blocks of Schur algebras. Suppose B is a block of a Schur algebra
S(2, r) over a field F of characteristic p, with k simple modules. The Morita
equivalence class of B is completely determined by the number k (see [11]).
In fact, one can deduce from [11, 1.2] and [10] the following. If B,B′ are
blocks of Schur algebras S(2, r1) and S(2, r2), with k and k′ simple modules
respectively and k < k′, then B is Morita equivalent to a good quotient
of B′.

Furthermore, a presentation of the basic algebra of B by a quiver and
relations has been determined in [17], using work of [15] and of [8], and if B
has finite type, already in [10].

For k ≤ p the algebra has finite type and is Morita equivalent to an
algebra denoted as Ak in [10]. If k = p + i for 1 ≤ i ≤ 4 and p ≥ 5 then
B is Morita equivalent to Λp,i (over characteristic p). When k > p + 4 and
p ≥ 5 then B always has a good quotient which is Morita equivalent to Λp,4.
If p = 3 and k = 3 + i ≤ 6 then B is Morita equivalent to Λ3,i. If p = 2 and
k = 4 then B is Morita equivalent to Λ2,2.

3.1.4. Main results. We will classify ∆-finiteness for the algebras Λp,i.
Our results are as follows.

Theorem 9. Assume p is an odd integer.

(a) The algebras Λp,i for i = 1, 2 are ∆-finite.
(b) The algebras Λp,3 are ∆-finite if and only if p ≤ 7.
(c) The algebras Λp,4 are ∆-infinite for p ≥ 5.

Corollary 10. Assume B is a block of S(2, r) over characteristic p
with k simple modules. Then B is ∆-finite if and only if one of the following
holds:

(i) p = 2 and k ≤ 4.
(ii) p ≤ 7 and p odd, then k ≤ p+ 3,

(iii) p ≥ 11, then k ≤ p+ 2.

Proof of the Corollary. Most of this follows directly from the theorem
and the description of the Morita equivalence classes of blocks in 3.1.3. We
only need to establish ∆-infiniteness for p = 2 and p = 3. This follows
from [5, 6.11]: there it is shown that S(n, r) is ∆-infinite if either p > 2
and r ≥ 2p2 + p − 2, or if p = 2 and d ≥ 8 (if d is even), d ≥ 17 (if d is
odd). The proof shows that, in each case, the block containing the simple
module L(r) is ∆-infinite. If p = 2, then S(2, 8) is one block, with five
simple modules. If p = 3, the block of S(2, 19) which contains L(19) has
seven simple modules.

The proof of part (b) in Theorem 9 entails most of the work. As for
Schur algebras, we were surprised to find this dependence on p.
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3.2. The algebras Ap and Λp,1. Throughout, p is an odd integer. The
characteristic of the field is arbitrary. We will describe the relative AR-quiver
of Ap and of Λp,1; this will be the starting point for dealing with Λp,2.

3.2.1. Algebras Ap for p ≥ 5 odd. These are of finite type, and the
relative AR-quiver can be found in [19]. We write ω for the smallest weight,
that is, ω = −(2k − 1) if p > 5, and ω = 1 for p = 5. Then the relative
AR-quiver has an odd wing and an even wing. The odd wing is spanned by
the ∆r with r odd, and we have τ∆(∆r) = ∆r+2 for ω ≤ r < 5.

The even wing is spanned by the ∆r with r even, and τ∆(∆r) = ∆r+2

for ω + 1 ≤ r < 4.
For each ω ≤ r ≤ s ≤ 5 of the same parity, there is a unique indecompos-

able module in the wing of this parity with ∆-quotients ∆r,∆r+2, . . . ,∆s.
We denote this module by Wr,s. [If r = s then Wr,s = ∆r.]

The two wings are connected by relative AR-sequences in which all
projective-injective modules occur:

(1) The sequences which start at the odd wing and end at the even wing
are

0→Wω,5 →Wω,3 ⊕ P4 →W4,6 → 0,

and for ω + 2 ≤ r ≤ 3 and r odd,

0→Wω,r →Wr+1,6 ⊕ Pr−1 ⊕Wω,r−2 →Wr−1,6 → 0.

(2) The sequences which start at the even wing and end at the odd wing
are

0→Wω+1,4 →Wω+1,2 ⊕ P3 ⊕∆5 →W3,5 → 0,

and for ω + 3 ≤ r ≤ 4 and r even,

0→Wω+1,r →Wω+1,r−2 ⊕ Pr−1 ⊕Wr+1,5 →Wr−1,5 → 0.

The last one is

0→ ∆ω+1 → Pω ⊕Wω+2,5 →Wω,5 → 0.

For p = 7, we have ω = −1, and the relative Auslander–Reiten quiver is
given by
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3.2.2. The algebras Λp,1 for odd p. These algebras are not of finite type
but they are ∆-finite. The relative AR-quiver was determined in [12]. The
general description is, roughly speaking, that one ray is inserted into the
relative Auslander–Reiten quiver for Ap, after the even wing and before the
odd wing.

For r even and ω + 1 ≤ r ≤ 4 we have a unique indecomposable module
with ∆-quotients ∆r,∆r+2, . . . ,∆6, which we call Wr,6. The modules Wr,6,
together with P4, P5 and ∆6, are the only indecomposable modules with ∆-
filtration which have ∆6 as a quotient. Almost all of the relative Auslander–
Reiten quiver of Λp,1 remains. The change is that the sequences for Ap
described in (1) are replaced by the relative Auslander–Reiten sequences in
which the Wr,6 occur. These are

0→ ∆6 → P4 → T5 → 0,
0→ P4 → T5 ⊕W4,6 → ∆4 → 0,

0→Wω,5 → P4 ⊕Wω,3 →W4,6 → 0,
0→W4,6 → ∆4 ⊕W2,6 →W2,4 → 0,

and for ω + 1 < r ≤ 3 and r even,

0→Wω,r+1 →Wr+2,6 ⊕ Pr ⊕Wω,r−1 →Wr,6 → 0,
0→Wr,6 →Wr,4 ⊕Wr−2,6 →Wr−2,4 → 0.

Finally,

0→Wω,ω+2 →Wω+3,6 ⊕ Pω+1 ⊕∆ω →Wω+1,6 → 0,
0→Wω+1,6 →Wω+1,4 ⊕ P5 → ∆5 → 0.

Again for p = 7, the relative Auslander–Reiten quiver is given by
[∆6
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EEEE

[P4

DDDD

zzz
∆4

@@@@ ·

EEEEEE ·

FFFFFF [Pω] Wω,5

Wω,5

FFFFF

xxxx
◦

EEEEEE

yyyyy
·

@@@@@

~~~~~
·

EEEEEE

yyyyyy
[P1] ·

vvvvv

·
BBBBB

|||| ·

DDDDDD

zzzzzz
[P2] ◦

@@@@@

~~~~~
·

EEEEE

yyyyyy
[P3] ·

xxxxxx

·
9999

����
·

FFFFFF

xxxxxx ·
EEEEE

yyyyyy
[P0] ◦

@@@@

~~~~~
∆5

yyyyy

∆5

����
·

||||| ·

zzzzzz
∆ω

~~~~
[P5]

yyyy

where the circles denote modules of the form Wr,6.
In the following we will use the term “extended odd wing” for the full

subquiver consisting of the odd wing together with all relative Auslander–
Reiten sequences ending in Wr,6.
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3.3. Algebras Λp,2 for p odd. Let Γp,2 be the relative Auslander–
Reiten quiver of Λp,2. We will prove the following.

Theorem 11. The quiver Γp,2 can be obtained from the relative Auslan-
der–Reiten quiver of Λp,1 by inserting two rays connecting the even wing
and the extended odd wing. The shape of the quiver Γp,2 is (in the example
where p = 7)
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where crosses signify modules which are extensions of modules for Λp,1 with
∆7, and boxes denote modules which are extensions of modules for Λp,1
with P6.

Whenever we have a one-dimensional Ext-space between two modules M
and N , we denote their extension by M ∗N . In particular, we will generally
write modules for Λp,j as M ∗N where M factors over the quotient algebra
Ap and all constituents in a ∆-filtration of N are of the form ∆j for j ≥ 6.
In this notation, the modules Wr,6 from the previous section would be called
Wr,4 ∗∆6.

Proof of Theorem 11. We apply Remark 7, using that Λp,1 ∼= Λp,2/I
where I is the ideal generated by f7.

(1) We first observe that Ext1(∆j ,∆7) = 0 for j ≤ 3. This implies, by
Remark 7 that the extended odd wing is a full subquiver of Γp,2. Similarly
the even wing is a full subquiver of Γp,2. In particular, we have located the
projectives Pr for r ≤ 2 and r even.

(2) Some translates are easily found. We have

τ∆(T5) = P6, τ∆(∆4) = T5 ∗ P6 τ∆(T5 ∗ P6) = ∆7.

Note that T5 ∗P6 is the middle term of the relative AR-sequence starting in
P6, so we have a part of the relative AR-quiver which contains one tilting
module and one projective.

(3) We extend the even wing to the right, and this will also give the
positions of the projective-injectives Pr with r ≤ 1 odd.
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Lemma 12. There are relative AR-sequences in Λp,2

0→ ∆ω+1 → Pω ⊕ (Wω+2,5 ∗∆7)→Wω,5 ∗∆7 → 0,
0→Wω+1,k →Wω+1,k−2 ⊕ Pk−1 ⊕Wk−3,5 ∗∆7 →Wk−1,5 ∗∆7 → 0

for k = ω + 3, ω + 5, . . . , 2.

Proof. We use Remark 7, using the fact that Λp,1 ∼= Λp,2/I where I is
the ideal generated by f7.

(a) Let 0 → ∆ω+1 → X → Y → 0 be the relative AR-sequence in Λp,2.
By Remark 7, Y is an extension of Wω,5 by a direct sum of copies of ∆7 (or
just Wω,5). One finds that Ext1(Wω,5,∆7) ∼= K, furthermore by inspection
there is an indecomposable module of the form Wω,5 ∗ ∆7. So either Y is
this module, or Y = Wω,5.

We must show that Y = Wω,5 ∗ ∆7. Assume (for a contradiction) that
Y = Wω,5. Then the relative AR-sequence is the same as in Λp,1,

(ξ) 0→ ∆ω+1 → Pω ⊕Wω+2,5
φ→Wω,5 → 0.

There is an indecomposable module U which is an extension of Wω,5 by P6,
and an epimorphism π : U → Wω,5. This must factor through φ, say π =
φ ◦ γ. The simple module L6 is not a composition factor of the middle in ξ.
This implies that γ maps the submodule P6 of U to zero. Since π is onto, it
follows that the image of γ is isomorphic to Wω,5. But this means that the
sequence ξ is split, which is a contradiction since it is a relative AR-sequence.

Now we have identified the end term of the sequence starting in ∆ω+1. It
follows that the middle is an extension of Pω ⊕Wω+2,5 by ∆7. The module
Pω is projective and injective, so it is a direct summand. We have already
found the position of ∆7 and it is easy to deduce that the middle of the
relative AR-sequence ending in ∆ω+1 is Pω ⊕ Z where Z = Wω+2,5 ∗∆7.

(b) It follows now that for k = ω + 3 we have τ−1
∆ (Wk,ω+1) = Z. The

argument as in part (a) shows that the middle of the relative AR-sequence
ending in Wk,ω+1 is ∆ω+1 ⊕ Pω+2 ⊕Wω+4,5 ∗∆7. Similar arguments prove
the rest of the lemma.

We now continue the proof of Theorem 11.
(4) The same reasoning shows that there is a relative AR-sequence

0→Wω+1,6 → P5 ⊕Wω+1,4 ∗ P6 → ∆5 ∗∆7 → 0.

Note that Wω+1,6 is located at the right side of the extended odd wing. Note
also that P5 is projective-injective.

(5) We locate the remaining projectives and tilting modules. As for the
position of P4 (= T7), one shows that there is a relative AR-sequence

0→Wω,5 ∗ P6 → ∆6 ⊕ P4 ⊕Wω,5 → T5 ∗∆6 → 0.
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Note that Wω,5 is at the top of the odd wing, and T5 ∗∆6 is at the top of
the extended odd wing. [For Λp,1, the module T5 ∗∆6 is the projective P4.]

Furthermore, it is easy to see that τ∆(T4) = ∆5∗P6 and τ∆(∆5∗P6) = P3.
The following shows that T4 is linked to the odd wing.

Lemma 13. There is an indecomposable module M = (T4 ⊕ ∆5) ∗ P6.
Furthermore, we have relative AR-sequences

0→ ∆5 ∗ P6 →M → T4 → 0,(1)

0→ T4 ∗ P6 →M → ∆5 → 0(2)

and Ext1(∆5, T4 ∗ P6) = K.

Proof. The module M is constructed by factoring out ∆6 from the diag-
onal in T4 ∗P6⊕P5. We can write down a non-split exact sequence as in (1).
Furthermore, one checks that Ext1(T4,∆5∗P6) = K. Since τ∆(T4) = ∆5∗P6

the sequence (1) must be the relative AR-sequence. Exactly the same rea-
soning shows that the relative AR-sequence ending in ∆5 must be as given
in (2).

We have now located all projectives and all tilting modules. Therefore,
anywhere else, the translation acts regularly, and this allows us to see easily
how the parts found so far are connected.

(6) It is easy to see that τ∆(∆6) = Wω,5 ∗∆7, which is in the extended
even wing, has translate ∆ω+1.

(7) We have τ∆(T5 ∗∆7) = ∆6, which is easy to see. Now, T5 ∗∆7 occurs
in the middle of the relative AR-sequence starting with ∆7, so we get a
connection from the left side of the even wing to the right side of the odd
wing.

The rest is now obtained by knitting.

3.4. Algebras Λp,3. Let Γp,3 be the relative Auslander–Reiten quiver
of Λp,3. We have the following result.

Theorem 14. The algebra Λp,3 is ∆-finite if and only if p ≤ 7. For
p = 7, the relative Auslander–Reiten quiver Γ7,3 is given by Figure 1.

Proof. The strategy is as follows. For q < p and q odd, Λq,3 is a good
subalgebra of Λp,3, and FΛq,3(∆) is equivalent to a subcategory of FΛp,3(∆)
(see Remark 7). Hence if Λp,3 is ∆-finite then so is Λq,3; and if Λq,3 is
∆-infinite then so is Λp,3.

One shows that Λ7,3 is ∆-finite by finding the complete relative Auslan-
der–Reiten quiver. Furthermore, one shows that Λ9,3 is ∆-infinite. To start,
we assume p ≥ 5, and one determines parts of Γp,3 in general, by the follow-
ing steps.
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(I) Extend Γp,2, in particular locate all Pr for r ≤ 1.
(II) Locate the remaining projectives and tilting modules.

(III) Find a full sectional path.

When p = 7, we can then knit to deduce the graph structure of the complete
Γp,3 and see that it is finite. On the other hand, when p = 9, we use knitting
to show that it is infinite.

The proofs for parts (I) to (III) use methods similar to those in the
previous section, and we will only give details where the arguments are
different.

(I) Parts of the Γp,3 which come from Λp,2. One uses Remark 7.
One checks extensions between standard modules ∆j and ∆8 for all j and
obtains

Ext1(∆j ,∆8) =
{
K, j = 3, 6, 7,
0, otherwise.

(Ia) The even wing. In addition to the previous calculations of Exts
between some ∆j and ∆8, we have Ext1(Wk,5 ∗∆7,∆8) = 0 for k ≤ 5 and k
odd. These conditions imply:

Corollary 15. The extended even wing in Γp,2 (from step (3) in the
proof of Theorem 11) is a full subquiver of Γp,3. In particular, this part
contains the projective-injectives Pk for k odd and k ≤ 1. Furthermore, Γp,3
also contains the next path to the left, from P6 to Wω+1,4 ∗ P6.

(Ib) Some sectional paths. The relative AR-sequence ending in ∆4

from Λp,2 survives. The translate of ∆4 is T5 ∗ P6 and one checks that this
satisfies Ext1(T5∗∆6,∆8) = 0. So the relative AR-sequence ending in T5∗P6

also survives; this starts in ∆7. The same argument shows that the two
sectional paths in Γp,2 which are next to each other,

P6 → T5 ∗ P6 → ∆4 ∗ P6 →W2,4 ∗ P6 → · · · →Wω+1,4 ∗ P6,

∆7 → T5 ∗∆7 → ∆4 ∗∆7 →W2,4 ∗∆7 → · · · →Wω+1,4 ∗∆7,

both survive. This will be important later.

(Ic) The odd wing. By the Ext-calculations above most of the odd
wing is unchanged, and is part of Γp,3. The exception is the left edge, that
is, the modules Wk,5 for k odd, including ∆5. We can however extend the
wing spanned by ∆r for ω ≤ r ≤ 3 and r odd to the left as follows. It is
easy to see that

τ∆(∆3) = T5 ∗ P7, τ∆(T5 ∗ P7) = ∆6, τ∆(∆6) = P2.

If 0→ P2 →M → ∆6 → 0 is the relative AR-sequence then M is indecom-
posable and τ∆(M) = Wω,3 ∗∆8.
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Furthermore, the relative AR-sequence which has T6 (= P5) as middle
term, is as for Γp,2, namely

0→Wω+1,6 → T6 ⊕ Z → ∆5 ∗∆7 → 0.

To see this, one computes Ext1(∆5 ∗∆7,∆8) = 0.
We extend the odd wing to the right, and also locate the Pr even for

r ≤ 0. We have extensions Wr,6 and ∆8 which we call Wr,4 ∗W6,8.

Lemma 16. The relative AR-sequence starting with Wω,k for ω < k < 3
and k odd is of the form

0→Wω,k →Wω,k−2 ⊕ Pk−1 ⊕Wk+1,4 ∗W6,8 →Wk−1,4 ∗W6,8 → 0.

Moreover, τ∆(∆7) = Wω+1,4 ∗W6,8 and hence ∆7 is located to the bottom
right of the extended odd wing.

We can continue one more step, and we obtain

Lemma 17. The relative AR-sequence starting with Wω,3 is of the form

0→Wω,3 →Wω,1 ⊕ Y →W2,4 ∗W6,8 → 0

where Y = (∆4 ⊕ T3) ∗W6,8, and Y is indecomposable.

(II) The position of projectives and of tilting modules. We have
already located all Pr for r ≤ 2 and also P5 (= T6) and T4, T5 and P6, ∆ω.
It remains to locate P3, P4, T4, P7, T3 and ∆8.

(IIa) The position of P4 (= T7)

Lemma 18. There is a relative AR-sequence

0→Wω,5 ∗ P6 → T7 ⊕Wω,5 ∗W6,8 → T5 ∗W6,8 → 0.

Proof. From Λp,2 we have the relative AR-sequence

0→M = Wω,5 ∗ P6 → T7 ⊕∆6 ⊕Wω,5 → T5 ∗∆6 → 0.

By Remark 7 we can deduce that τ−1
∆ (M) is an extension of T5 ∗ ∆6 by

copies of ∆8, or just T5 ∗ ∆6. Similarly to previous situations, one shows
that the sequence is as stated.

We also need to know the location in relation to the two wings when
p = 7. First, there is an irreducible map from Wω,3 ∗ ∆8 to P2, from the
extension of the odd wing to the left. Next, we calculate translates of Wω,3:
they are

Wω+2,5, ∆3 ∗ P7, T5 ∗W6,8,

and hence we have reached the sequence in which T7 occurs.

(IIb) The position of P3 (= T8)

Lemma 19. There is a relative AR-sequence

0→Wω+1,4 ∗ P7 → P3 ⊕ (Wω+1,4 ∗∆7)→ T4 ∗∆7 → 0.
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Furthermore, P5⊕Wω+1,4∗∆7 is the middle term of the relative AR-sequence
ending in ∆5 ∗∆7 which we had already identified in (I).

The proof is similar to that of Lemma 11.

(IIc) The positions of T4, P7. It is easy to see that τ∆(T4) = P7 and
the relative AR-sequence has indecomposable middle term. To locate these
in Γp,3, we find a few translates,

τ∆(T4 ∗ P7) = W6,8, τ∆(W6,8) = Wω,5 ∗∆7, τ∆(Wω,5 ∗∆7) = ∆ω+1,

and this shows that they connect with the even wing.

(IId) The positions of T3,∆8. The only tilting modules and project-
ive modules which have not yet been located are T3 and ∆8. We only need
to know a few steps. By arguments similar to the ones used before we find

τ∆(T3) = ∆4 ∗ P7, τ∆(∆4 ∗ P7) = T5 ∗∆6, τ∆(T5 ∗∆6) = T3 ∗ P7.

Furthermore, we find a few inverse translates of ∆8. First, τ∆(T4 ∗P6) = ∆8:
Let M = T4 ∗ P6. Then the usual translate is the uniserial module of

length 2 with top composition factor L8 and socle L7.
Next, we have τ∆(∆5) = T4 ∗ P6. This comes from Γp,2 using the fact

that ∆5 does not have non-split extensions by ∆8. Furthermore, τ∆(∆3∗∆8)
= ∆5.

We must locate the position of ∆8.

Lemma 20. There is an irreducible map ∆5 ∗∆7 → ∆8.

Proof. Recall that the relative AR-sequence in Γp,2 starting with ∆5∗∆7

is

(ζ) 0→ ∆5 ∗∆7 → U
f→ T4 ∗ P6 → 0

with U indecomposable (the module in the position �). Let 0→ ∆5 ∗∆7 →
X → Y → 0 be the relative AR-sequence in Γp,3; we want to show that
X = U ⊕∆8.

We show first that Y ∼= V where V is the middle term of the relative
AR-sequence starting with ∆8, which is 0→ ∆8 → V

π→ T4 ∗P6 → 0 and V
is indecomposable (one can describe it as T4∗(W6,8⊕∆7), via a construction
as a pull-back).

One checks that Ext1(T4 ∗ P6,∆8) = K and Ext1(∆5 ∗ ∆7,∆8) = 0.
Furthermore, one shows that Ext1(U,∆8) = 0.

One then shows using Remark 7 that Y is an extension of T4∗P6 by copies
of ∆8. We also know that Ext1(T4∗P6,∆8) = K and hence the (unique) non-
split extension must be the sequence in (2), with middle term V . So Y ∼= V .
Furthermore, X is an extension of U by ∆8. Again by our Ext-calculation
we deduce that X = U ⊕∆8.
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(III) The full sectional path. In (I) we described a sectional path
starting with ∆7. The last term isWω+1,4∗∆7. We also know thatWω+1,4∗∆7

is in the middle of a relative AR-sequence together with P5 and this sequence
ends with ∆5 ∗∆7. Hence we continue with the sectional path

· · · → ∆5 ∗∆7 → ∆8

and we know that ∆8 is the start of a relative AR-sequence with indecom-
posable middle term.

We also know that ∆7 is close to the edge of the component; we can only
extend the sectional path by ∆7 → P6, leading to a singular τ∆-orbit.

Proposition 21. The algebra Λ7,3 is ∆-finite.

Proof. After having identified the location of all singular τ∆-orbits and
knowing a full sectional path, we can proceed by knitting. For p = 7, doing
this explicitly shows that the algebra is ∆-finite with the Auslander–Reiten
quiver given by Figure 1.

Proposition 22. The algebra Λ9,3 is ∆-infinite.

Proof. As in the previous corollary, knowing a full sectional path as well
as the location of all singular τ∆-orbits means we can again proceed by
knitting. We obtain a full sectional path on the left of the wing spanned by
the singular orbit P2, . . . ,∆−3, given by

A6
// A5

// A4
// A3

// A2
// A1

//

��

Y // B

X

where

A6 = W−3,3 ∗∆8,

A5 = W−3,3 ∗W6,8,

A4 = (W−3,3 ⊕ T5) ∗ (P7 ⊕W6,8),
A3 = (W−3,3 ⊕ T5 ⊕∆3) ∗ (P7 ⊕W6,8),
A2 = (W−3,3 ⊕ T5 ⊕W1,3) ∗ (P7 ⊕W6,8),
A1 = (W−3,3 ⊕ T5 ⊕W−1,3) ∗ (P7 ⊕W6,8),

X = W−3,3 ∗ P7,

Y = (W−3,3 ⊕ T5) ∗W6,8,

B = ∆4 ∗W6,8.

We denote their dimension vectors by a1, . . . , a6, x, y, b. Simple arithmetic
shows that the relative Auslander–Reiten translates of A1, . . . A6, X, Y,B
have dimension vectors given by a1 + a2 − x − b, a1 + a3 − x − b, . . . , a1 +
a6 − x− b, a1 − x− b, a1 − x, a1 − b, y − b respectively. We collect this into
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the matrix

B :=



1 1 1 1 1 1 1 1 0
1
0 1
0 1
0 1
0 1
−1 −1 −1 −1 −1 −1 −1 0 0

0 1
−1 −1 −1 −1 −1 −1 0 −1 −1


where all other entries are zero. Given that we know the −3-components in
a1, a2, . . . , a5, a6, x, y, b are 1, 1, 1, 1, 1, 1, 1, 1, 0 respectively, the multiplicity
of the simple −3 in τna1 is given by v ·Bn ·w where v = (1, 1, 1, 1, 1, 1, 1, 1, 0)
and w = (1, 0, 0, 0, 0, 0, 0, 0, 0)T . The rational canonical form of B is

C :=



0 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 −1


with base change matrix

Q :=



0 0 1 −1 1 0 0 1 0
0 0 0 1 −1 1 0 0 1
0 0 0 0 1 −1 1 0 0
0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 1 −1
−1 1 −1 0 0 −1 0 −1 −1

1 0 −1 1 −1 0 0 −1 0
0 −1 1 −1 0 0 −1 0 −1


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so that Q−1BQ = C. Hence v ·Bn · w = v ·Q · Cn ·Q−1 · w. We compute

ṽ := v ·Q = (0, 1,−1, 1, 0, 0, 1, 0, 0)

and

w̃ := Q−1 · w = (1, 2, 2, 1, 1, 1, 0,−1,−1)T .

Now write n as n = 5k + j where 0 ≤ j ≤ 4 and write

v ·Q · Cn ·Q−1 · w = v ·Q · Cj · C5k ·Q−1 · w.

By induction, it is easy to see that

C5k ·Q−1 · w
= (−(k − 1),−2(k − 1),−2(k − 1),−(k − 1), 1, k + 1, 2k, 2k − 1, k − 1)T .

Now we compute v ·Q ·Cj for j = 0, . . . , 4 and then see that for j = 0, . . . , 3
the final result for v · Bn · w is k + 1, and for j = 4 it is k + 2. Hence the
dimension of τn((W−3,3 ⊕ W−1,3 ⊕ T5) ∗ (P7 ⊕ W6,8)) becomes arbitrarily
large as n increases, contradicting the assumption that the quiver is finite.

This completes the proof of the theorem.

3.5. The algebras Λp,4. We first note that ExtΛ5,4(W2,4 ∗ ∆7,∆9) is
two-dimensional. Then we can prove the following:

Theorem 23. Λp,4 is ∆-infinite.

Proof. For p = 5, we need to check that the two-dimensional Ext-space
indeed yields an infinite family. The module with two copies of ∆9 has a
composition structure given by

2

������
>>>>>> 9

������
>>>>>> 4

������
>>>>>> 7

������
>>>>>> 9

������

1 8

>>>>>> 3 1

������
6 3

������
>>>>>> 8 1

������

2 4 2

where the number j stands for the simple module with index j. Factoring
out one copy of ∆9 can be done with a choice of a and b in

2

������
>>>>>>

a

NNNNNNNNNNNN 4

������
>>>>>> 9

������
>>>>>> 7

������
>>>>>>

b

pppppppppppp

1 3 8

>>>>>> 6

>>>>>> 1

������
3

������

2 4

Inequivalent (a : b) ∈ P1(K) obviously produce non-isomorphic modules
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since the isomorphism classes of the factor modules

2

>>>>>>
a

NNNNNNNNNNNN 4

������
>>>>>> 7

������
b

pppppppppppp

3 8 6

are already different for inequivalent (a : b) ∈ P1(K).
Again, for p > 5, notice that there is an embedding of Λ5,4 into Λp,4

which respects the quasi-hereditary structure, hence there is an embedding
of the category of ∆-filtered Λ5,4-modules into the category of ∆-filtered
Λp,4-modules, proving the claim.
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